首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to implement reliable marker-assisted selection systems for the restorer-of-fertility locus (Ms) in onions (Allium cepa L.), simple PCR-based codominant markers linked to the Ms locus were developed. Based on the EST probe sequences of previously reported RFLP markers, full-length genomic sequences of the gene encoding putative oligopeptide transporter (OPT) was obtained by RACE. The first intron contained two 108 and 439-bp indel polymorphisms between the two Ms allele-linked OPT alleles. A simple PCR marker for OPT was developed by designing a primer pair on the flanking regions of the 108-bp indel which is created by two tandem repeats. The second simple PCR marker was developed from the EST probe encoding photosystem I subunit O (PsaO). Two 14 and 39-bp tandem repeats were identified from the 5′ upstream sequences of the PsaO-coding gene, which were isolated by genome walking. Three different compositions of these tandem repeats were identified from diverse onion germplasm. A primer set binding to the flanking sequence of these polymorphic repeats was used to amplify three different marker haplotypes. The OPT marker was tightly linked to the Ms locus at a distance of 1.5 cM, but the analysis of the linkage relationship showed little linkage disequilibrium between the marker and the Ms locus. Even so, these simple PCR markers are valuable tools for the marker-assisted selection of segregating individuals in onion F1 hybrid breeding programs.  相似文献   

2.
Y. Minamiyama    S. Kinoshita    K. Inaba  M. Inoue 《Plant Breeding》2005,124(3):288-291
The complete tack of pungency in pepper (Capsicum annuum L.) is controlled by a single recessive gene (c). To develop a molecular marker linked to the C locus, two segregating F2 populations (TM2 and TF2) derived from crosses between occasionally pungent and non‐pungent peppers in C. annuum were used. Using the RAPD (random amplified polymorphic DNA) technique in combination with a bulked segregation analysis, two RAPD markers, OPD20‐800 and OPY09‐800, were obtained. Of the two markers, the more closely linked marker. OPY09‐800, was converted into a codominant CAPS (cleaved amplified polymorphic sequence) marker using data from the alignment of the two allelic sequences. This CAPS marker was linked to the C locus (3.6 cM in the TF2 population), and polymorphism was detected among accessions within C. annuum. This marker might be helpful for the selection of a c gene in backcross and progeny tests in a conventional breeding system.  相似文献   

3.
Black rot is the most devastating disease of cauliflower worldwide causing severe damage to crop. The identification of markers linked to loci that control resistance can facilitate selection of plants for breeding programmes. In the present investigation, F2 population derived from a cross between ‘Pusa Himjyoti’, a susceptible genotype, and ‘BR‐161’, a resistant genotype, was phenotyped by artificial inoculation using Xcc race 1. Segregation analysis of F2 progeny indicated that a single dominant locus governed resistance to Xcc race 1 in ‘BR‐161’. Bulk segregant analysis in resistant and susceptible bulks of F2 progeny revealed seven differentiating polymorphic markers (three RAPD, two ISSR and two SSR) of 102 markers screened. Subsequently, these markers were used to genotype the entire F2 population, and a genetic linkage map covering 74.7 cM distance was developed. The major locus Xca1bo was mapped in 1.6‐cM interval flanked by the markers RAPD 04833 and ISSR 11635. The Xca1bo locus was located on chromosome 3. The linked markers will be useful for marker‐assisted resistance breeding in cauliflower.  相似文献   

4.
Summary A linkage map for watermelon (Citrullus lanatus) was constructed on the basis of RADP, ribosomal DNA restriction fragment length polymorphism (RFLP), isozyme, and morphological markers using F1BC1. A segregating population of 78 individuals was the result of a backcross of a cultivated inbred line (H-7; Citrullus lanatus; 2n=22) and a wild form (SA-1; C. lanatus; 2n=22), in which the latter was the recurrent (male) parent. A total of 69 RAPD, one RFLP, one isozyme, and three morphological markers was found to segregate in the BC1 population. Linkage analysis revealed that 62 loci could be mapped to 11 linkage groups that extended more than 524 centimorgans (cM), while 12 loci segregated independently of all other markers. The locus for exocarp color was linked to two RAPD markers within a region of 5 cM on linkage group 4. The locus for flesh color was linked to a RAPD marker within a region of 30 cM on linkage group 6. The isozyme marker GOT was located on the linkage group 1. Linkage group 2 contained a locus for ribosomal DNA within 5 cM of a RAPD marker. Half of the RAPD markers on the linkage group 7 displayed severely distorted segregation. The construction of linkage map using molecular markers is necessary for the breeding of watermelon to introduce useful gene of wild watermelon efficiently. However the linkage map that was constructed for the most part on the basis of RAPD markers could not cover significant parts of the genome, the linkage map provides breeders of watermelons the possibility of tagging useful agronomic traits, as well as the gene for exocarp color.Abbreviations RAPD random amplified polymorphic DNA - RFLP restriction fragment length polymorphism - GOT glutamate oxaloacetate transaminase - MDH malate dehydrogenase - ACP acid phosphatase - 6PGH 6-phosphogluconate dehydrogenase  相似文献   

5.
In a segregating homozygous F2 population of bread wheat involving a leaf rust resistance gene Lr28 derived from Aegilops speltoides, six randomly amplified polymorphic DNA (RAPD) markers, three each in coupling and repulsion phase were identified as linked to Lr28, mapped to a region spanning 32 cM including the locus. The F2 and F3 populations were studied in the phytotron challenged with the most virulent pathotype 77-5 of leaf rust. A coupling phase linked RAPD marker S464721 and a repulsion phase linked RAPD marker S326550 flanked the gene Lr28 by a distance of 2.4± 0.016 cM on either side. The flanking markers genetically worked as co-dominant markers when analyzed together after separate amplification in the F2 population by distinguishing the homozygotes from the heterozygotes and increased the efficiency of marker assisted selection by reducing the false positives and negatives. One of the three RAPD markers, S421640 was converted to locus specific SCAR marker SCS421640 which was further truncated by designing primers internal from both ends of the original RAPD amplicon to eliminate a non-specific amplification of nearly same size. The truncated polymorphic sequence characterized amplified region marker (TPSCAR) SCS421570 was 70 bp smaller, but resulted in a single band polymorphism specific to Lr28 resistance. The TPSCAR marker was validated for its specificity to the gene Lr28 in nine different genetic backgrounds and on 43 of the 50 Lr genes of both native and alien origin, suggesting the utility of the SCAR markers in pyramiding leaf rust resistance genes in wheat.  相似文献   

6.
The main aim of this study was to validate PCR markers for determining cytoplasm and genotypes at the Ms locus in short‐day onion. Three cytoplasmic (OSN, MKFR and accD) and four nuclear (OPT, jnurf13, AcSKP1 and AcPMS1) markers were employed. Sel. 121‐1 had 100% S cytoplasm, whereas Sel. 121‐2, ‘Pusa Red’ and ‘Pusa Madhavi’ had 88%, 33% and 17% S cytoplasm, respectively. ‘Early Grano’ and ‘Pusa Riddhi’ did not possess S cytoplasm. Observations in 33 commercial varieties revealed two with sterile (S) cytoplasm. Nuclear markers were not found in linkage disequilibrium with the Ms locus, and the constitution of Ms alleles by OPT was different from other three markers, which were in conformity with each other. The other three markers predicted that most of the plants should be homozygous recessive. Anther colour also did not confirm the sterility status. It can be concluded that accD may be used for cytoplasm determination based on the ease of its use. For the Ms locus tagging, more markers are needed to be evaluated to isolate maintainer lines from open‐pollinated populations.  相似文献   

7.
Cytoplasmic genetic male-sterility is used to produce hybrid onion (Allium cepa L.) seeds worldwide. In this paper, we present the results of research aimed toward identifying PCR-based markers linked to the Ms locus through amplified fragment length polymorphism (AFLP). After screening 512 AFLP primer combinations, only one AFLP fragment was identified as being flanking linked to the dominant Ms allele. Subsequently, the AFLP marker was converted into a sequence-characterized amplified region (SCAR) marker, designated as DNF-566, co-segregated with the dominant Ms allele in first backcross (BC1) segregated populations. Furthermore, we designed another molecular marker (RNS-357) co-segregated with the ms allele to identify different genotypes (i.e., MsMs, Msms, or msms). Both markers could be used for evaluating onion lines with different genetic backgrounds (including male-sterile lines, maintainer lines, male-fertile lines, and commercial based F1 hybrid cultivars). The results of this study indicate that maintainer plants could be directly selected by using these 2 SCAR markers in the onion breeding process, and this may contribute significantly toward breeding onion F1 hybrid cultivars.  相似文献   

8.
Rhizomania, one of the most important diseases of sugar beet, is caused by beet necrotic yellow vein virus, a Furovirus vectored by the fungus Polymyxa betae Keskin. Reduction of the production losses caused by this disease can only be achieved by using tolerant cultivars. The objective of this study was the identification and mapping of random amplified polymorphic DNA (RAPD) markers linked to a rhizomania resistance gene. The RAPD markers were identified using bulked segregant analysis in a segregating population of 62 individuals derived by intercrossing plants of the resistant commercial hybrid GOLF, and the resistance locus was positioned in a molecular marker linkage map made with a different population of 50 GOLF plants. The resistance locus, Rr1, was mapped to linkage group III of our map of Beta vulgaris L. ssp. vulgaris, which consisted of 76 RAPDs, 20 restriction fragment length polymorphisms (RFLPs), three sequence characterized amplified regions (SCARs) and one sequence tagged site (STS). In total, 101 molecular markers were mapped over 14 linkage groups which spanned 688.4 cM with an average interval length of 8.0 cM. In the combined map, Rr1 proved to be flanked by the RAPD loci RA4111800 and AS71100 at 9.5 and 18.5cM, respectively. Moreover, in our I2 population, we found that a set of markers shown by Barzen et al. (1997) to be linked to the ‘Holly’ type resistance gene was also linked to the ‘GOLF’-type resistance gene. These results appeared to indicate that the rhizomania resistance gene present in the GOLF hybrid could be the same gene underlying resistance in ‘Holly’-based resistant genotypes. Two other explanations could be applied: first, that two different alleles at the same locus could have been selected; second, that two different genes at two different but clustered loci underwent the selection process.  相似文献   

9.
10.
Root rot of lettuce, which is caused by Fusarium oxysporum f. sp. lactucae (FOL), is a critical problem in the production of lettuce. FOL-resistant lettuce genetic resources have been identified and used in breeding programs to produce FOL-resistant cultivars. However, the genetic characteristics of resistance genes have not been studied in depth and, therefore, no DNA markers are presently available for these genes. In this study, we analyzed the RRD2 (resistance for root rot disease race 2) locus, which confers resistance to FOL race 2. Resistance loci were analyzed using two cultivars of crisphead lettuce: VP1013 (resistant) and Patriot (susceptible). The segregation patterns of resistant phenotypes in F2 indicated a single major locus. To define the positions of resistance loci, a linkage map was constructed using amplified fragment length polymorphism and random amplified polymorphic DNA (RAPD) markers. Quantitative trait loci analysis revealed the position of the major resistance locus. A high LOD score was observed for RAPD-marker WF25-42, and this marker showed good correspondence to the phenotype in different cultivars and lines. We successfully developed a sequence characterized amplified region marker from WF25-42.  相似文献   

11.
Doubled haploid oilseed rape lines segregating for a transgene inducing herbicide resistance (bar gene) were investigated for the wide mapping of the T-DNA insertion site. Bulk segregant analysis using presence/absence and intensity polymorphisms between the bulks, as well as comparative mapping with a linkage group deriving from another cross, led to the identification of 11 random amplified polymorphic DNA (RAPD) markers tightly or loosely linked to the bar gene. Ten RAPD loci out of 11 were located on the same side of the bar locus, strongly suggesting that the T-DNA integrated in a telomeric or subtelomeric position. The eleventh RAPD marker exhibited a strong segregation distortion, which could be the result of a heteroduplex formation. Comparison of the linkage groups obtained from the two crosses showed different recombination rates between markers, possibly reflecting differences in parental genetic backgrounds. Consequences and potential applications in transgene dispersal safety assessment studies are discussed.  相似文献   

12.
D. Page    B. Dulclos    G. Aubert    J. F. Bonavent  C. Mousset-Déclas   《Plant Breeding》1997,116(1):73-78
Random amplified polymorphic DNA (RAPD) was used with the objective of identifying DNA markers linked to the sclerotinia crown and stem rot (SCSR) resistance of red clover. Bulked segregant analysis was used to detect polymorphism that should be linked to SCSR resistance. Two bulks were made by pooling previously extracted DNA. Each bulk (one resistant, and the other susceptible) consisted of eight genotypes from an F2 population obtained from a cross between a susceptible and a resistant parent. A binomial model was used to select RAPD fragments with a low probability of no linkage with SCSR resistance. Four RAPD fragments were retained as candidate markers of SCSR resistance. Three are associated with resistance and one with susceptibility.  相似文献   

13.
The first genetic linkage map of macadamia (Macadamia integrifolia and M. tetraphylla) is presented. The map is based on 56 F1 progeny of cultivars ‘Keauhou’ and ‘A16’. Eighty-four percent of the 382 markers analysed segregated as Mendelian loci. The two-way pseudo-testcross mapping strategy allowed construction of separate parental cultivar maps. Ninety bridging loci enabled merging of these maps to produce a detailed genetic map of macadamia, 1100 cm in length and spanning 70–80% of the genome. The combined map comprised 24 linkage groups with 265 framework markers: 259 markers from randomly amplified DNA fingerprinting (RAF), five random amplified polymorphic DNA (RAPD), and one sequence-tagged microsatellite site (STMS). The RAF marker system unexpectedly revealed 16 codominant markers, one of them a putative microsatellite locus and exhibiting four distinct alleles in the cross. This molecular study is the most comprehensive examination to date of genetic loci of macadamia, and is a major step towards developing marker-assisted selection for this crop. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Several races of Fusarium oxysporum Schlechtend.:Fr f. sp. ciceris (Padwick) Matuo and K. Sato cause economic losses from wilting disease of chickpea ( Cicer arietinum L.). While the genetics of resistance to race 1 have been reported, little is known of the genetics of resistance to race 4. We undertook a study to determine the inheritance of resistance and identified random amplified polymorphic DNA markers (RAPDs) linked to the gene for resistance. For the investigation, we used 100 F5 derived F7 recombinant inbred lines (RILs) that had been developed from the cross of breeding lines C-104 x WR-315. Results indicated that resistance is controlled by a single recessive gene. The RAPD markers previously shown to amplify fragments linked to race 1 resistance also amplified fragments associated with race 4 resistance. The RAPD loci, CS-27700, UBC-170550 and the gene for resistance to race 4 segregated in 1:1 ratios expected for single genes. Both RAPD markers were located 9 map units from the race 4 resistance locus and were on the same side of the resistance gene. Our results indicated that the genes for resistance to race 1 and 4 are 5 map units apart. The need to determine the genomic locations of race specific resistance genes and the possibility that these genes are clustered to the same genomic region should be investigated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Powdery mildew caused by Podosphaera xanthii is an important disease of melon, and race 2F is the predominant race in most areas of China. Resistance to P. xanthii race 2F in melon K7-1 was controlled by a dominant gene, designated Pm-2F, in a 106-member population of recombinant inbred lines derived from K7-1× susceptible K7-2. Using bulked segregant analysis with molecular markers, we have identified two polymorphic simple sequence repeats (SSR) to determine that Pm-2F is located on linkage group II. Comparative genomic analyses using mapped SSR markers and the cucumber genome sequence showed that the melon chromosomal region carrying Pm-2F is homologous to a 288,223 bp genomic region on cucumber chromosome (chr) 1. The SSR markers on chr 1 of cucumber, SSR02734, SSR02733 and CS27 were found linked with Pm-2F. Comparative mapping showed that two SSR markers (SSR02734 and CMBR8) flanked the Pm-2F locus and two nucleotide binding site-leucine-rich repeat resistance genes were identified in the collinear region of cucumber. A cleaved amplified polymorphic sequence (CAPS) marker was developed from the sequence of resistance genes and it delimits the genomic region carrying Pm-2F to 0.8 cM. The evaluation of 165 melon accessions and 13 race differential lines showed that the newly developed CAPS (CAPS-Dde I) marker can be used as a universal marker for effective marker assisted selection in melon powdery mildew resistance breeding. The putative resistance gene cluster provides a potential target site for further fine mapping and cloning of Pm-2F.  相似文献   

16.
Fusarium wilt is one of the most widespread diseases of pea. Resistance to Fusarium wilt race 1 was reported as a single gene, Fw, located on linkage group III. The previously reported AFLP and RAPD markers linked to Fw have limited usage in marker‐assisted selection due to their map distance and linkage phase. Using 80 F8 recombinant inbred lines (RILs) derived from the cross of Green Arrow × PI 179449, we amplified 72 polymorphic markers between resistant and susceptible lines with the target region amplified polymorphism (TRAP) technique. Marker–trait association analysis revealed a significant association. Five candidate markers were identified and three were converted into user‐friendly dominant SCAR markers. Forty‐eight pea cultivars with known resistant or susceptible phenotypes to Fusarium wilt race 1 verified the marker–trait association. These three markers, Fw_Trap_480, Fw_Trap_340 and Fw_Trap_220, are tightly linked to and only 1.2 cM away from the Fw locus and are therefore ideal for marker‐assisted selection. These newly identified markers are useful to assist in the isolation of the Fusarium wilt race 1 resistance gene in pea.  相似文献   

17.
Male and female genetic linkage map of hops, Humulus lupulus   总被引:2,自引:0,他引:2  
A male and female linkage map of hop has been constructed using 224 DNA polymorphisms (106 amplified fragment length polymorphisms (AFLPs), three random amplified polymorphic DNAs (RAPDs), one RAPD‐sequence‐tagged‐site (STS), and three microsatellite (STSs) segregating in an F1 population of the English cultivar ‘Wye Target’‐the German male breeding line ‘85/54/15’. Linkage between these loci was estimated using JOINMAP Version 2.0. The final map for the female parent consisted of 110 loci assigned to eight linkage groups covering a distance of 346.7 cM. For the male map, 57 loci could be mapped on nine linkage groups spanning over 227.4 cM. One of these male linkage groups (Gr09‐M) presumably represents the Y chromosome, since all markers assigned (10 AFLPs, three RAPDs and one STS) were closely linked to the male sex (M). Because of their sex‐specific segregation, 10 doubly heterozygous AFLPs spanning a distance of 18.7 cM could be identified as markers describing the X chromosome, which is part of the male and female map. Three STMSs, which had already proved useful in hop genotyping, could be integrated as codominant locus‐specific markers and thus allowed to produce reliable allelic bridges between the female and male counterparts.  相似文献   

18.
T. Markussen    J. Krüger    H. Schmidt  F. Dunemann 《Plant Breeding》1995,114(6):530-534
The availability of molecular markers linked to mildew resistance genes would enhance the efficiency of apple-breeding programmes. This investigation focuses on the identification of random amplified polymorphic DNA (RAPD) markers linked to the Pl1 gene for mildew resistance, which has introgressed from Malus robusta into cultivated apples. The RAPD marker technique was combined with a modified ‘bulked seg-regant analysis’ mapping strategy. About 850 random decamer primers used as single primers or in combinations were tested by PCR analysis on the basis of resistant and susceptible DNA pools. Selected primers producing RAPD fragments were applied in an additional selection step to M. robusta and genotypes representing intermediate breeding stages of the breeding population 93/9, for which a 1:1 segregation could be observed for the resistance trait. Seven RAPD markers, all representing introgressed DNA sequences from M. robusta, were identified and arranged with the Pl1 locus in a common linkage group. The two most tightly-linked RAPD markers, OPAT20450 and OPD21000 were mapped with a genetic distance of 4.5 and 5 cM, respectively, from the Pl1 gene. Both markers are suitable for marker-assisted selection in apple breeding. The polymorphic DNA fragment OPAT20450 was cloned and sequenced, and longer primers for the generation of a sequence-characterized amplified region (SCAR) marker have been constructed; this marker was easier to score than the original RAPD marker.  相似文献   

19.
Common bacterial blight (CBB) caused hy Xanthomonas campestrts pv. phaseoli is an important disease of common bean (Phaseolus vulgaris L.) throughout the world. Two random amplified polymorphic DNA (RAPD) markers (R7313 and R4865) linked to genes for CBB resistance, that were transferred to P- vulgaris by an interspecific cross with Phaseohus acutifoluis. Were identified in a previous study. The current study was conducted to examine the use of these markers for selecting CBB resistant material from 85 F5,6, lines derived from crosses between two of the resistant lines used previously in the linkage study and susceptible breeding lines. The results showed that these two markers were located on the same linkage group and explained 22% (P = 0.0002) of the variation in response to CBB in the current population. Seventy per cent of the lines that had both markers were classified as resistant in a disease test of the F5,6, lines, whereas 73% of the lines that had neither of the RAPD markers were susceptible. The results indicated that the marker-disease resistance associations remained stable in a plant breeding programme and that they can be used lor marker-assisted selection of CBB-resistant beans.  相似文献   

20.
Genetic study on important traits of tea is difficult because of its self-incompatibility in nature. Moreover, development of a new variety usually needs more than 20 years, since it takes many years from seedling to matured plants for trait investigation. Genetic map is an essential tool for genetic study and breeding. In this study, we have developed an integrated genetic map of tea (Camellia sinensis) using a segregating F1 population derived from a cross between two commercial cultivars (‘TTES 19’ and ‘TTES 8’). A total of 574 polymorphic markers (including SSR, CAPS, STS, AFLP, ISSR and RAPD), 69 markers with highly significant levels of segregation distortion (P < 0.001) (12.0 %) were excluded from further analyses. Of the 505 mapped markers, there were 265 paternal markers (52.5 %), 163 maternal markers (32.3 %), 65 doubly heterozygous dominant markers (12.9 %), and 12 co-dominant markers (2.4 %). The co-dominant markers and doubly heterozygous dominant markers were used as bridge loci for the integration of the paternal and maternal maps. The integrated map comprised 367 linked markers, including 36 SSR, 3 CAPS, 1 STS, 250 AFLP, 13 ISSR and 64 RAPD that were assigned to 18 linkage groups. The linkage groups represented a total map length of 4482.9 cM with a map density of 12.2 cM. This genetic map has the highest genetic coverage so far, which could be applied to comparative mapping, QTL mapping and marker assisted selection in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号