共查询到16条相似文献,搜索用时 0 毫秒
1.
Islam MA Kim YS Jang WJ Lee SM Kim HG Kim SY Kim JO Ha YL 《Journal of agricultural and food chemistry》2008,56(14):5970-5976
The growth inhibitory effect of a mixture of trans, trans conjugated linoleic acid isomers (t, t CLA) was investigated in a human breast cancer cell line, MCF-7, with references to c9, t11 CLA, t10, c12 CLA, and linoleic acid. The t, t CLA treatment effectively induced a cytotoxic effect in a time-dependent (0-6 days) and concentration-dependent (0-40 microM) manner, as compared to the reference and control treatments. The apoptotic parameters were measured on cells treated with 40 microM t, t CLA for 4 days. The occurrence of the characteristic morphological changes and DNA fragmentation confirmed apoptosis. The t, t CLA treatment led to an increase in the level of p53 tumor suppressor protein and Bax protein, but suppressed the expression of Bcl-2 protein. In addition, cytochrome c was released from the mitochondria into the cytosol, and the activation of caspase-3 led to the cleavage of poly(ADP-ribose) polymerase (PARP). Moreover, the composition of the linoleic and arachidonic acids was decreased in cellular membranes. These findings suggest that incorporation of t, t CLA in the membrane induces a mitochondria-mediated apoptosis that can enhance the antiproliferative effect of t, t CLA in MCF-7 cells. 相似文献
2.
Rafi MM Vastano BC Zhu N Ho CT Ghai G Rosen RT Gallo MA DiPaola RS 《Journal of agricultural and food chemistry》2002,50(4):677-684
Herbal therapies are commonly used by patients with cancer, despite little understanding about biologically active chemical derivatives. We recently demonstrated that the herbal combination PC-SPES, which contains licorice root, had anti-prostate cancer activity attributable to estrogen(s) that produced a chemical castration. A recent study also demonstrated that licorice root alone decreased circulating testosterone in men. Other studies demonstrated antitumor activity of PC-SPES in vitro associated with decreased expression of the anti-apoptotic protein Bcl-2 and in patients independent of chemical castration, suggesting that other mechanisms of antitumor activity exist separate from chemical castration. In the present study, we assessed licorice root extract for effects on Bcl-2 to identify novel cytotoxic derivatives. Licorice root extract induced Bcl-2 phosphorylation as demonstrated by immunoblot and G2/M cell cycle arrest, similarly to clinically used antimicrotubule agents such as paclitaxel. Bioassay-directed fractionations resulted in a biologically active fraction for Bcl-2 phosphorylation. HPLC separation followed by mass spectrometry and NMR identified 6 compounds. Only one molecule was responsible for Bcl-2 phosphorylation; it was identified as 1-(2,4-dihydroxyphenyl)-3-hydroxy-3-(4'-hydroxyphenyl) 1-propanone (beta-hydroxy-DHP). The effect on Bcl-2 was structure specific, because alpha-hydroxy-DHP, 1-(2,4-dihydroxyphenyl)-2-hydroxy-3-(4'-hydroxyphenyl) 1-propanone, in contrast to beta-hydroxy-DHP, was not capable of Bcl-2 phosphorylation. Pure beta-hydroxy-DHP induced Bcl-2 phosphorylation in breast and prostate tumor cells, G2/M cell cycle arrest, apoptosis demonstrated by Annexin V and TUNEL assay, decreased cell viability demonstrated by a tetrazolium (MTT) assay, and altered microtubule structure. Therefore, these data demonstrate that licorice root contains beta-hydroxy-DHP, which induced Bcl-2 phosphorylation, apoptosis, and G2/M cell cycle arrest, in breast and prostate tumor cells, similarly to the action of more complex (MW >800) antimicrotubule agents used clinically. 相似文献
3.
Clinical studies indicate that high blood levels of leptin or matrix metalloproteinase-7 (MMP-7; matrilysin) proteins are associated with tumor progression of human colorectal cancer (CRC). Leptin could play an important role in cell migration and invasion of cancer cells. Our previous study indicated that lycopene could inhibit the proliferation of human colon cancer cells in vitro. However, the inhibitory effects of lycopene on the progression of human colon cancer cells have not been demonstrated yet. In this study, we investigated the inhibitory effects of lycopene on tumor progression including cell invasion and MMP-7 expression in leptin-stimulated human colon cancer cells in vitro. Our results demonstrated that lycopene significantly inhibited leptin-mediated cell invasion and MMP-7 expression in human colon cancer HT-29 cells. Lycopene could augment the expression and stability of E-cadherin proteins. Our results showed that MAPK/ERK and PI3K/Akt signaling pathways played important roles in leptin-mediated MMP-7 expression and cell invasion. Lycopene could effectively inhibit the phosphorylation of Akt, glycogen synthase kinase-3β (GSK-3β) and ERK 1/2 proteins. The molecular mechanisms of lycopene were in part through decreases in nuclear levels of AP-1 and β-catenin proteins. These novel findings suggested that lycopene could act as a chemopreventive agent to suppress MMP-7 expression and leptin-mediated cell invasion in human colon cancer HT-29 cells. 相似文献
4.
Apples are one of the largest contributors of fruit phenolics of all fruits consumed by Americans and contain a variety of bioactive compounds, which have health benefits. Consumption of apples has been linked to reduced risk of chronic diseases such as cancer and cardiovascular disease. Apple extracts have been shown to have the capabilities of inhibiting NF-kappaB activation in human breast cancer MCF-7 cells. 2Alpha-hydroxyursolic acid is one of the major triterpenoids isolated from apple peels, and its effects on cell proliferation and TNF-alpha-induced NF-kappaB activation in MCF-7 cells were examined. 2Alpha-hydroxyursolic acid significantly inhibited MCF-7 cell proliferation at doses of 20 microM (p < 0.05). Preincubation with 2alpha-hydroxyursolic acid suppressed TNF-alpha-induced NF-kappaB activation in a dose-dependent manner and significantly inhibited the activation at a dose of 20 microM of 2alpha-hydroxyursolic acid (p < 0.05). 2Alpha-hydroxyursolic acid treatment did not affect the phosphorylation level of NF-kappaB inhibitor (IkappaB-alpha), but proteasome activity in MCF-7 cells was inhibited significantly at doses of 10 and 20 microM ( p < 0.05). These results suggest that 2alpha-hydroxyursolic acid has antiproliferative activities against MCF-7 cells and capabilities inhibiting NF-kappaB activation induced by TNF-alpha partially by suppressing proteasome activities. 相似文献
5.
Ju YH Carlson KE Sun J Pathak D Katzenellenbogen BS Katzenellenbogen JA Helferich WG 《Journal of agricultural and food chemistry》2000,48(10):4628-4634
Cruciferous vegetable extracts from freeze-dried cabbage (FDC), freeze-dried fermented cabbage (FDS), and acidified Brussels sprouts (ABS) were prepared by exhaustive extraction with ethyl acetate. Estrogenic and antiestrogenic effects of these extracts were analyzed. To identify whether the extracts are potential estrogen receptor (ER) ligands that can act as agonists or antagonists, the binding affinity of extracts for the ER was measured using a competitive radiometric binding assay. The extracts bound with low affinity to the ER, and the relative binding affinity is estradiol > FDS > FDC > ABS. These extracts were evaluated for their estrogenic and antiestrogenic activities in estrogen-dependent human breast cancer (MCF-7) cells using as endpoints proliferation and induction of estrogen-responsive pS2 gene expression, which was analyzed using Northern blot assay. At low concentrations (5-25 ng/mL) all of the extracts reduced 1 nM estradiol-induced MCF-7 cell proliferation. Extracts at 25 ng/mL also inhibited estradiol-induced pS2 mRNA expression. At higher extract concentrations (50 ng/mL-25 microg/mL), however, increased proliferation in MCF-7 cells was observed. Similarly, expression of the pS2 gene was induced by higher extract concentrations (0.25-25 microg/mL). The pure estrogen antagonist, ICI 182,780, suppressed the cell proliferation induced by the extracts as well as by estradiol and also the induction of pS2 expression by the extracts. The ER subtype-selective activities of FDC and FDS were analyzed using a transfection assay in human endometrial adenocarcinoma (HEC-1) cells. FDS acted as an ERalpha-selective agonist while FDC fully activated both ER-alpha and ER-beta. Growth of the ER-negative MDA-231 cells was not affected by the extracts or by estradiol. This study demonstrates that cruciferous vegetable extracts act bifunctionally, like an antiestrogen at low concentrations and an estrogen agonist at high concentrations. 相似文献
6.
Hsu JD Kao SH Ou TT Chen YJ Li YJ Wang CJ 《Journal of agricultural and food chemistry》2011,59(5):1996-2003
Gallic acid (GA), 3,4,5-trihydroxybenzoic acid, is a natural polyphenolic acid and widely found in gallnuts, tea leaves and various fruits. Previous studies have shown that GA possesses anti-inflammatory, antiallergic and anticarcinogenic activity. In the present study, we aim to investigate the antitumor effects of GA on breast cancer cell. Our results revealed that GA treatment significantly reduced the cell growth of human breast cancer cell MCF-7 in a dose-dependent manner. Further flow cytometric analysis showed that GA induced significant G2/M phase arrest but slightly affected the population of sub-G1MCF-7 cells. Therefore, levels of cyclins, cyclin-dependent kinases (CDKs), and their regulatory proteins involved in S-G2/M transition were investigated. Our findings revealed that levels of cyclin A, CDK2, cyclin B1 and cdc2/CDK1 were diminished; in contrast, levels of the negative regulators p27(Kip1) and p21(Cip1) were increased by GA treatment. Additionally, Skp2, a specific ubiquitin E3 ligase for polyubiquitination of p27(Kip1) was reduced by GA treatment. Further investigation showed that GA attenuated Skp2-p27(Kip1) association and diminished polyubiquitination of p27(Kip1) in MCF-7 cells. Moreover, knockdown of p27(Kip1) but not p21(Cip1) significantly alleviated GA-induced accumulation of G2/M phase. These findings indicate that GA may upregulate p27(Kip1) level via disruption of p27(Kip1)/Skp2 association and the consequent degradation of p27(Kip1) by proteosome, leading to G2/M phase arrest of MCF-7 cell. It is suggested that GA should be beneficial to treatment of breast cancer and p27(Kip1)-deficient carcinomas. 相似文献
7.
Wu QK Koponen JM Mykkänen HM Törrönen AR 《Journal of agricultural and food chemistry》2007,55(4):1156-1163
Previous studies have shown that anthocyanin-rich berry extracts inhibit the growth of cancer cells in vitro. The objective of this study was to compare the effects of berry extracts containing different phenolic profiles on cell viability and expression of markers of cell proliferation and apoptosis in human colon cancer HT-29 cells. Berry extracts were prepared with methanol extraction, and contents of the main phenolic compounds were analyzed using HPLC. Anthocyanins were the predominant phenolic compounds in bilberry, black currant, and lingonberry extracts and ellagitannins in cloudberry extract, whereas both were present in raspberry and strawberry extracts. Cells were exposed to 0-60 mg/mL of extracts, and the cell growth inhibition was determined after 24 h. The degree of cell growth inhibition was as follows: bilberry > black currant > cloudberry > lingonberry > raspberry > strawberry. A 14-fold increase in the expression of p21WAF1, an inhibitor of cell proliferation and a member of the cyclin kinase inhibitors, was seen in cells exposed to cloudberry extract compared to other berry treatments (2.7-7-fold increase). The pro-apoptosis marker, Bax, was increased 1.3-fold only in cloudberry- and bilberry-treated cells, whereas the pro-survival marker, Bcl-2, was detected only in control cells. The results demonstrate that berry extracts inhibit cancer cell proliferation mainly via the p21WAF1 pathway. Cloudberry, despite its very low anthocyanin content, was a potent inhibitor of cell proliferation. Therefore, it is concluded that, in addition to anthocyanins, also other phenolic or nonphenolic phytochemicals are responsible for the antiproliferative activity of berries. 相似文献
8.
Allouche Y Warleta F Campos M Sánchez-Quesada C Uceda M Beltrán G Gaforio JJ 《Journal of agricultural and food chemistry》2011,59(1):121-130
This research aimed to investigate erythrodiol, uvaol, oleanolic acid, and maslinic acid scavenging capacities and their effects on cytotoxicity, cell proliferation, cell cycle, apoptosis, reactive oxygen species (ROS) level, and oxidative DNA damage on human MCF-7 breast cancer cell line. The results showed that erythrodiol, uvaol, and oleanolic acid have a significant cytotoxic effect and inhibit proliferation in a dose- and time-dependent manner. At 100 μM, erythrodiol growth inhibition occurred through apoptosis, with the observation of important ROS production and DNA damage, whereas uvaol and oleanolic acid growth inhibition involved cell cycle arrest. Moreover, although all tested triterpenes did not show free radical scavenging activity using ABTS and DPPH assays, they protected against oxidative DNA damage at the concentration 10 μM. Uvaol and oleanolic and maslinic acids, tested at 10 and 100 μM, also reduced intracellular ROS level and prevented H(2)O(2)-induced oxidative injury. Overall, the results suggest that tested triterpenes may have the potential to provide significant natural defense against human breast cancer. 相似文献
9.
Hung CM Kuo DH Chou CH Su YC Ho CT Way TD 《Journal of agricultural and food chemistry》2011,59(17):9683-9690
Substantial activation of the HGF/c-Met signaling pathway is involved in the progression of several types of cancers and associated with increased tumor invasion and metastatic potential. Underlying HGF-induced tumorigenesis, epithelial to mesenchymal transition (EMT) shows a positive correlation with progression in patients. We previously determined that osthole is a potent fatty acid synthase (FASN) inhibitor. FASN is implicated in cancer progression and may regulate lipid raft function. We therefore examined whether osthole could block HGF-induced tumorigenesis by disrupting lipid rafts. Here, we found that osthole could abrogate HGF-induced cell scattering, migration, and invasion in MCF-7 breast cancer cells. Osthole also effectively inhibited the HGF-induced decrease of E-cadherin and increase of vimentin via down-regulation of phosphorylated Akt and mTOR. Interestingly, osthole blocked HGF-induced c-Met phosphorylation and repressed the expression of total c-Met protein in MCF-7 cells. In addition, C75, a pharmacological inhibitor of FASN, repressed the expression of total c-Met protein in MCF-7 cells. Consistent with a role for FASN, loss of c-Met in cells treated with osthole was prevented by the exogenous addition of palmitate. Briefly, our result suggests a connection between FASN activity and c-Met protein expression and that osthole is a potential compound for breast cancer therapy by targeting the major pathway of HGF/c-Met-induced EMT. 相似文献
10.
Consumption of fruits and vegetables, which are rich in polyphenols, has been associated with a reduced risk of chronic diseases such as cancer. Dietary polyphenols have antioxidant and antiproliferative properties that might explain their beneficial effect on cancer prevention. The aim of this study was to investigate the effects of different pure polyphenols [quercetin, chlorogenic acid, and (-)-epicatechin] and natural fruit extracts (strawberry and plum) on viability or apoptosis of human hepatoma HepG2 cells. The treatment of cells for 18 h with quercetin and fruit extracts reduced cell viability in a dose-dependent manner; however, chlorogenic acid and (-)-epicatechin had no prominent effects on the cell death rate. Similarly, quercetin and strawberry and plum extracts, rather than chlorogenic acid and (-)-epicatechin, induced apoptosis in HepG2 cells. Moreover, quercetin and fruit extracts arrested the G1 phase in the cell cycle progression prior to apoptosis. Quercetin and strawberry and plum extracts may induce apoptosis and contribute to a reduced cell viability in HepG2 cells. 相似文献
11.
12.
Elena Valkama Minna Kivimenp Helin Hartikainen Anu Wulff 《Agricultural and Forest Meteorology》2003,120(1-4):267
The possible ameliorative effects of selenium (Se) addition to soil on the detrimental effects of enhanced UV-B radiation were tested on strawberry and barley during 4 months of field experiment in Kuopio, Central Finland. Control plants were exposed to ambient levels of UV radiation, using arrays of unenergized lamps. A control for UV-A radiation was also included in the experiment. Added Se, applied as H2SeO4, at the level of 0.1 mg kg−1 soil (low dosage) and 1 mg kg−1 soil (high dosage) increased Se concentrations in plants more than 10 and 100 times, respectively. After 4 months of exposure, strawberry and barley plants were harvested for biomass analysis. Chlorophyll fluorescence was measured using the Hansatech FMS2 fluorescence monitoring system. Leaf anatomy and ultrastructure were observed by light and transmission electron microscope. Several effects of UV and Se as well as their interaction were found, mostly for strawberry, but not for barley, indicating species-specific responses. Our results provided evidence that the high Se concentration in soil had no ameliorative effect but increased the sensitivity of strawberry to enhanced UV-B radiation in the field. Under ambient radiation, Se did not alter leaf growth of strawberry, whereas under UV-B radiation, the high Se addition significantly decreased leaf growth. Strawberry runner biomass was affected by the interaction of Se and UV. Under ambient radiation Se did not change dry weight of runners, but in combination with UV-A or UV-B radiation the high Se dosage decreased dry weight of runners by about 30%. Although the high Se concentration positively influenced on quantum efficiency of photosystem II (PSII) in strawberry leaves, it reduced runner biomass, leaf number and ratio of starch to chloroplast area. This suggests that the harmful effects of the high Se dosage on photosynthetic processes occurred as a result of changes in activity or/and biosynthesis of enzymes, rather than alteration of PSII. At the low concentration, Se effects were slight and variable.Although barley leaves accumulated higher Se concentrations than strawberry, there were no apparent changes in their growth, biomass or chlorophyll fluorescence due to Se effect either alone or in combination with UV-B. However, at the ultrastructural level, an enlargement in the peroxisome area was found due to combination of UV radiation with Se, suggesting the activation of antioxidative enzymes, possibly catalase. Decrease in mitochondrial density in barley cells in response to Se might be attributed to alteration of mitochondrial division. Increase in the proportion of cells with cytoplasmic lipid bodies due to combined effect of UV-B and Se indicated the alteration of lipid metabolism and the acceleration of cell senescence in barley. Main UV-B effects were found, mostly at the tissue and ultrastructural level in strawberry, but not in barley, indicating species-specific susceptibility to enhanced UV-B radiation. UV-B-treated strawberry plants developed marginally thinner leaves with reduced ratio of starch to chloroplast area in their cells, suggesting negative influence of UV-B on photosynthetic processes. 相似文献
13.
Tumor-associated fatty acid synthase (FAS) is implicated in tumorigenesis and connected to HER2 (human epidermal growth factor receptor 2) by systemic analyses. Suppression of FAS in cancer cells may lead to growth inhibition and cell apoptosis. Our previous study demonstrated that (-)-epigallocatechin 3-gallate (EGCG), the green tea catechin, could down-regulate FAS expression by suppressing EGFR (epidermal growth factor receptor) signaling and downstream phosphatidylinositol 3-kinase (PI3K)/Akt activation in the MCF-7 breast cancer cell line. Herein, we examined the effects of EGCG on FAS expression modulated by another member of the erbB family, that is, HER2 or HER3. We identified that heregulin-beta1 (HRG-beta1), a HER3 ligand, stimulated dose-dependent FAS expression in breast cancer cell lines MCF-7 and AU565, but not MDA-MB-453. The time-dependent increase in FAS expression after HRG-beta1 stimulation was also observed in MCF-7 cells, and this up-regulation was de novo RNA synthesis dependent. Treatment of MCF-7 cells with EGCG markedly inhibited HRG-beta1-dependent induction of mRNA and protein of FAS. EGCG also decreased the phosphorylation of Akt and extracellular signal-regulated kinase 1/2 that were demonstrated as selected downstream HRG-beta1-responsive kinases required for FAS expression using dominant-negative Akt, PI3K inhibitors (LY294002 and wortmannin), or MEK inhibitor (PD98059). FAS induction by HRG-beta1 was also blocked by AG825, a selective HER2 inhibitor, and by genistein, a selective tyrosine kinase inhibitor, indicating the formation of a heterodimer between HER2 and HER3, and their tyrosine kinase activities are essential for HRG-beta1-mediated elevation of FAS. Additionally, growth inhibition of HRG-beta1-treated cells was parallel to suppression of FAS by EGCG. Taken together, these findings extend our previous study to indicate that EGCG may be useful in the chemoprevention of breast carcinoma in which FAS overexpression results from HER2 or/and HER3 signaling. 相似文献
14.
Granado-Serrano AB Martín MA Izquierdo-Pulido M Goya L Bravo L Ramos S 《Journal of agricultural and food chemistry》2007,55(5):2020-2027
Dietary polyphenols have been associated with reduced risk of chronic diseases, but the precise molecular mechanisms of protection remain unclear. This work was aimed at studying the effect of (-)-epicatechin (EC) and chlorogenic acid (CGA) on the regulation of apoptotic and survival/proliferation pathways in a human hepatoma cell line (HepG2). EC or CGA treatment for 18 h had a slight effect on cell viability and decreased reactive oxygen species formation, and EC alone promoted cell proliferation, whereas CGA increased glutathione levels. Phenols neither induced the caspase cascade for apoptosis nor affected expression levels of Bcl-xL or Bax. A sustained activation of the major survival signals AKT/PI-3-kinase and ERK was shown in EC-treated cells, rather than in CGA-exposed cells. These data suggest that EC and CGA have no effect on apoptosis and enhance the intrinsic cellular tolerance against oxidative insults either by activating survival/proliferation pathways or by increasing antioxidant potential in HepG2. 相似文献
15.
Aqueous extract from Spanish black radish (Raphanus sativus L. Var. niger) induces detoxification enzymes in the HepG2 human hepatoma cell line 总被引:1,自引:0,他引:1
Spanish black radish (Raphanus sativus L. var. niger) is a member of the Cruciferae family that also contains broccoli and Brussels sprouts, well-known to contain health-promoting constituents. Spanish black radishes (SBR) contain high concentrations of a glucosinolate unique to the radish family, glucoraphasatin, which represents >65% of the total glucosinolates present in SBR. The metabolites of glucosinolates, such as isothiocyanates, are implicated in health promotion, although it is unclear whether glucosinolates themselves elicit a similar response. The crude aqueous extract from 0.3 to 3 mg of dry SBR material increased the activity of the phase II detoxification enzyme quinone reductase in the human hepatoma HepG2 cell line with a maximal effect at a concentration of 1 mg/mL. Treatment of HepG2 cells with the crude aqueous extract of 1 mg of SBR per mL also significantly induced the expression of mRNA corresponding to the phase I detoxification enzymes: cytochrome P450 (CYP) 1A1, CYP1A2, and CYP1B1 as well as the phase II detoxification enzymes: quinone reductase, heme oxygenase 1, and thioredoxin reductase 1. Previous studies have shown that the myrosinase metabolites of different glucosinolates vary in their ability to induce detoxification enzymes. Here, we show that while glucoraphasatin addition was ineffective, the isothiocyanate metabolite of glucoraphasatin, 4-methylthio-3-butenyl isothiocyanate (MIBITC), significantly induced phase II detoxification enzymes at a concentration of 10 microM. These data demonstrate that the crude aqueous extract of SBR and the isothiocyanate metabolite of glucoraphasatin, MIBITC, are potent inducers of detoxification enzymes in the HepG2 cell line. 相似文献
16.