首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reactivity of xenon with terrestrial oxides was investigated by in situ synchrotron x-ray diffraction. At high temperature (T > 500 kelvin), some silicon was reduced, and the pressure stability of quartz was expanded, attesting to the substitution of some xenon for silicon. When the quartz was quenched, xenon diffused out and only a few weight percent remained trapped in samples. These results show that xenon can be covalently bonded to oxygen in quartz in the lower continental crust, providing an answer to the missing xenon problem; synthesis paths of rare gas compounds are also opened.  相似文献   

2.
Secondary ion mass spectrometry measurements show that Earth's representative lower mantle minerals synthesized in a natural peridotitic composition can dissolve considerable amounts of hydrogen. Both MgSiO3-rich perovskite and magnesiowüstite contain about 0.2 weight percent (wt%) H2O, and CaSiO3-rich perovskite contains about 0.4 wt% H2O. The OH absorption bands in Mg-perovskite and magnesiowüstite were also confirmed with the use of infrared microspectroscopic measurements. Earth's lower mantle may store about five times more H2O than the oceans.  相似文献   

3.
Solidus of Earth's deep mantle   总被引:1,自引:0,他引:1  
The solidus of a pyrolite-like composition, approximating that of the lower mantle, was measured up to 59 gigapascals by using CO2 laser heating in a diamond anvil cell. The solidus temperatures are at least 700 kelvin below the melting temperatures of magnesiowustite, which in the deep mantle has the lowest melting temperatures of the three major components-magnesiowustite, Mg-Si-perovskite, and Ca-Si-perovskite. The solidus in the deep mantle is more than 1500 kelvin above the average present-day geotherm, but at the core-mantle boundary it is near the core temperature. Thus, partial melting of the mantle is possible at the core-mantle boundary.  相似文献   

4.
A persistent reversal in the expected polarity of the initiation of vertically polarized shear waves that graze the D' layer (the layer at the boundary between the outer core and the lower mantle of Earth) in some regions starts at the arrival time of horizontally polarized shear waves. Full waveform modeling of the split shear waves for paths beneath the Caribbean requires azimuthal anisotropy at the base of the mantle. Models with laterally coherent patterns of transverse isotropy with the hexagonal symmetry axis of the mineral phases tilted from the vertical by as much as 20 degrees are consistent with the data. Small-scale convection cells within the mantle above the D' layer may cause the observed variations by inducing laterally variable crystallographic or shape-preferred orientation in minerals in the D' layer.  相似文献   

5.
Mineral properties in Earth's lower mantle are affected by iron electronic states, but representative pressures and temperatures have not yet been probed. Spin states of iron in lower-mantle ferropericlase have been measured up to 95 gigapascals and 2000 kelvin with x-ray emission in a laser-heated diamond cell. A gradual spin transition of iron occurs over a pressure-temperature range extending from about 1000 kilometers in depth and 1900 kelvin to 2200 kilometers and 2300 kelvin in the lower mantle. Because low-spin ferropericlase exhibits higher density and faster sound velocities relative to the high-spin ferropericlase, the observed increase in low-spin (Mg,Fe)O at mid-lower mantle conditions would manifest seismically as a lower-mantle spin transition zone characterized by a steeper-than-normal density gradient.  相似文献   

6.
Plate tectonics and volcanism involve the formation, migration, and interaction of magma and gas. Experiments show that melt inclusions subjected to a thermal gradient migrate through olivine crystals, under the kinetic control of crystal-melt interface mechanisms. Exsolved gas bubbles remain fixed and eventually separate from the melt. Scaled to thermal gradients in Earth's mantle and geological times, our results account for the grain-scale segregation of primitive melts, reinterpret CO2-rich fluid inclusions as escaped from melt, and question the existence of a free, deeply percolating fluid phase. Melt migration experiments also allow us to quantify crystal growth kinetics at very low undercoolings in conditions appropriate to many natural systems.  相似文献   

7.
We measured the spin state of iron in ferropericlase (Mg0.83Fe0.17)O at high pressure and found a high-spin to low-spin transition occurring in the 60- to 70-gigapascal pressure range, corresponding to depths of 2000 kilometers in Earth's lower mantle. This transition implies that the partition coefficient of iron between ferropericlase and magnesium silicate perovskite, the two main constituents of the lower mantle, may increase by several orders of magnitude, depleting the perovskite phase of its iron. The lower mantle may then be composed of two different layers. The upper layer would consist of a phase mixture with about equal partitioning of iron between magnesium silicate perovskite and ferropericlase, whereas the lower layer would consist of almost iron-free perovskite and iron-rich ferropericlase. This stratification is likely to have profound implications for the transport properties of Earth's lowermost mantle.  相似文献   

8.
Structure and dynamics of Earth's lower mantle   总被引:1,自引:0,他引:1  
Processes within the lowest several hundred kilometers of Earth's rocky mantle play a critical role in the evolution of the planet. Understanding Earth's lower mantle requires putting recent seismic and mineral physics discoveries into a self-consistent, geodynamically feasible context. Two nearly antipodal large low-shear-velocity provinces in the deep mantle likely represent chemically distinct and denser material. High-resolution seismological studies have revealed laterally varying seismic velocity discontinuities in the deepest few hundred kilometers, consistent with a phase transition from perovskite to post-perovskite. In the deepest tens of kilometers of the mantle, isolated pockets of ultralow seismic velocities may denote Earth's deepest magma chamber.  相似文献   

9.
Chlorine stable isotope compositions (delta37Cl) of 22 mid-ocean ridge basalts (MORBs) correlate with Cl content. The high-delta37Cl, Cl-rich basalts are highly contaminated by Cl-rich materials (seawater, brines, or altered rocks). The low-delta37Cl, Cl-poor basalts approach the composition of uncontaminated, mantle-derived magmas. Thus, most or all oceanic lavas are contaminated to some extent during their emplacement. MORB-source mantle has delta37Cl 相似文献   

10.
11.
12.
Water in the deep upper mantle can influence the properties of seismic discontinuities in the mantle transition zone. Observations of converted seismic waves provide evidence of a 20- to 35-kilometer-thick discontinuity near a depth of 410 kilometers, most likely explained by as much as 700 parts per million of water by weight.  相似文献   

13.
14.
First-principles molecular-dynamics simulations show that over the pressure regime of Earth's mantle the mean silicon-oxygen coordination number of magnesium metasilicate liquid changes nearly linearly from 4 to 6. The density contrast between liquid and crystal decreases by a factor of nearly 5 over the mantle pressure regime and is 4% at the core-mantle boundary. The ab initio melting curve, obtained by integration of the Clausius-Clapeyron equation, yields a melting temperature at the core-mantle boundary of 5400 +/- 600 kelvins.  相似文献   

15.
Crystal defects form during tectonic deformation and are reactivated by the shear stress associated with passing seismic waves. Although these defects, known as dislocations, potentially contribute to the attenuation of seismic waves in Earth's upper mantle, evidence for dislocation damping from laboratory studies has been circumstantial. We experimentally determined the shear modulus and associated strain-energy dissipation in pre-deformed synthetic olivine aggregates under high pressures and temperatures. Enhanced high-temperature background dissipation occurred in specimens pre-deformed by dislocation creep in either compression or torsion, the enhancement being greater for prior deformation in torsion. These observations suggest the possibility of anisotropic attenuation in relatively coarse-grained rocks where olivine is or was deformed at relatively high stress by dislocation creep in Earth's upper mantle.  相似文献   

16.
17.
The transition zone of Earth's mantle is delineated by globally observed discontinuities in seismic properties at depths of about 410 and 660 kilometers. Here, we investigate the detailed structure between 410 and 660 kilometers depth, by making use of regional stacks of precursors to the SS phase. The previously observed discontinuity at about 520 kilometers depth is confirmed in many regions, but is found to be absent in others. There are a number of regions in which we find two discontinuities at about 500 and 560 kilometers depth, an effect which can be interpreted as a "splitting" of the 520 kilometer discontinuity. These observations provide seismic constraints on the sharpness and observability of mineralogical phase transitions in the mantle transition zone.  相似文献   

18.
Rates of cation diffusion (magnesium, iron, and nickel) have been determined in olivine and its high-pressure polymorph, wadsleyite, at 9 to 15 gigapascals and 1100 degrees to 1400 degreesC for compositions that are relevant to Earth's mantle. Diffusion in olivine becomes strongly dependent on composition at high pressure. In wadsleyite, diffusion is one to two orders of magnitude faster than in olivine, depending on temperature. Homogenization of mantle heterogeneities (chemical mixing) and mineral transformations involving a magnesium-iron exchange will therefore occur considerably faster in the transition zone than at depths of less than 410 kilometers.  相似文献   

19.
Shim SH  Duffy TS  Shen G 《Science (New York, N.Y.)》2001,293(5539):2437-2440
Unexplained features have been observed seismically near the middle (approximately 1700-kilometer depth) and bottom of the Earth's lower mantle, and these could have important implications for the dynamics and evolution of the planet. (Mg,Fe)SiO3 perovskite is expected to be the dominant mineral in the deep mantle, but experimental results are discrepant regarding its stability and structure. Here we report in situ x-ray diffraction observations of (Mg,Fe)SiO3 perovskite at conditions (50 to 106 gigapascals, 1600 to 2400 kelvin) close to a mantle geotherm from three different starting materials, (Mg0.9Fe0.1)SiO enstatite, MgSiO3 glass, and an MgO+SiO2 mixture. Our results confirm the stability of (Mg,Fe)SiO3 perovskite to at least 2300-kilometer depth in the mantle. However, diffraction patterns above 83 gigapascals and 1700 kelvin (1900-kilometer depth) cannot presently rule out a possible transformation from Pbnm perovskite to one of three other possible perovskite structures with space group P2(1)/m, Pmmn, or P4(2)/nmc.  相似文献   

20.
The Hawaiian-Emperor hotspot track has a prominent bend, which has served as the basis for the theory that the Hawaiian hotspot, fixed in the deep mantle, traced a change in plate motion. However, paleomagnetic and radiometric age data from samples recovered by ocean drilling define an age-progressive paleolatitude history, indicating that the Emperor Seamount trend was principally formed by the rapid motion (over 40 millimeters per year) of the Hawaiian hotspot plume during Late Cretaceous to early-Tertiary times (81 to 47 million years ago). Evidence for motion of the Hawaiian plume affects models of mantle convection and plate tectonics, changing our understanding of terrestrial dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号