首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文首先将棉花秸秆热解制得生物炭,而后以磷酸为活化剂对所制备的生物炭进行活化得到棉秆基活性炭,采用正交实验方法研究了活化剂与生物炭比例、浸渍时间、活化温度和活化时间对棉秆基活性炭的持水能力的影响,采用极差分析方法对实验条件进行优化,并对所制备的样品进行了比表面积、SEM等性能测定。结果表明:最优化实验方案为磷酸与生物炭质量比为2∶1,浸渍时间12 h,活化温度450℃,活化时间30 min,该条件下所制备的棉秆基活性炭持水能力为5.11 g/g,平均孔径为3.58 nm,最可几孔径为1.81 nm。  相似文献   

2.
磷酸活化棉秆制备活性炭的研究   总被引:1,自引:0,他引:1  
[目的]磷酸活化棉秆制备活性炭.[方法]以棉秆为原料,磷酸为活化剂,采用一步法制备活性炭,考察了浸渍比、活化温度、活化时间对活性炭吸附性能和活化得率的影响.[结果]棉秆制备活性炭的最佳工艺条件:浸渍比为1.5,活化温度450℃,活化时间60 min.此时,活性炭的碘吸附值为1 376 mg/g,亚甲基蓝吸附值为163.5 mg/g,活化得率为35.67%.制得的活性炭比表面积为1 462 m2/g,总孔体积为1.178 cm3/g,中孔体积为0.792 cm3/g,平均孔径为4.4nm,最可几孔径为3.9nm.[结论]该研究对于扩大制备活性炭的原料,带动产棉区的农业经济发展具有重要的意义.  相似文献   

3.
以棉秆为原料,在氮气保护下于400℃直接碳化120 min后,以氢氧化钾为活化剂制备棉秆基活性炭,主要考察了碱碳比、活化温度、活化时间等工艺参数对活性炭吸附性能及活化得率的影响。结果表明,制备棉秆基活性炭的最佳工艺条件为碱碳比为2.0,活化温度700℃,活化时间90 min,此时制得的活性炭的碘吸附值为1 381 mg/g,亚甲基蓝吸附值为180 mg/g,平均孔径4.42 nm,最可几孔径2.17 nm,活化得率为18.07%。  相似文献   

4.
为了研究棉秆基活性炭对水中重金属Cu~(2+)的吸附性,分别采用直接热解法,ZnCl_2、HNO_3、NaOH_3种活化剂活化法制备棉秆基活性炭,对其微观结构、元素构成进行分析,并在实验室条件下配制含Cu~(2+)的混合溶液模拟含Cu~(2+)的废水,用火焰原子吸收仪测定不同工艺条件下制得的棉秆基活性炭对水中Cu~(2+)的吸附性。结果表明,NaOH能定性改性棉秆基活性炭,以NaOH为活化剂在热解温度400℃、热解时间150 min、剂料质量比1.0∶1的条件下制得的棉秆基活性炭有大量的芳环、O—H、COOH等含氧官能团,能很好地去除废水中的重金属Cu~(2+),该条件下制得的棉秆基活性炭的吸附量为8.439 mg/g。该研究为棉秆的有效转化利用、活性炭处理废水中的重金属提供了有效参考。  相似文献   

5.
为了研究棉秆热解制备活性炭的工艺参数,采用直接热解法与HNO_3、NaOH 2种活化剂活化的方法,制备棉秆基活性炭,并对所制备的活性炭按GB/T 12496.8—1999《木质活性炭试验方法碘吸附值的测定》的方法测定所制得棉秆基活性炭的吸附性。结果表明,当用低温250℃热解棉秆时有较高的得炭率,得炭率达40.57%,但此时制得的棉秆基活性炭的吸附性较差;用HNO_3作为活化剂时,在450℃的条件下热解2 h,制得的活性炭有较高的碘吸附性。研究结果为农林废弃物的转化利用提供了新的途径和方法。  相似文献   

6.
卢辛成  何跃  蒋剑春  林玉锁  孙康  刘雪梅  徐凡 《安徽农业科学》2011,39(7):4162-4164,4166
以小麦秸秆为原料采用磷酸活化法制备活性炭,考察了制备条件对活性炭性质的影响,并结合氮气吸附、TG-DDTG、SEM对其结构进行了表征。结果表明:在浸渍比为3∶1、活化温度450℃、升温速率3℃/m in的条件下活化60 m in,制得的麦秆基活性炭比表面积为1 279 m2/g,总孔容积为1.36 cm3/g,平均孔径为4.2 nm,有丰富的中孔,可用做大分子吸附材料。麦秆适合作为制备具有丰富大中孔的活性炭的原料。  相似文献   

7.
[目的]研究无患子活性炭制备的最佳工艺及其对苯酚的吸附。[方法]以H3PO4为活化剂制备无患子残渣活性炭,通过正交试验对制备工艺进行优化,探讨浸渍比、活化温度、活化时间对活性炭亚甲基蓝和碘吸附值的影响。利用N2吸脱附试验、SEM,对活性炭的结构与性能进行表征。选取了投炭量、苯酚溶液pH、苯酚初始浓度、吸附温度为单因素,探讨其对苯酚吸附的影响。[结果]浸渍比为1∶1、活化温度为500℃、活化时间为60 min时,制备的活性炭对亚基蓝的吸附值为82 mg/g、碘吸附值为773 mg/g、BET比表面为738m2/g、总孔容达0.669 2 cm3/g、平均孔径为3.625 7 nm。活性炭在中性条件下对苯酚吸附效果最佳;低温有利于吸附,但温度的影响不大。[结论]所制备的活性炭具有良好的苯酚吸附效果。  相似文献   

8.
以沙柳纤维为原材料,采用正交试验KOH活化法制备纤维活性炭,利用N_2吸附表征沙柳活性炭纤维的孔结构。并将其用做钙离子的吸附材料,研究吸附剂投加量、时间、Ph、初始钙浓度等因素对钙离子去除效果的影响。结果表明,在KOH浓度为30%,浸渍比3:1,活化温度700℃,活化时间40min条件下制得活性炭纤维得率为45.6%,亚甲基蓝吸附值为9.5ml/0.1g,BET比表面积为672m_2/g,平均孔径为2.08nm;在ACF投加量15mg/L、PH为7.4、吸附时间10min、钙离子初始浓度300mg/L的条件下,活性炭纤维对钙离子的吸附量为12.3mg/g,去除率为36.9%。  相似文献   

9.
以磷酸为活化剂,拟制备大比表面积和中孔结构发达的紫苏基活性炭。探讨磷酸溶液浓度、浸渍比、活化温度及活化时间4个因素对紫苏活性炭碘和亚甲基蓝吸附性能的影响,利用氮气吸附脱附仪、扫描电子显微镜、傅里叶红外光谱仪等对活性炭表面物化性质进行表征。通过单因素和正交试验确定活性炭的最佳制备工艺条件:磷酸浓度60%、浸渍比200%、活化温度400℃和活化时间80 min,该条件下紫苏活性炭的碘吸附值为910 mg/g,亚甲基蓝吸附值为202. 5 mg/g,达到了净水用活性炭的国家一级品标准。最优条件下活性炭的BET(BET为Brunauer、Emmett和Teller三位科学家名字首字母组合)比表面积、总孔容积、平均孔径分别为1 101. 26 m~2/g、0. 89 cm3/g、3. 23 nm,孔隙结构发达,孔为蜂窝状结构,表面存在醇羟基、羰基、酯等含氧官能团,说明超富集植物紫苏有望成为一种新型、吸附效果良好的活性炭制备原料。  相似文献   

10.
目的与普通活性炭比较,介孔活性炭具有疏水性好、孔体积大、导电性能好等优势,然而传统制备方法繁杂,原料成本较高。因此,探究新型介孔活性炭制备工艺尤为重要。方法以木糖渣为原料,采用NaOH预处理、低温硫酸辅助炭化与磷酸活化相结合的方法制备了高介孔率活性炭。通过单因素实验,分析NaOH预处理时间、浸渍比以及活化温度对活性炭的亚甲基蓝(MB)吸附性能的影响。结果研究表明:NaOH预处理脱除木质素促使原料形成孔隙通道,同时使木糖渣纤维发生润胀,有利于活化剂与原料接触,从而获得高介孔率、高比表面积活性炭。当NaOH预处理时间为4h,磷酸与原料浸渍比4:1,活化温度500℃,活化时间为1h所制备的活性炭具有较高的MB吸附值436mg/g。扫描电镜分析结果表明:样品表面含有丰富的大孔及中孔结构,整体活化充分均匀。氮气物理吸附-脱附分析结果表明:活性炭具有发达的孔隙结构,其比表面积和总孔体积分别高达2038m2/g和2.13cm3/g,其中介孔孔容1.56cm3/g,介孔率达到73.2%,平均孔径为4.18nm。结论采用适当的NaOH预处理有利于制备孔隙结构优越的活性炭,在重金属离子吸附、有机大分子废水处理以及电子元器件等领域有广泛的应用前景。本研究将为高比表面积介孔活性炭的制备奠定理论基础,并为工业木糖渣的高值化利用提供了一条新途径。   相似文献   

11.
以南疆农业废弃物棉秆为原料,采用棉冠、棉茎、根部3段不同部位制备棉秆基生物质活性炭吸附材料,对3部分棉秆在不同温度范围(375~475℃)及不同热解时间(90~170 min)炭化,测定分段棉秆以及棉秆基活性炭的基本理化参数。按照木质活性炭国家标准试验方法对直接热解的3段棉秆得炭率、含水率、棉秆液pH值酸碱度、灰分及挥发分含量等基本参数进行工业分析。试验结果表明,当炭化温度为375℃,热解时间为90 min时,活性炭得率最高;棉秆平均含水率为8.67%,棉冠与根部有较高含水率;棉秆灰分与挥发分含量均达到木质活性炭检测标准。本研究结果可为南疆棉秆基活性炭的基本理化参数提供数据参考和理论依据。  相似文献   

12.
以花生壳和竹子为原料,氯化锌为活化剂,微波辐射制备活性炭,通过单因素试验确定最佳制备条件,并在最优条件下对活性炭分别进行碘吸附、亚甲基蓝吸附、电镜分析和比表面等分析检测。结果表明,竹子活性炭的吸附性能优于花生壳活性炭,其吸附碘值为984.9 mg/g,亚甲基蓝吸附值为150 mg/g,比表面积1 047.0 m2/g,孔体积0.208 cm3/g,孔径2.78 nm。  相似文献   

13.
氢氧化钾活化法制备杨木刨花板活性炭的研究   总被引:1,自引:0,他引:1  
为探索废弃刨花板的再利用方式,以杨木刨花板为原料,采用氢氧化钾活化法制备活性炭。以活化温度、活 化时间、浸渍比和施胶量为参数研究活化工艺对所得活性炭吸附性能和活化得率的影响,并对试验范围内较优试 验条件下制备的活性炭的微观结构和表面吸附性能进行元素分析、扫描电镜分析和N2 吸附测试。结果表明:浸渍 比是氢氧化钾活化法制备木质活性炭最重要的影响因素;在活化温度1 000 益、活化时间40 min、浸渍比1颐3、施胶 量6%的条件下,活性炭样品的BET 比表面积为2 459.708 m2 / g、碘吸附值为2.047 g/ g、活化得率为58.30%。   相似文献   

14.
甘蔗渣制取活性炭的试验研究   总被引:3,自引:0,他引:3  
以甘蔗渣为原料,以ZnCl2为活化剂,采用先活化再炭化的方法制取生物活性炭.通过比较得率和碘值,得到了制取活性炭的优化条件:活化剂ZnCl2浓度为2.0 mol/L,活化剂与甘蔗渣的质量比为5∶1,活化时间为24 h,炭化温度为500 ℃,炭化时间为50 min,以N2作为保护气,流量为2.5 L/min.在上述条件下制得的活性炭的碘值为510 mg/g,得率为35.4%,比表面积为653 m2/g,平均孔径为2.4 nm,孔体积为 7.1×10-2 cm3/g.  相似文献   

15.
以中小城镇市政污泥和水稻秸秆为原料,氯化锌为活化剂,制备得到污泥-秸秆复合活性炭。研究了不同原料质量比、活化温度、活化时间以及液固比对污泥-水稻秸秆活性炭吸附性能的影响,并通过BET、FT-IR及EDS对其进行表征。采用响应曲面法分析得到制备复合活性炭的最优工艺条件:质量比为1∶2(水稻秸秆与市政污泥),液固比为1.5(ZnCl_2∶原料),活化温度为470℃,活化时间为1 h。制备的复合活性炭碘吸附值为816 mg/g,比表面积为669.29 m~2/g,微孔比表面积为232.33 m~2/g;结构中含有烯烃、醇及酚类等官能团。研究结果表明采用污泥和水稻秸秆制备的复合活性炭性能优异,有一定的应用前景。  相似文献   

16.
以稻壳为原料,采用磷酸活化法制备活性炭,考察了原材料与活化剂的配比、活化温度和活化时间等因素对活性炭吸附性能的影响,确立了调控活性炭性能的工艺方法和工艺条件.利用扫描电镜观察了活性炭的形貌特征,利用X射线衍射分析了稻壳活性炭中微晶的晶体结构.研究结果表明,以稻壳为原料、磷酸为活化剂在实验室的马弗炉中制备活性炭的适宜工艺条件为:活化剂/炭为3,活化温度为400℃,活化时间为2h,所制得的活性炭的碘吸附值为809 mg/g.  相似文献   

17.
介绍了以甘蔗渣为原料,微波辐射制备活性炭的基本方法,通过单因素试验确定最佳制备条件,并在最优条件下对活性炭分别进行碘吸附、亚甲基蓝吸附、电镜分析、比表面等分析检测.试验最终产率达到32.1%以上,碘吸附值为1 133.59 mg/g,亚甲基蓝吸附值为322.5 mg/g,比表面积1 311.7m2/g,孔体积0.85 cm3/g,孔径3.26nm.并且用微波对活性炭进行再生,仍能保持较高的吸附性能.  相似文献   

18.
[目的]制备油茶壳活性炭,并对其吸附性能进行研究。[方法]以油茶壳为原料,通过磷酸活化法制备油茶壳活性炭,考察磷酸浓度、浸渍比、活化温度、活化时间对活性炭的得率和吸附性能的影响;并对制得的活性炭结构进行表征。[结果]当磷酸浓度为70%,浸渍比为1∶3,活化温度为600℃,活化时间为90 min时,活性炭得率可达34%以上;碘吸附值、亚甲基蓝吸附值分别大于1 000、150mg/g;所得活性炭结构以微孔为主,且富含一定比例的中孔,孔径分布相对集中在1.4~5.0 nm。[结论]该研究为油茶壳的综合利用提供了新的途径。  相似文献   

19.
为研究榛子壳活性炭的制备工艺和活性炭表征,以农林果壳废弃物榛子壳作为原料,采用磷酸浸渍活化法制备活性炭。在单因素试验基础上,运用响应面法对活性炭制备工艺中磷酸质量分数、活化温度、活化时间、料液比等各影响因素进行优化。结果表明:在磷酸质量分数为48.5%、活化温度为494℃、活化时间为117min、料液比为1∶2条件下,活性炭的碘吸附值为1029mg·g-1。采用扫描式电子显微镜(SEM)、傅里叶红外光谱(FT-IR)、比表面积及孔径分布分析仪等方法对优化条件下制备的活性炭进行表征,活性炭的比表面积可达到1364.00m2·g-1,平均孔径为3.17nm,总孔容为1.08cm3·g-1,表明榛子壳活性炭具有较好的吸附效果,可作为一种环保型低成本吸附剂。  相似文献   

20.
以龙眼(Dimocarpus longan Lour.)核为原料制备活性炭,通过正交试验优化制备工艺。结果表明,氢氧化钾为最适活性剂,龙眼核活性炭的最佳工艺条件为活化时间40 min、活化温度500℃、碳化温度400℃和碱碳比2∶1(质量比),在此工艺条件下制备的龙眼核活性炭的碘吸附值和亚甲基蓝吸附值分别为942.36 mg/g和12.83 m L/0.1 g,采用扫描电镜对产品的表面形态进行分析,发现其具有丰富的不规则孔隙结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号