首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究泵腔径向间隙对泵腔内部流场的影响,更好地优化多级泵水力性能,选取某悬臂式多级离心泵为研究对象,应用计算流体力学(CFD)与试验相结合的方法对泵腔内部流场进行研究.k-ε湍流模型下的数值计算结果与多级泵外特性试验值吻合较好,说明应用数值计算对泵腔内部流场进行分析是可靠的.设计3种泵腔间隙方案,对比分析了泵腔内部切向速度分布及压力脉动情况.结果表明:随着测速点位置半径的减小,前泵腔切向速度逐渐增大,且液体旋转速度会超出叶轮旋转速度,而后泵腔中切向速度总体呈现逐渐减小的趋势;泵腔间隙区域及叶轮出口处压力脉动主要集中在0~1 680 Hz范围内,压力脉动主频均出现在1倍导叶叶频处,主频脉动幅值由首级向末级逐级递减;泵腔间隙区域压力脉动也受到叶轮叶片数的影响,次主频出现在1倍叶轮叶频处,且在其他叶频倍频处均发生压力脉动现象.  相似文献   

2.
井用潜水泵的口环间隙大小对泵性能及流场具有较大影响,基于200QJ80-22井用潜水泵,通过CFD软件对泵全流场进行了数值计算,并与试验结果进行对比分析,研究了不同口环间隙大小对泵外特性和内部流场的影响.数值模拟结果表明,整泵的扬程和效率都随着间隙值的增大而减小,特别是口环间隙值增大到0.70 mm,减小更为明显,但功率变化较小.当间隙值达到1.00 mm时,效率从最高点的77.2%减小为68.7%,同时扬程也随之减小了约3.5 m.口环间隙为0.20 mm时,第一,二级叶轮前盖板腔体内以及叶轮出口与前盖板区域间产生回流,泄漏量较小,对叶轮进口流动和流场影响也较小,当口环间隙值增大至0.50 mm时,第一,二级叶轮前盖板腔体内以及叶轮出口与前盖板区域间回流逐渐消失,但更大的泄漏量冲击叶轮进口处,使叶轮进口过流面积减小,严重影响了泵的水力性能.  相似文献   

3.
以比转数为88的立式离心泵为研究对象,基于CFD研究不同口环间隙对能量性能及压力脉动的影响.研究分为5组方案,使间隙值f从0.13 mm增大到0.93 mm,Δf=0.2 mm.通过外特性试验结果对比,验证了计算方法的准确性,进一步研究口环间隙变化对性能及压力脉动的影响,结果表明:随着口环间隙的增大,模型泵扬程和效率均有所下降,下降值分别为4.00%和7.99%,前泵腔口环泄漏量增大约3.3倍;间隙变化对泵内流场的影响主要集中在前泵腔及间隙出口处,随着间隙的增大,泵腔低压区向蜗室方向扩大,间隙出口处高压区也有所扩大;绝对速度矢量涡由间隙出口附近向叶轮入口移动,导致入口处流体稳定性变差;隔舌及前泵腔处压力脉动幅值下降明显,下降值ΔCp分别为0.002 5和0.002 0;对比分析5组方案中扬程、效率及压力脉动幅值的变化趋势可知,设计工况下模型泵对前口环间隙变化的敏感范围在0.13~0.53 mm.  相似文献   

4.
为避免高温热水泵在运行过程中出现转子部件咬合现象,对TEG 200-400型高温热水泵的口环间隙进行分析.利用ANSYS Workbench软件,对TEG 200-400型高温热水泵在不同温度下的热固耦合进行有限元分析,得到泵盖冷却水腔有无冷却冲洗以及不同温度条件下的泵口环的形变量.结果表明:冷却腔的冲洗对叶轮口环的位置形变影响较大,高温热水泵的使用过程中,尽量降低泵盖与托架连接处的温度,有利于减小叶轮口环的变形;泵体口环和叶轮口环形变量随介质温度的升高而增大,依据运行介质的温度、泵的自身结构、材料特征等,对热变形进行合理预估并选择设计口环间隙,可避免泵启动及运行时泵体口环与叶轮口环之间的动静摩擦;在250℃设计温度条件下,叶轮口环与泵体口环的半径间隙取为0.6 mm的方案是合理的.研究结果为合理选择叶轮口环和泵体口环之间的间隙提供了一定的依据.  相似文献   

5.
针对不同泵腔轴向间隙对平衡腔和泄漏量的影响,采用RNG k-ε湍流模型,对IS80-50-315型单级单吸悬臂式离心泵后泵腔间隙分别为1,4,8,12,16,20 mm的全流道模型进行数值计算,分析了不同间隙下平衡腔液体压力的分布规律和泄漏量的变化情况,得到了与泵腔阻力系数、密封环阻力系数和平衡孔阻力系数相关的速度系数与隙径比的关系曲线和泄漏量计算公式,可用于试验中对0.006~0.127的全流道速度系数进行预估和不同泵腔轴向间隙的泵腔流道液体泄漏量的求解.研究结果表明:后泵腔轴向间隙增大,平衡孔进口处平面和闷盖壁面压力随之升高,这个变化在轴向间隙为4~16 mm时较为明显,而在泵腔间隙取最大值12 mm和最小值1 mm时压力改变较小;同一工况下的泵腔流道泄漏量随后泵腔间隙的增大而上升,而对于同一泵腔间隙,泵腔流道泄漏量在0.8Qd时最大,1.2Qd时最小,即泄漏量随流量的增大而减小.  相似文献   

6.
为了阐明口环间隙变化对高转速离心泵性能的影响,以一台转速n为38 500 r/min的离心泵为研究对象,基于泵几何参数,建立前、后口环间隙变化为0.01 mm的16种匹配方案,通过数值模拟方法预测了不同匹配方案下离心泵的性能.结果表明:当后口环间隙越小时,效率及轴功率对前口环间隙变化的敏感度越高;当前口环间隙越小时,效率及轴功率对后口环间隙变化的敏感度也越高;当前口环间隙一定时,随着后口环间隙的增大,扬程下降;当后口环间隙一定时,扬程随着前口环间隙的增大出现微小上升;无论是小间隙匹配还是大间隙匹配,前、后口环处泄漏量均随着流量的增大而减小;匹配的间隙值越大,对应模型的扬程及效率越低,功率越大,扬程随流量的变化越明显;口环内部水力阻力的形成主要是消耗了静压,液体通过口环后,其速度的变化并不明显;随着口环间隙的增大,在口环内同一位置处静压下降,动压上升.  相似文献   

7.
为了研究隔舌倒圆半径对核主泵性能的影响规律,保持其他过流部件的几何参数不变,设计匹配4种不同的倒圆半径R.基于RNG k-ε湍流模型,对4种倒圆半径下核主泵缩比模型进行三维定常数值模拟,得到相应模型泵的性能曲线,并从叶轮-导叶和压水室的水力性能、内部流场变化分析隔舌倒圆半径对模型泵性能影响的原因.结果表明:倒圆半径对模型泵的扬程影响较小,对效率影响较大,在设计流量下R=24 mm与R=72 mm的效率相当,R=72 mm时压水室内损失最小;倒圆半径对模型泵性能的影响主要由压水室内的流动损失引起,增大倒圆半径可以减小隔舌附近的回流,改善分流点附近的流动状态,有效降低湍流耗散.因此,在结构尺寸允许的条件下,适当增大倒圆半径可以改善隔舌附近的流场结构,进而减小压水室内的流动损失,提高模型泵的性能.  相似文献   

8.
离心泵泵腔内流动特征的数值分   总被引:3,自引:1,他引:2  
为了分析离心泵在设计工况运行时叶轮盖板两侧泵腔内流场结构的特点,采用RNG kε湍流模型和多重参考系下的雷诺时均NS方程,对由叶轮通道、蜗室、泵腔和密封环间隙组成的计算域进行定常数值模拟.计算结果与试验结果吻合良好,证明了数值计算方法具有较高的可靠性.流场分析结果表明,泵腔内的流场分布具有非轴对称性,其流场结构比由转子定子组成的封闭壳体内的流场结构复杂得多,但二者的速度场沿轴向的变化规律相似.  相似文献   

9.
锥形双向旋转泵效环由于泵送能力强,许用间隙大,近年在机械密封循环冷却系统中获得了广泛应用.为了充分了解该类锥形泵效环引起的流体流动规律,基于CFD软件,对锥形双向旋转泵效环和密封腔之间的三维不可压缩流场进行了数值模拟,得到了泵效环内部流场的压力分布、速度分布和空化现象,揭示了泵效环工作过程流体运动的规律,对泵效环的泵送能力进行预测,获得了其扬程-流量曲线,在流量为2~3 L/min时,扬程为4.0~2.5 m,并将其与文献的试验结果进行了对比.分析了不同结构参数对泵效环扬程-流量关系的影响.结果表明:叶片厚度、叶片数、密封腔间隙距离及叶片出口角度对泵效环的性能均有一定的影响.增加叶片厚度,扬程略有增加;增加叶片数,扬程增加明显;增加密封腔间隙,则扬程减少;增加叶片出口角,扬程有所增加.出口角从55°增加到80°,扬程增加约10%.  相似文献   

10.
为了揭示密封间隙几何参数对核主泵轴向力的影响规律,基于DDES湍流模型,对不同几何参数组合的核主泵密封间隙进行了数值分析,研究了后密封间隙和长度对核主泵轴向力的影响,获得了额定工况下若干几何参数对核主泵轴向力的定量关系.结果表明:叶轮后盖板外侧轴向力分量F4对后密封间隙和后密封间隙长度敏感度较为显著,而后盖板外侧轴向力分量F4跟流入后泵腔流体的上限压力值密切相关.随着后密封间隙值的增大,流体流经间隙的水力损失逐步减小,流出间隙液流在后泵腔中的压力上限值逐步增大,因此其作用于后盖板压力增大,使总的轴向力在不断增大,即密封间隙对轴向力的敏感度降低,密封间隙在0.3~0.6 mm时,密封间隙对轴向力影响较为显著.而随着密封间隙长度增加,流体经间隙的水力损失增加,流出间隙流体在后泵腔中的压力上限值减小,因此其作用于后盖板的压力减小,总轴向力减小,即密封间隙对轴向力影响的敏感度增强.  相似文献   

11.
基于流固耦合的灯泡贯流泵叶轮强度分析   总被引:1,自引:0,他引:1  
采用RNG k-ε湍流模型及SIMPLEC算法,对灯泡贯流泵装置内部三维流场进行全流道湍流数值模拟.采用顺序耦合方法,应用ANSYS Workbench软件,对叶轮进行结构静应力数值分析,并通过试验进行对比验证.结果表明:通过数值模拟与原型泵试验得到两者外特性曲线的变化趋势大致相同;工作面静压整体上较背面高,叶片背面进水边靠近轮缘位置出现局部低压,易发生空化;叶轮强度主要受离心力和流体压力的影响,且两者共同作用下的最大等效应力和最大总位移远小于两者单独作用的值;叶轮最大等效应力随流量的增大而增大,最大总位移随流量增大呈先减小后增大的趋势,最大等效应力出现在叶片出水边与轮毂交接处,叶轮变形的总位移随叶轮半径的增大而增大,最大变形量出现在叶片出水边靠近轮缘位置;强度校核结果表明,叶轮强度符合要求.计算结果可为灯泡贯流泵的应力特性分析提供参考.  相似文献   

12.
基于相对坐标系下的雷诺时均N-S方程和RNG k-ε湍流模型,采用SIMPLE算法,以清水为介质,对AP1000核主泵模型进行数值模拟.通过改变压水室与前腔间隙设计出4种不同方案,并对各种方案下泵内流动进行全三维数值模拟,获得不同间隙下模型泵轴向力和前腔内流动变化趋势和规律.计算结果表明:在工作流量(0.8Qd~1.2Qd)下,间隙变化对泵扬程和效率都有一定影响;核主泵前腔间隙变化导致泵最高效率点位置相对于设计工况发生偏移,其偏移方向和偏移程度与间隙变化无明显对应关系;在设计工况(1.0Qd)下,泵效率在间隙为0.6 mm时高于其他间隙,相比间隙为1.8 mm时提高了1.66%;在1.2Qd工况下,间隙为1.8 mm时效率高于其他间隙,相比间隙为2.4 mm时泵效率提高了2.17%;从全工况看,间隙对轴向力影响较小,轴向力随着流量的增大呈单调递减趋势,其计算值明显低于试验值,但随着流量的增加,理论计算值的相对误差有减小趋势.  相似文献   

13.
离心泵叶轮出口宽度对泵腔内压力脉动分布的影响   总被引:1,自引:0,他引:1  
在试验和数值模拟相互验证的基础上,开展叶轮出口宽度对离心泵泵腔内压力脉动分布影响的研究.通过试验和数值计算获得离心泵的外特性、泵腔内静压分布、泵腔内压力脉动分布及泵体表面的压力脉动幅值分布,并进行对比分析,结果表明:前泵腔内静压和压力脉动幅值随出口宽度的增大而增大,随半径的减小而增大;后泵腔内静压和压力脉动随出口宽度和半径的变化不十分明显.综合考虑外特性和压力脉动,在比转数 ns =97时叶轮出口宽度与叶轮出口直径之比应小于0.06;为了使压力脉动在泵腔内有效地衰减,出口宽度与前腔间隙的比值在1.81附近时最佳.研究结果可用于指导离心泵叶轮的优化设计.  相似文献   

14.
空化条件下离心泵泵腔内不稳定流动数值分析   总被引:2,自引:0,他引:2  
为研究不同空化发展阶段离心泵泵腔内的流动情况及其对叶轮的影响,提出了一种泵腔区域的拓扑块生成和结构化网格划分方法。在充分考虑近壁区网格质量的基础上,采用SST k-ω湍流模型和Rayleigh-Plesset空化模型对设计工况下某离心泵进行了全流场空化数值模拟,并计算了3种有效汽蚀余量下泵腔内的非定常流动情况及其对叶轮的作用力。结果表明:空化造成泵腔内压力脉动的幅值增大,由于前口环的存在,其前泵腔内的压力脉动幅值大于后泵腔;空化的加剧造成泵腔内宽频脉动的增加,以轴频最为明显;空化的加剧不仅影响泵腔内的流态,同时也增大了设计工况下作用于叶轮上的径向力和轴向力。  相似文献   

15.
为了研究不同叶轮口环间隙对离心泵性能及其流动特性的影响,以一台单级单吸离心泵为研究对象,开展三维数值计算和试验.在传统口环间隙范围内选取2个不同的值(0.25 mm和0.50 mm)并选取一个大于常规范围的值(0.75 mm),通过对比各个间隙下离心泵的性能和前腔的流动特性,获得了前口环间隙对离心泵性能及流动特性的影响规律.结果表明:随着叶轮口环间隙的增大,离心泵扬程随之减小,效率也随之降低;口环间隙为0.50 mm时叶轮所受的径向力最大,其次是0.25 mm,0.75 mm时最小;随着口环间隙的增大,口环圆周截面的总压分布更加均匀,与前腔相接的部位总压下降,与叶轮进口相接的部位总压上升;受口环及叶轮前盖板所产生的离心力影响,前腔内流体的径向分速度随口环间隙的增大而增大,前腔轴截面的涡量也随之增大,流线的形状更加流畅规则.  相似文献   

16.
通过ANSYS Fluent软件对全贯流泵装置的停机过渡过程进行研究,主要探讨了停机过程中外特性和内流场,研究发现:全贯流泵的制动工况占整个停机过程的比值最小,飞逸转速约为设计转速的84%,飞逸流量为设计流量的1.17倍。间隙回流在停机过程中的流向始终从叶轮出口流向叶轮进口,且其流量整体呈现逐渐减小的趋势。在停机过程中,轴向力整体呈现下降的趋势;转子径向力整体呈现先减小后增大的趋势;叶轮进、出口的压力脉动先减小后增大,在制动工况达到最大值后,在水轮机工况迅速减小,直至进入飞逸工况趋于稳定。叶轮进口的压力脉动幅值是泵装置内最大的,约为叶轮出口的2倍。由于受到间隙回流的影响,在叶轮进口靠近轮缘区域存在一个小型旋涡,该旋涡的范围在水泵工况先减小,在制动工况突然增大,最后在水轮机工况和飞逸工况再次减小。叶轮进口旋涡的位置受到主流流向的影响逐渐向进口导叶方向转移。全贯流泵装置内部的熵产主要集中在以叶轮为首的下游域。随着停机过程的发展,泵装置内的高熵产区域逐渐向进口导叶的方向转移,高熵产区域的范围先减小后增大。全贯流泵泵段内高熵产率区域的位置和范围与旋涡出现的位置和尺寸相对应,这表明旋涡与脱流等不...  相似文献   

17.
泵用压电振子与泵腔体积变化的测试研究   总被引:1,自引:0,他引:1  
为了准确获得压电泵泵腔体积的变化量,针对影响泵腔体积变化的关键因素——压电振子的变形特性进行分析,并采取非接触的测量方式对基板直径为65 mm,陶瓷直径为60 mm的圆形压电振子进行变形测试.在测试中对该压电振子的中心点在不同电压信号驱动下振幅随频率、驱动电压的变化规律以及压电振子径向各点在正弦电压信号驱动下振幅随半径的变化规律进行了研究.根据压电振子径向各点振幅的变化规律利用Matlab软件进行二次函数曲线拟合计算,得到压电振子的径向切面变形拟合曲线,根据拟合曲线,建立了压电泵泵腔体积变化量的理论计算方法.结果表明:压电振子中心点振幅随频率的增大而逐渐减小,随驱动电压的增大而增大;径向各点振幅随各点半径的增大而减小;拟合计算结果与实测数据基本吻合,最大相对误差仅为6.96%;利用压电泵泵腔体积变化量的理论计算方法,计算得到利用该圆形压电单晶片振子制作的压电泵在100 V,30 Hz正弦电压信号的作用下,泵腔每次振动产生的体积变化量约为34.009 mm3,理论上最大输出流量为61.216 mL/min.  相似文献   

18.
针对液环泵叶轮轴向叶顶间隙泄漏问题,提出采用介质阻挡放电等离子体激励对液环泵轴向间隙气相泄漏流动进行控制,耦合唯象学模型、RNG k-ε湍流模型及VOF气液两相流模型模拟不同激励电压下等离子体对泄漏流场的干扰作用,探究等离子体激励对间隙泄漏流场的调控机理。结果表明,等离子体激励诱导的壁面射流方向与间隙泄漏流动方向相反,诱导的反向壁面射流能够有效地抑制泄漏流强度,并在一定程度上改善间隙泄漏流引起的二次流动,降低间隙泄漏流动损失;同时在等离子体激励的非间隙区域,等离子体激励诱导产生旋涡结构,使得近壁区域产生额外的水力损失。激励电压及位置对泄漏流控制效果有重要的影响,15kV激励电压的等离子体流动控制效果明显优于10kV激励电压,当激励位置位于叶顶间隙出口附近时等离子体激励对泄漏流具有较好的抑制效果。研究结果能够为液环泵的性能优化提供理论参考。  相似文献   

19.
为了研究不同间隙回流角度对全贯流泵水力性能的影响。采用CFX软件对全贯流泵装置进行三维数值模拟,分析不同间隙回流角度下的全贯流泵内部流态和性能。首先,针对初始方案,设计2种间隙回流角度并进行数值模拟计算,再分析全贯流泵的内特性和外特性,最后通过模型试验测试验证数值模拟的可靠性。结果表明:主流靠近叶轮进口轮缘处受到间隙回流的影响,轴向速度减小,径向速度增大;间隙回流角度顺着叶轮内流场的方向,间隙回流出口的流量对叶轮进口处的流场影响较小;小流量工况下,叶轮室内流场不稳定,同时间隙回流对叶轮进口轮缘处产生的影响较大,因此避免水泵在小流量工况下运行。但是回流角度的变化会影响全贯流泵的轴功率,增大了圆盘间的摩擦扭矩,进而增加了轴功率,导致效率降低。研究对全贯流泵的优化具有重要的理论意义和指导意义。  相似文献   

20.
为了研究口环间隙对前置诱导轮离心泵空化性能的影响,基于RNG k-ε湍流模型和Rayleigh-Plesset方程均相流空化模型,以前置诱导轮离心泵为研究对象,选取口环间隙为0.15,0.25,0.40和0.60 mm这4种方案对其进行空化流动数值计算,并与试验结果对比分析.研究结果表明,口环间隙大小对诱导轮离心泵的外特性和空化性能影响较大,随着口环间隙的增大,总扬程效率和叶轮扬程效率均减小,与口环间隙为0.15 mm时相比,总扬程效率和叶轮扬程效率分别降低了0.60%和4.21%,效率分别下降了6.50%和9.32%;而口环间隙的增大使得诱导轮扬程和效率均增加,分别增大了29.86%和28.40%.另外,随着口环间隙的增大,空化性能曲线出现波动现象,间隙越大,波动越明显;离心泵主叶轮工作面靠近前盖板出现云状空泡分布,空化不稳定,间隙越大,空化越不稳定,临界空化数越大.经分析,引起空化不稳定性的因素可能有: 口环间隙出口处泄漏高压流体对主流的冲击;口环附近空化的发生以及诱导轮空化引起叶片出口液流角的变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号