首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fertilizer phosphorus (P) is generally added to agricultural soils to meet the needs of crop production. In this study, the crop yield and soil Olsen P were measured every year (5–18 years) at 16 winter wheat (Triticum aestivum L.) –maize (Zea mays L.) crop rotation sites in cinnamon soil (Luvisols in FAO system). The mean agronomic critical value of Olsen P for maize was 14.2 mg kg?1 and for winter wheat was 14.4 mg kg?1 when using the Liner-plateau and Mitscherlich models. The change in soil Olsen P was positively linearly correlated with the P budget (P < 0.01), and an increase of 4.70 mg kg?1 in soil Olsen P for each 100 kg ha?1 of P budget in the 0–20 cm soil layer. A model of P fertilizer recommendation rate that integrated values of the change in soil Olsen P in response to P budget and the agronomic critical value of Olsen P was used, in order to adjust current levels of soil Olsen P to the agronomic critical value at the experimental sites over the next 5 years, P fertilizer application rate should be in the range of 0–87.5 kg P ha?1.  相似文献   

2.
The effects of 25 years of annual applications of P fertilizer on the accumulation and migration of soil Olsen‐P, and the effects of soil residual P on crop yields by withholding P application for the following 5 years, were evaluated in a subtropical region. Annual application of P fertilizer for 25 years to crops in summer (groundnut), winter (wheat, mustard or rapeseed) or in both seasons raised the Olsen‐P status of the plough layer (0–15 cm) from initially very low (12 kg P ha?1) to medium (18 kg P ha?1) and very high levels (40–59 kg P ha?1), depending on the amount of P surplus (amount of fertilizer applied in excess of removal by crops) (r = 0.86, P 0.01). However, only 4–9% of the applied P fertilizer accumulated as Olsen‐P to a depth of 15 cm (an increase of 2 mg kg?1per 100 kg ha?1 surplus P) in the sandy loam soil. In the following 5 years, the raising of 10 crops without P fertilizer applications decreased the accumulated Olsen‐P by only 20–30% depending upon the amount of accumulated P and crop requirements. After 29 years, 45–256 kg of residual P fertilizer had accumulated as Olsen‐P ha?1 in the uppermost 150 cm with 43–58% below 60 cm depth; this indicates enormous movement of applied P to deeper layers in this coarse textured soil with low P retention capacity for nutrients. Groundnut was more efficient in utilizing residual P than rapeseed; however, for both crops the yield advantage of residual P could be compensated for by fresh P applications. These results demonstrated little agronomic advantage above approximately 20 mg kg?1 Olsen‐P build‐up and suggested that further elevation of soil P status would only increase the risk of environmental problems associated with the loss of P from agricultural soils in this region.  相似文献   

3.
Prediction of accumulation of available phosphorus (P) in paddy soils is crucial for the best management of P fertilizers. Based on the long-term double-rice rotation systems, a predictive model for accumulation rates of Olsen P in paddy soils with chemical fertilization was developed. In paddy soils with more than 40 kg applied P ha?1, the accumulation of Olsen P in the soils could occur. With the target rice yield of 10 tons ha?1 per year, the increases in Olsen P in paddy soils were estimated by the model as 0.7, 2.2, and 3.8 mg kg?1 when P application rates are 40, 60, and 80 kg P ha?1, respectively. The accumulation rate of Olsen P was relatively high in paddy soils. The predictive model can be used to predict accurately the concentrations of Olsen P in paddy soils based on initial Olsen P, P application rate, and crop yield and to optimize P fertilization for rice crop production and environmental protection.  相似文献   

4.
Abstract

The ammonium acetate (NH4OAc)‐EDTA soil phosphorus (P) extraction method was compared to either the Bray‐1 soil P extraction method for non‐calcareous soils or the Olsen soil P extraction method for calcareous soils to predict com and wheat plant tissue P concentration and grain yield responses. The NH4OAc‐EDTA method predicted yield and tissue P concentration responses to P fertilizer applications more accurately than the Olsen method at three of five sites. Both the Bray‐1 and NH4OAc‐EDTA methods were successful in predicting corn and wheat yield responses to P fertilizer applications in non‐ calcareous soils in many locations. However, a direct comparison of extracted soil P levels showed that the NH4OAc‐EDTA method extracted soil P at levels which were more closely related to the Bray‐1 method than the Olsen method.  相似文献   

5.
Crop rotation and cultural practice may influence soil residual N available for environmental loss due to crop N uptake and N immobilization. We evaluated the effects of stacked vs . alternate‐year crop rotations and cultural practices on soil residual N (NH4‐N and NO3‐N contents) at the 0–125 cm depth, annualized crop N uptake, and N balance from 2005 to 2011 in the northern Great Plains, USA. Stacked rotations were durum (Triticum turgidum L.)–durum–canola (Brassica napus L.)–pea (Pisum sativum L.) (DDCP) and durum–durum–flax (Linum usitatissimum L.)–pea (DDFP). Alternate‐year rotations were durum–canola–durum–pea (DCDP) and durum–flax–durum–pea (DFDP). Both of these are legume‐based rotations because they contain legume (pea) in the crop rotation. A continuous durum (CD) was also included for comparison. Cultural practices were traditional (conventional tillage, recommended seeding rate, broadcast N fertilization, and reduced stubble height) and improved (no‐tillage, increased seeding rate, banded N fertilization, and increased stubble height) systems. The amount of N fertilizer applied to each crop in the rotation was adjusted to soil NO3‐N content to a depth of 60 cm observed in the autumn of the previous year. Compared with other crop rotations, annualized crop biomass N was greater with DCDP and DDCP in 2007 and 2009, but was greater with DDFP than DCDP in 2011. Annualized grain N was greater with DCDP than CD, DFDP, and DDFP and greater in the improved than the traditional practice in 2010 and 2011. Soil NH4‐N content was greater with CD than other crop rotations in the traditional practice at 0–5 cm, but was greater with DDCP than CD and DDFP in the improved practice at 50–88 cm. Soil NO3‐N content was greater with CD than other crop rotations at 5–10 cm, but was greater with CD and DFDP than DCDP and DDCP at 10–20, 88–125, and 0–125 cm. Nitrate‐N content at 88–125 and 0–125 cm was also greater in the traditional than the improved practice. Nitrogen balance based on the difference between N inputs and outputs was greater with crop rotations than CD. Increased N fertilization rate increased soil residual N with CD, but legume N fixation increased N balance with crop rotations. Legume‐based crop rotations (all rotations except CD) reduced N input and soil residual N available for environmental loss, especially in the improved practice, by increasing crop N uptake and N immobilization compared with non‐legume monocrop.  相似文献   

6.
Environmental concerns and rapidly decreasing phosphorus (P) resources caused a renewed interest in improving soil P tests for a more efficient P fertilization. This led to the development of better P fertilizer recommendation systems for major arable crops and grass. Nevertheless, these P fertilizer recommendation systems seem to fail for intensive vegetable crops, with often a very short growing season and limited rooting system. This leads to low P use efficiencies in the horticultural sector. In order to address this problem we set up a study to answer following questions: (1) which soil P test predicts the plant available P content for intensive vegetable crops the best and (2) can new insights, such as combining different soil P tests, improve P fertilizer recommendations for intensive vegetable crops? To this end, bulk samples of 41 soils with very different P status (based on ammonium lactate extractable P) were collected. The plant available P content of these soils was determined using six commonly used soil P tests (P‐CaCl2, P‐water, P‐Olsen, P‐acetate, P‐lactate, and P‐oxalate) and a P fertilizer pot experiment with endive (a very P sensitive vegetable crop) was conducted. Six pots of each soil were planted with endive. Three of these pots received no P fertilization (0P) and three pots received ammonium polyphosphate equivalent to 24 kg P ha?1 (24P). All other factors were kept constant. Relative crop yield of the 0P fertilized plants compared to the 24P fertilized plants was determined. Plotting these relative yields against the P status of the soil per soil P test allowed to fit a Mitscherlich curve through the data. Also the combination of two different soil P tests to predict the relative yield with a Mitscherlich equation was evaluated. The coefficients of variation of the soil P tests, the R2 values and the relative standard errors of the parameter estimates revealed that P‐acetate and P‐water predicted the relative yield of the 0P plants the best and that combining two different soil P tests gave no extra predictive power. This finding may form the basis for the development of a new P fertilizer recommendation system for intensive vegetable crops, leading to an improved P use efficiency in horticulture. In order to develop this new system more data relating soil P test values with RY of intensive vegetable crops should be collected.  相似文献   

7.
Phosphorus (P) in agricultural soils is an important factor for soil quality and environmental protection. Understanding of P and its fractions in soils on a regional scale is imperative for effective management or utilization of P and the improvement of P availability in soils. To study spatial variability and changes of soil P and its fractions as affected by farming practices, soil samples were taken in Rugao County, Jiangsu Province of China, an intensive agricultural area in the Yangtze River Delta region, in years of 1982 (n = 1 514), 1997 (n = 1 651), and 2002 (n = 342). High spatial variabilities of Olsen P and total P (TP) were observed throughout the study area. Loamy Stagnic Anthrosols and clay or loamy Aquic Cambosols had significantly higher concentrations of Olsen P and TP than sandy Ustic Cambosols and Aquic Cambosols. Olsen P and TP were increased from 1982 to 2002. The accumulations of Olsen P and TP in the cultivated soils were likely related to the increased application of P fertilizer, organic input, and soil incorporation of crop residues as well as conversion of soil use. Accumulated soil P was dominantly in labile and semi-labile P fractions. These P fractions may be utilized by future crop production by adjusting management practices, but they also pose a serious threat to nearby water bodies. Future strategies should include decreasing P fertilization in soils and supporting sustainable management. The information from this study can be used to monitor changes in soil fertility and environmental risks so that the use of fertilizers can become more rational.  相似文献   

8.
Abstract

Phosphorus (P) fertilizer recommendations for no‐till small grain production are poorly defined. These studies were conducted to determine small grain‐P response relative to the Olsen‐P soil test and compare P‐fertilizer placements with the seed and banded below and to the side of the seed under no‐till field conditions. Phosphorus rates of 0 to 26 kg P/ha were evaluated on seven spring barley (Hordeum vulgare L.), 11 spring wheat, and six winter wheat (Triticum aestivum L.) locations in central and northcentral Montana between 1986 and 1990. Grain yield, grain protein, test weight, above‐ground crop yield, plant P concentration at maturity, and P uptake were measured. One winter wheat location had a significant yield response to P; all other locations had non‐significant yield responses. Grain protein, test weight, P concentration, and P uptake were all unaffected by P rate or P placement. Both the ANOVA and paired t‐test were used to analyze the P‐placement data and were all nonsignificant. Slopes of grain yield response (grain yield for each P rate minus the grain yield without P), P concentration, and P uptake versus P rate were analyzed with the t‐test; none of the P‐response slopes were greater than zero. The P responses by individual crop were regressed against P rate, Olsen‐P soil test, available soil water at planting, and pH. Phosphorus rate was not a significant factor in any of the equations. Significant and useful predictive equations for grain yield response could not be generated; however, equations predicting P concentration and P uptake were developed. The Cate‐Nelson graphical analysis was unsuccessful in estimating an Olsen‐P soil test critical level. All attempts failed to relate grain yield or grain yield response to the Olsen‐P soil test and/or P rate. When P soil tests are higher than 12 mg/kg, no‐till grain growers should consider applying a maintenance level of P fertilizer, about 5 to 10 kg P/ha either banded below or with the seed, to maintain soil P levels.  相似文献   

9.
Abstract

Wheat [Triticum aestivum(L.)] is the major cereal crop of the Chaouia (dryland) region of Morocco. Efforts for self‐sufficiency in wheat will require improved fertility management on the calcareous soils of this region. This research was undertaken to evaluate the suitability of five soil P extractors for predicting the need for P fertilization on 15 important soils in this region. The Olsen (0.5MNaHCO3), the Soltanpour (1.0MNH4HCO3+ 0.005MDTPA) and their dilution modifications, and CaCl2solution P method were evaluated in laboratory and greenhouse experiments.

Ten of the 15 soils responded to P fertilization. The five soils for which a significant P response was not measured were from the P plateau of the Chaouia region. The P extractors performed equally to predict the need for P fertilization. The critical levels below which a response would be highly probably and above which no response would be anticipated varied by extractor and method used to interpret the soil test values. A graphic method indicated the critical P values to be: Olsen 10.2, modified Olsen 18.0; Soltanpour 2.0; modified Soltanpour 12.5 and CaCl20.20 mg P kg‐1. A second degree polynomial method indi cated the critical P values to be: Olsen 8.2; modified Olsen 14.0; Soltanpour 1.1; modified Soltanpour 5.1 and CaCl20.12 mg P kg‐1. This limited data will permit the interpretation of soil test values as to whether a response to P fertilization is highly probable for the dominant soils of this wheat region.

Results from this study suggest that any of the five P extractors evaluated could be selected to calibrate P response under field conditions. It might be best to concentrate future research efforts on the Olsen test because most field P calibration data published with similar soils, climate and crops are with this extractor  相似文献   

10.
不同施肥措施对洞庭湖区旱地肥力及作物产量的影响   总被引:5,自引:0,他引:5  
应用长期定位试验方法,研究了洞庭湖区非粮食作物棉花-油菜轮作下,农民习惯施肥(TF)、配方施肥(NPK)及有机肥和化肥不同配比模式[有机肥来源氮占配方肥总氮量的50%(50%OM)、30%(30%OM)和10%(10%OM)]的作物产量和土壤养分的变化,以期为相应作物种植制度下的合理施肥提供参考。研究结果表明:在本试验施肥量及有机无机肥配比下,有机肥和化肥配施显著提高了棉花和油菜的产量,且以50%OM处理产量最高,各处理产量的顺序为50%OM30%OM10%OMNPKTFCK(不施肥对照);当有机氮施用量占总氮量的50%时(50%OM处理),棉花和油菜产量分别比NPK处理高24.52%、29.57%,比习惯施肥(TF)处理分别高46.03%和49.07%。同时,施用有机肥各处理作物产量的年际变化均不到20%,明显小于NPK、TF和CK处理,即施用有机肥不仅能促进旱地作物高产,同时也能保证其稳产。有机肥与化肥配施能增加土壤有机质、全氮、碱解氮和速效钾含量,且以50%OM处理效果最好,与试验前比较的增加幅度分别达57.5%、38.2%、65.1%和48.1%;土壤有效磷含量有随施入磷素量的增加而增加趋势;而CK处理土壤有机质和养分含量则均呈逐年下降的趋势。各处理土壤有机质和养分含量(Y)随试验年限(X)的变化均可用方程式Y=a X+b来表示。在洞庭湖区肥力较高的旱地土壤中,合理的有机肥和化肥施用比例对保障非粮作物高产稳产和耕地地力提升尤为重要,且本试验条件下当有机肥来源氮占总施氮量的50%时能获得最佳效果。  相似文献   

11.
Phosphorus (P) loss from soil can impair surface water quality. Losses from soil are related to soil P concentrations, but agronomic measures such as Olsen P do not in many cases predict the potential for P loss. One possible strategy to decrease P loss is to stop applying P fertilizers. We examined the changes in both agronomic (Olsen P) and environmental [water‐extractable P (WEP) and calcium chloride‐extractable P (CaCl2‐P)] P tests, and the potential implications following a halt to P fertilizer application to four long‐term grassland field trials on different soil types. Exponential decreases in Olsen P and WEP concentration over time were observed in three of the four trials, but only in one trial for CaCl2‐P. The rates of decrease in Olsen P (OP) and WEP concentration were best correlated with initial WEP (WEPi) concentration and the quotient of Olsen Pi/P retention (PR, a measure of Al‐ and Fe‐oxides), respectively. The equation t = 1/(?0.035 × ln OPi/PR ? 0.0455) × (ln WEPt ? ln WEPi) was used to predict the time (t) taken for WEP concentrations at the sites to decrease to 0.02 mg/L (WEPt), which is proposed as a limit for dissolved reactive phosphorus in overland flow, and the result was 23–44 yr. Results from a similar equation for Olsen P predicted a quicker rate of WEP. A significant decline in dry matter (DM) yield was observed at one trial site. For this site, the rate of decline in DM yield was of a similar magnitude to the rate of decline in WEP concentration. This suggests that halting P fertilizer application to decrease P loss as measured by WEP concentration may decrease farm productivity. An alternative, more financially acceptable, strategy is required, such as a negative P balance while maintaining yields with N fertilizer, but further work is required to assess both the agronomic and environmental implications of this strategy.  相似文献   

12.
Abstract

A recently described soil testing procedure for simultaneous estimation of plant‐available phosphorus (P) and potassium (K) in soil uses an aqueous solution containing ammonium fluoride, ammonium acetate, and acetic acid (the “modified Kelowna”; or KM extract). Before adopting a KM method at our laboratory (in 1988) for routine soil testing, we compared its ability to predict crop response to phosphate fertilizer using data from field sites on a wide range of soils in Alberta and Saskatchewan with that of the Olsen and the Miller‐Axley (Bray‐type) soil testing methods. All three methods were unable to predict with great accuracy actual optimum rates of phosphate fertilizer in these trials, but they predicted the likely crop yield response to phosphate reasonably well. The main advantages of the KM test over the others are its analytical convenience and its applicability to calcareous soils.  相似文献   

13.
基于红壤肥力和环境效应评价的油菜-花生适宜施肥量   总被引:4,自引:0,他引:4  
孙波  严浩  施建平 《土壤》2007,39(2):222-230
基于土壤肥力的施肥决策是提高施肥经济效益和降低施肥对环境危害的基础。本文针对红壤丘陵区的油菜-花生轮作系统,在红砂岩和红黏土红壤旱地中进行单因素的N、P肥料试验,评价其产量、肥料利用率、经济效益和环境效应,提出红壤丘陵区的施肥模型和适宜施肥量。试验表明,红壤速效P含量是影响作物产量的主要因素。考虑土壤速效P含量参数的油菜施N模型为Y=266.1×AP_class 2.87×N 393.3,其中Y为油菜的产量(kg/hm2);AP_class为土壤速效P含量的分类变量,N为施入的N肥用量(纯Nkg/hm2)。通过对不同施N量下花生产量、N肥利用率和环境效应(收获后土壤剖面中NO3--N储量)的综合评价,红砂岩红壤旱地中花生的N肥适宜用量为103.5kg/hm2。作物对P肥的利用率随施P量的增加呈现抛物线的变化方式。土壤速效P含量也影响了P肥利用率,速效P含量高的红砂岩红壤中花生对P肥利用率显著高于速效P水平低的红黏土红壤。综合评价P肥的产量效益、肥料利用率和经济效益,红砂岩红壤旱地中,油菜的适宜施P量为P2O590kg/hm2,花生的适宜施P量在P2O522.5~45kg/hm2之间。  相似文献   

14.
Abstract

Phosphorus fertilizer recommendations were compared by interpretations from P isotherms, Olsen extractable P and the Mitscherlich‐Bray model based on the Olsen method for 15 soils from the Chaouia (dryland) region of Morocco. The P isotherms were fit to straight line and second degree polynomial equations. The P buffer indexes (PBI) derived from the isotherms were not significantly correlated to P buffer capacities as measured by a single P buffer capacity index, but negatively correlated to Olsen P (r = ‐0.63), relative yield (r = ‐0.76) and P uptake (r = ‐0.66). Phosphorus in solution was a quadratic function of P added in 0.01 M CaCl2equilibrium solution. The P fertilizer recommendations to maintain soil solution P concentrations at 0.01, 0.12 and 0.20 mg P L‐1were higher than recommended by direct interpretation of plant response to Olsen extractable P and the quantity based on the Mitscherlich‐Bray model as calculated from Olsen available P values. The P fertilizer recommended to maintain soil solution P of 0.10 mg P L‐1was significantly correlated with Olsen P (r = 0.71) as was that recommended Mitscherlich‐Bray log transformation model (r = 0.81), and nonlinear least square estimation (r = 0.78). Field research will be needed to evaluate if the P fertilizer recommended to maintain this solution P concentration is adequate for maximum economic wheat grain yield under field conditions  相似文献   

15.
A field study was conducted on upland soils for six years to determine interactive effects of winter wheat (Triticum aestivum L.) cover crop, organic and inorganic soil amendments on grain yields and nutrient utilizations in a no-till corn (Zea mays)-soybean (Glycine max) rotation. Experimental design was a split-plot arrangement with four replicates. Cover crops were the main plots and fertilization treatments used as sub-plot. Fertilization treatments included an unfertilized control, poultry litter, poultry litter (PL) plus flue gas desulfurization (FGD) gypsum and inorganic N fertilizer applied every other year to corn. Corn grain yield and grain N and P uptake were greater with PL than inorganic fertilizer in 2014 and 2016. Addition of FGD gypsum to PL significantly increased corn grain yield by 15% in 2016. Cover crop increased corn and soybean grain yields in a year with less seasonal rainfall possibly by conserving soil moisture.  相似文献   

16.
Phosphorus (P) is an essential nutrient for plant growth and reproduction. One of the tasks of soil testing is to identify whether the soil P level is sufficient to meet crop requirements, and if not, to provide an estimate of the quantity of P that must be added for good growth of a given crop. Data for 12 soils (11 series) from Hawaii were used to develop correlations between critical P concentrations in soil solution derived from P sorption isotherms with P extracted with Mehlich 3, Olsen, or modified Truog solutions. Extractable P, in turn, was correlated with P fertilizer requirements. Critical P levels in soil solution reported in the literature for various crops ranged from 0.005 mg L?1 for cassava (Manihot esculenta) to 0.30 for lettuce (Lactuca sativa) and to 1.6 for nonmycorrhizal onions (Allium cepa). The P buffer coefficient, defined as the ratio of fertilizer P added to extractable P, averaged 2.2, 4.2, and 8.6 for the modified Truog, Olsen, and Mehlich 3, respectively. Phosphorus requirements for certain crops could be estimated by the following steps: (i) obtaining (possibly one time only) soil solution P levels via P sorption isotherm for a given soil (series or family), (ii) identifying the critical soil solution P for a given crop from the literature, (iii) regressing soil solution P against extractable P, and (iv) establishing relationships between extractable P and fertilizer P.  相似文献   

17.
Abstract

Optimum crop production depends, among other things, on the maintenance of adequate plant nutrients in the root zone. The objective of this study was to find a reliable index for assessing needs for supplemental phosphorus (P) in soils of Morogoro District, Tanzania. Six indices of P availability, namely: Bray and Kurtz No. 1 (BK1), Bray and KurtzNo.2 (BK2), Mehlich 1, Mehlich 3, Olsen and ammonium bicarbonate‐DTPA (AB‐DTPA), were evaluated. Evaluation of the P indices involved relating extractable P contents by different methods with crop response data expressed as relative yields. The response data was obtained from pot trials with soil samples from ten repesentative soils designated as benchmark soils of the district. Treatments were absolute control, 0, 10, 20, and 30 mg P kg‐1 of soil. Correlation of maize relative yields with soil test values by the six indices of P availability resulted in correlation coefficients ranging from 0.65 to 0.90. The Olsen method gave the highest r value suggesting that it was superior to the others. However, using the Cate and Nelson approach, the Olsen and ammonium bicarbonate‐DTPA methods were found to be at par and superior to the others. They each accounted for 76% of the variations observed in maize relative yields, respectively. The critical P levels for the indices were 10.50 mg P kg‐1 for Olsen and 2.80 mg P kg‐1 for the AB‐DTPA method. Phosphorus fertility categories were delineated in relation to Olsen extractable P as: low (<6.50 mg P kg‐1), medium (6.50 to 23.0 mg P kg‐1), and high (>23.0 mg P kg‐1). Based on this classification it was determined that 16%, 25 %, and 59% of the surveyed area had low, medium, and high P levels, respectively. About 40% of the surveyed area may, therefore, require fertilization with P for optimum yields.  相似文献   

18.
长期施肥下黑土有机肥替代率变化特征   总被引:3,自引:1,他引:2  
探索长期施肥下黑土有机肥替代率与土壤肥力提升的关系,可为农田土壤培肥和有机替代提供理论依据。对吉林省公主岭黑土32年的长期肥力试验定位观测数据进行系统分析,基于作物氮素吸收量和土壤氮素供需方程探讨高产条件下施用不同量有机肥的黑土有机肥替代率的变化特征。研究表明,作物产量随着有机肥施用年限增加逐渐提高,32年的持续施肥,施用有机肥的作物产量趋同甚至高于NPK化肥处理的作物产量。基于作物氮素吸收量,高产条件下有机肥替代率与施肥年限呈极显著线性正相关(P0.01),高量有机肥处理(M2)的有机肥替代率高于常量有机肥处理(M1);且有机肥施用29年后,高量有机肥处理(M2)的有机肥替代率达到100%,并保持稳定不变。基于土壤氮素供需方程估测的常量和高量有机肥处理(M1和M2)的有机肥替代率与基于作物氮素吸收量得到的有机肥替代率相关系数(R2)达到0.78和0.84(P0.01),相对均方根误差(RMSE)均小于15%(分别为10.4%和14.6%),表明土壤氮素供需方程可以较好地估测土壤有机肥替代率。基于作物氮素吸收量和土壤氮素供需方程能够准确反映长期有机培肥下黑土有机肥替代率的变化规律。本研究结果表明,基于作物氮素吸收量和土壤氮素供需方程两种方法验证,高产条件下有机肥替代率是土壤肥力的函数;随着有机肥施肥年限的增加,土壤肥力提升,有机肥替代率逐渐增加。  相似文献   

19.
Abstract

Soil phosphorus (P) extractants are often selected according to the correlation or regression between test values and crop performance (e.g., P uptake and/ or yield). Although this criterion is an essential determinant of extractant performance, it is often inadequate for evaluating whether extractants accurately discriminate between P‐deficient and P‐sufficient soils, or whether they produce reliable critical level estimates or repeatable soil P measurements. Four supplementary indices were evaluated that may provide a more direct assessment of extractant performance. The potential use and reliability of the indices were investigated in an evaluation of four soil P extractants, Modified Truog, Mehlich 3, Olsen, and ion‐exchange resin, using data from a greenhouse experiment. Coefficients of determination between relative dry matter yield and extractable P failed to identify differences among the extractants, ranging from 0.95 to 0.97. Coefficients of determination between extractable P and P added ranged from 0.96 to 0.97 except for one method at 0.83. The proposed indices, however, produced a ranking of the extractants related to their performance. The Kappa efficiency (K EFF) index indicated that Mehlich 3 provided better detection of P‐sufficient and P‐deficient soils than either Olsen or Truog (K FFF values of 0.92, 0.83, and 0.68, respectively). These index values reflect that the extradants correctly detected P deficiency in 17 of 18, 17 of 18, and 15 of 18 soils. The slight superiority of Mehlich 3 over Olsen was due to its correct detection of 9 of 9 P‐sufficient soils while the Olsen and Truog extradants correctly detected 8 of 9 P‐sufficient soils. Further studies are needed, especially field studies, to determine whether these indices accurately reflect the reliability of the extradants for use in diagnosis and recommendation. Because these indices directly assess success in identifying deficient and sufficient conditions, their use in extractant evaluations should provide more specific, purposeful evaluations than methods based solely on correlation and regression.  相似文献   

20.
Abstract

Since soil test based N recommendations are not practiced in Morocco, this study was conducted to develop a N recommendation model based on soil nitrate level and other parameters for dryland wheat (Triticum aestivum L.) grown in common rotations in shallow (Rendolls), moderately deep (Calcixerolls) and deep (Chromoxererts) soils of Settat Province in Morocco. Sixteen N‐P Factorial experiments were conducted. Significant grain yield increases due to N fertilization averaged 76% over the check plot yields in all sites and in both seasons. Uptake of N was highly related to soil nitrates only in deeper soils with r2 values of 0.89, 0.76, and 0.64 for 20‐, 40‐ and 60‐cm deep profiles. Apparent uptake efficiency of fertilizer N averaged 34% in the drier year and 50% in the wet year. Relative yield was a linear function of initial soil nitrate content in 20‐, 40‐ and 60‐cm profiles with r2 values of 0.87, 0.94, and 0.89, respectively. For maximum grain yield 18, 31, and 50 kg of nitrate N/ha were required in 20‐, 40‐ and 60‐cm profiles, respectively. Nitrogen mineralization potentials were 144, 164, and 179 mg/kg for the above soils, respectively. A model based on critical level of soil nitrates, initial level of soil nitrates and apparent uptake efficiencies of soil and fertilizer N was developed to predict the fertilizer N requirement of wheat in deeper soils. If legume or mixed volunteer pastures preceded the wheat crop, the N fertilizer requirement was lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号