首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Measuring the phosphorus (P) solubility in animal manure compost (AMC) is important to estimate both the risk of P loss from agricultural land and the P availability for crops in agriculture that use AMC as fertilizer. Water-extractable phosphorus (WEP) has most often been used to estimate P solubility in AMC. A single water extraction with a high ratio of compost to water is usually used to determine WEP, but in many cases, this may not evaluate the maximum WEP. In this study, we extracted the P included in AMC by using a continuous extraction method with a large amount of water, and tested this approach for 16 AMCs: four cattle manure composts, five swine manure composts, five layer (chicken) manure composts, and two broiler (chicken) litter composts. The P dissolution patterns were fitted to kinetic models, and the maximum WEP (WEPmax) was determined by the coefficient of the non-linear regression equation. The WEPmax values corresponded to the sum of H2O- and sodium bicarbonate (NaHCO3)-extractable P measured using the modified Hedley sequential extraction method. The result also suggests that the maximum amount of WEP from AMC can be estimated rapidly using a sequential extraction (the Hedley method) that has been widely used to characterize P in manure or AMC. The maximum water-extractable magnesium (Mg) (WEMgmax) was significantly positively correlated with WEPmax (r = 0.854, P < 0.01). This suggests that WEPmax in the AMCs is affected by water-soluble magnesium compounds.  相似文献   

2.
Repeated application of phosphorus (P) as superphosphate either alone or in conjunction with cattle manure and fertilizer N may affect the P balance and the forms and distribution of P in soil. During 7 years, we monitored 0.5 M NaHCO3 extractable P (Olsen‐P) and determined the changes in soil inorganic P (Pi) and organic P (Po) caused by a yearly dose of 52 kg P ha—1 as superphosphate and different levels of cattle manure and fertilizer N application in a soybean‐wheat system on Vertisol. In general, the contents of Olsen‐P increased with conjunctive use of cattle manure. However, increasing rate of fertilizer nitrogen (N) reduced the Olsen‐P due to larger P exploitation by crops. The average amount of fertilizer P required to increase Olsen‐P by 1 mg kg—1 was 10.5 kg ha—1 without manure and application of 8 t manure reduced it to 8.3 kg ha—1. Fertilizer P in excess of crop removal accumulated in labile (NaHCO3‐Pi and Po) and moderately labile (NaOH‐Pi and Po) fractions linearly and manure application enhanced accumulation of Po. The P recovered as sum of different fractions varied from 91.5 to 98.7% of total P (acid digested, Pt). Excess fertilizer P application in presence of manure led to increased levels of Olsen‐P in both topsoil and subsoil. In accordance, the recovery of Pt from the 0—15 cm layer was slightly less than the theoretical P (P added + change in soil P — P removed by crops) confirming that some of the topsoil P may have migrated to the subsoil. The P fractions were significantly correlated with apparent P balance and acted as sink for fertilizer P.  相似文献   

3.
Abstract

Changes in agronomic and environmental soil phosphorus (P) availability parameters, i.e., Mehlich‐ and Olsen‐extractable P, reversibly‐adsorbed P, soil‐solution P, and equilibrium‐P concentration were determined following equilibration of 13 Italian soils with five rates of P application (0, 12.5, 25, 50, and 100 mg P kg‐1 soil). Soil P availability as determined by each parameter increased with added P. The relative change in soil P availability with added P was a function of soil sorption index silicon (SI), according to the equation DP=(Padded)a*exp(b+g*SI). This equation accounted for 94 to 98% of the variance in soil‐P availability. The inclusion of SI in a soil testing program may increase the reliability in assessing both soil‐P fertilizer requirements and the vulnerability of a soil to P loss in runoff following land application of fertilizer or manure P.  相似文献   

4.
 Soil P availability and efficiency of applied P may be improved through an understanding of soil P dynamics in relation to management practices in a cropping system. Our objectives in this study were to evaluate changes in plant-available (Olsen) P and in different inorganic P (Pi) and organic P (P0) fractions in soil as related to repeated additions of manure and fertilizer P under a soybean-wheat rotation. A field experiment on a Typic Haplustert was conducted from 1992 to 1995 wherein the annual treatments included four rates of fertilizer P (0, 11, 22 and 44 kg ha–1 applied to both soybean and wheat) in the absence and presence of 16 t ha–1 of manure (applied to soybean only). With regular application of fertilizer P to each crop the level of Olsen P increased significantly and linearly through the years in both manured and unmanured plots. The mean P balance required to raise Olsen P by 1 mg kg–1 was 17.9 kg ha–1 of fertilizer P in unmanured plots and 5.6 kg ha–1 of manure plus fertilizer P in manured plots. The relative sizes of labile [NaHCO3-extractable Pi (NaHCO3-Pi) and NaHCO3-extractable P0 (NaHCO3-P0)], moderately labile [NaOH-extractable Pi (NaOH-Pi) and NaOH-extractable P0 (NaOH-P0)] and stable [HCl-extractable P (HCl-P) and H2SO4/H2O2-extractable P (resisual-P)] P pools were in a 1 : 2.9 : 7.6 ratio. Application of fertilizer P and manure significantly increased NaHCO3-Pi and -P0 and NaOH-Pi, and -P0 fractions and also total P. However, HCl-P and residual-P were not affected. The changes in NaHCO3-Pi, NaOH-Pi and NaOH-P0 fractions were significantly correlated with the apparent P balance and were thought to represent biologically dynamic soil P and act as major sources and sinks of plant-available P. Received: 23 October 1997  相似文献   

5.
The effects of 25 years of annual applications of P fertilizer on the accumulation and migration of soil Olsen‐P, and the effects of soil residual P on crop yields by withholding P application for the following 5 years, were evaluated in a subtropical region. Annual application of P fertilizer for 25 years to crops in summer (groundnut), winter (wheat, mustard or rapeseed) or in both seasons raised the Olsen‐P status of the plough layer (0–15 cm) from initially very low (12 kg P ha?1) to medium (18 kg P ha?1) and very high levels (40–59 kg P ha?1), depending on the amount of P surplus (amount of fertilizer applied in excess of removal by crops) (r = 0.86, P 0.01). However, only 4–9% of the applied P fertilizer accumulated as Olsen‐P to a depth of 15 cm (an increase of 2 mg kg?1per 100 kg ha?1 surplus P) in the sandy loam soil. In the following 5 years, the raising of 10 crops without P fertilizer applications decreased the accumulated Olsen‐P by only 20–30% depending upon the amount of accumulated P and crop requirements. After 29 years, 45–256 kg of residual P fertilizer had accumulated as Olsen‐P ha?1 in the uppermost 150 cm with 43–58% below 60 cm depth; this indicates enormous movement of applied P to deeper layers in this coarse textured soil with low P retention capacity for nutrients. Groundnut was more efficient in utilizing residual P than rapeseed; however, for both crops the yield advantage of residual P could be compensated for by fresh P applications. These results demonstrated little agronomic advantage above approximately 20 mg kg?1 Olsen‐P build‐up and suggested that further elevation of soil P status would only increase the risk of environmental problems associated with the loss of P from agricultural soils in this region.  相似文献   

6.
In this study, we re‐examined the common practice of intensive P fertilization in altered wetland soils even when soil test (Olsen‐P) indicates sufficient P levels (>10 mg/kg). We tested the effects of P fertilization on crop performance and P leaching in 36 lysimeters (1.5 m3) filled with peat, marl or alluvial materials and compared a new bone‐char‐based fertilizer to the common superphosphate. The lysimeter experiment consisted of the two fertilizer types, two application rates and a typical crop rotation of setaria (Setaria italica), pea (Pisum sativum) and tomatoes (Lycopersicon esculentum). By the end of each crop rotation, the yield was evaluated relative to P‐fertilization rates and soil‐test P. P fertilization resulted in increased Olsen‐P, soil‐solution P and P loss through leachates and a slight quality yield advantage in pea and tomato with no increase in yield of any crop. P budget calculations showed that plant uptake was not affected by the amount or type of applied P. We concluded that P fertilizer application should be significantly reduced because of limited crop response and increased P concentrations in leachates that may increase P loss to waterways especially in the marl soils. The ABC Protector exhibited slow P release, but its environmental implications should be further studied.  相似文献   

7.
8.
Quantifying microbial biomass phosphorus in acid soils   总被引:10,自引:0,他引:10  
 This study aimed to validate the fumigation-extraction method for measuring microbial biomass P in acid soils. Extractions with the Olsen (0.5 M NaHCO3, pH 8.5) and Bray-1 (0.03 M NH4F–0.025 M HCl) extractants at two soil:solution ratios (1 : 20 and 1 : 4, w/v) were compared using eight acid soils (pH 3.6–5.9). The data indicated that the flushes (increases following CHCl3-fumigation) of total P (Pt) and inorganic P (Pi) determined by Olsen extraction provided little useful information for estimating the amount of microbial biomass P in the soils. Using the Bray-1 extractant at a soil:solution ratio of 1 : 4, and analysing Pi instead of Pt, improves the reproducibility (statistical significance and CV) of the P flush in these soils. In all the approaches studied, the Pi flush determined using the Bray-1 extractant at 1 : 4 provided the best estimate of soil microbial biomass P. Furthermore, the recovery of cultured bacterial and fungal biomass P added to the soils and extracted using the Bray-1 extractant at 1 : 4 was relatively constant (24.1–36.7% and 15.7–25.7%, respectively) with only one exception, and showed no relationship with soil pH, indicating that it behaved differently from added Pi (recovery decreased from 86% at pH 4.6 to 13% at pH 3.6). Thus, correcting for the incomplete recovery of biomass P using added Pi is inappropriate for acid soils. Although microbial biomass P in soil is generally estimated using the Pi flush and a conversion factor (k P) of 0.4, more reliable estimates require that k P values are best determined independently for each soil. Received: 3 February 2000  相似文献   

9.
Fertilizer phosphorus (P) is generally added to agricultural soils to meet the needs of crop production. In this study, the crop yield and soil Olsen P were measured every year (5–18 years) at 16 winter wheat (Triticum aestivum L.) –maize (Zea mays L.) crop rotation sites in cinnamon soil (Luvisols in FAO system). The mean agronomic critical value of Olsen P for maize was 14.2 mg kg?1 and for winter wheat was 14.4 mg kg?1 when using the Liner-plateau and Mitscherlich models. The change in soil Olsen P was positively linearly correlated with the P budget (P < 0.01), and an increase of 4.70 mg kg?1 in soil Olsen P for each 100 kg ha?1 of P budget in the 0–20 cm soil layer. A model of P fertilizer recommendation rate that integrated values of the change in soil Olsen P in response to P budget and the agronomic critical value of Olsen P was used, in order to adjust current levels of soil Olsen P to the agronomic critical value at the experimental sites over the next 5 years, P fertilizer application rate should be in the range of 0–87.5 kg P ha?1.  相似文献   

10.
基施磷肥对石灰性土壤上番茄产量的影响   总被引:4,自引:0,他引:4  
A lysimeter experiment with undisturbed soil profiles was carried out to study nitrogen cycling and losses in a paddy soll with applications of coated urea and urea under a rice-wheat rotation system in the Taihu Lake region from 2001 to 2003. Treatments for rice and wheat included urea at conventional, 300 (rice) and 250 (wheat) kg N ha^-1, and reduced levels, 150 (rice) and 125 (wheat) kg N ha^-1, coated urea at two levels, 100 (rice) and 75 (wheat) kg N ha^-1, and 150 (rice) and 125 (wheat) kg N ha^-1, and a control with no nitrogen arranged in a completely randomized design. The results under two rice-wheat rotations showed that N losses through both NH3 volatilization and runoff in the coated urea treatments were much lower than those in the urea treatments. In the urea treatments N runoff losses were significantly (P 〈 0.001) positively correlated (r = 0.851) with applied N. N concentration in surface water increased rapidly to maximum two days after urea application and then decreased quickly. However, if there was no heavy rain within five days of fertilizer application, the likelihood of N loss by runoff was not high. As the treatments showed little difference in N loss via percolation, nitrate N in the groundwater of the paddy fields was not directly related to N leaching. The total yield of the two rice-wheat rotations in the treatment of coated urea at 50% conventional level was higher than that in the treatment of urea at the conventional level. Thus, coated urea was more favorable to rice production and environmental protection than urea.  相似文献   

11.
Abstract

The ammonium acetate (NH4OAc)‐EDTA soil phosphorus (P) extraction method was compared to either the Bray‐1 soil P extraction method for non‐calcareous soils or the Olsen soil P extraction method for calcareous soils to predict com and wheat plant tissue P concentration and grain yield responses. The NH4OAc‐EDTA method predicted yield and tissue P concentration responses to P fertilizer applications more accurately than the Olsen method at three of five sites. Both the Bray‐1 and NH4OAc‐EDTA methods were successful in predicting corn and wheat yield responses to P fertilizer applications in non‐ calcareous soils in many locations. However, a direct comparison of extracted soil P levels showed that the NH4OAc‐EDTA method extracted soil P at levels which were more closely related to the Bray‐1 method than the Olsen method.  相似文献   

12.
《Soil Use and Management》2018,34(3):326-334
Chemical soil phosphorus (P) extraction has been widely used to characterize and understand changes in soil P fractions; however, it does not adequately capture rhizosphere processes. In this study, we used the biologically based phosphorus (BBP ) grading method to evaluate the availability and influencing factors of soil P under four P fertilizer regimes in a typical rice–wheat cropping rotation paddy field. Soil P was assessed after seven rice‐growth seasons at multiple growth stages: the seedling, the booting and the harvest stage. Soil CaCl2‐P, citrate‐P and HC l‐P (inorganic P, Pi) as well as enzyme‐P (organic P, Po) were not significantly different between soil treated with P fertilizer during the wheat season only (PW ) and during the rice season only (PR ) compared with soil treated during both the rice and the wheat seasons (PR +W) at all three rice‐growth stages. No P fertilizer application during either season (Pzero) significantly reduced the concentration of soil citrate‐P and HC l‐P at the rice‐seedling and harvest stages. Significant correlations were observed between the HC l extraction and Olsen‐P (R 2 = 0.823, <  0.001), followed by enzyme‐P (R 2 = 0.712, <  0.001), citrate‐P (R 2 = 0.591, <  0.001) and CaCl2‐P (R 2 = 0.133, <  0.05). Further redundancy analysis (RDA ) suggested that soil alkaline phosphatase (S‐ALP ) activity played a role in soil P speciation changes and was significantly correlated with enzyme‐P, citrate‐P and HC l‐P. These results may improve our ability to characterize and understand changes in soil P status while minimizing the overapplication of P fertilizer.  相似文献   

13.
Chickpea (Cicer arietinum L.) roots exude carboxylates. While chickpea commonly grows where the topsoil dries out during crop growth, the importance of carboxylate exudation by the roots and mobilization of soil P from below the dry topsoil has not been examined. The study investigates the response of carboxylate exudation and soil P mobilization by this crop to subsoil P fertilizer rate. In constructed soil columns in the glasshouse, the P levels (high, low, and nil P) were varied in the well‐watered subsoil (10–30 cm), while a low level of P in the dry topsoil (0–10 cm) was maintained. At flowering, rhizosphere carboxylates and rhizosphere soil from topsoil and subsoil roots were collected separately and analyzed. The concentration of total carboxylates per unit rhizosphere mass in the subsoil was nearly double that of the topsoil. Plants depleted sparingly soluble inorganic P (Pi), NaOH‐Pi, and HCl‐Pi, along with the labile Pi (water soluble and NaHCO3‐Pi). The P depletion by plants was greater from the subsoil than the topsoil. The study concluded that depletion of sparingly soluble P from the chickpea rhizosphere in the subsoil was linked with the greater levels of carboxylates in the rhizosphere. These findings indicate that chickpea, with its deep rooting pattern, can increase its access to subsoil P when the topsoil dries out during crop growth by subsoil rhizosphere modification.  相似文献   

14.
Abstract

Investigating the relation between concentration or release of phosphorus (P) into soil solution (CaCl2‐P, determined by 0.01 M CaCl2 extraction of soils) and soil test phosphorus (Olsen P, or 0.5 N NaHCO3‐extractable soil phosphorus) for 10 widely ranging and variously managed soils from central Italy, a change point was evident where the slopes of two linear relationships meet. In other words, it was possible to distinguish two sections of the plots of CaCl2‐P against Olsen P, for which increases of CaCl2‐P per unit of soil test P increase were significantly (p<0.05) greater above than below these change points. Values of change point ranged from 14.8 to 253.1 mg kg?1 Olsen P and were very closely correlated (p<0.001) to phosphorus sorption capacity of soils. Similar change points were also previously observed when Olsen P (and also Mehlich 3 P) of surface soils was related to the P concentration of surface runoff and subsurface drainage. Because insufficient data are available relating P in surface soils and amount of P loss by overland, subsurface, or drainage flow, using the CaCl2 extraction of soil can be convenient to determine a change point in soil test P, which may be used in support of agricultural and environmental P management.  相似文献   

15.
Abstract

Phosphorus fertilizer recommendations were compared by interpretations from P isotherms, Olsen extractable P and the Mitscherlich‐Bray model based on the Olsen method for 15 soils from the Chaouia (dryland) region of Morocco. The P isotherms were fit to straight line and second degree polynomial equations. The P buffer indexes (PBI) derived from the isotherms were not significantly correlated to P buffer capacities as measured by a single P buffer capacity index, but negatively correlated to Olsen P (r = ‐0.63), relative yield (r = ‐0.76) and P uptake (r = ‐0.66). Phosphorus in solution was a quadratic function of P added in 0.01 M CaCl2equilibrium solution. The P fertilizer recommendations to maintain soil solution P concentrations at 0.01, 0.12 and 0.20 mg P L‐1were higher than recommended by direct interpretation of plant response to Olsen extractable P and the quantity based on the Mitscherlich‐Bray model as calculated from Olsen available P values. The P fertilizer recommended to maintain soil solution P of 0.10 mg P L‐1was significantly correlated with Olsen P (r = 0.71) as was that recommended Mitscherlich‐Bray log transformation model (r = 0.81), and nonlinear least square estimation (r = 0.78). Field research will be needed to evaluate if the P fertilizer recommended to maintain this solution P concentration is adequate for maximum economic wheat grain yield under field conditions  相似文献   

16.
The aim was to assess the ability of bicarbonate-extractable P (Olsen P) to estimate total plant-available P (TPAP) in reclaimed marsh soils (Aeric Endoaquepts) which differed widely in P buffering capacity (PBC). Total plant-available P was estimated as the cumulative P uptake for a final concentration of 0.02 mg P/L in the soil solution which is the typical P requirement for field crops. The Olsen P estimated for that concentration was adopted as the critical level for crop production. We found that TPAP was better predicted by anion exchange resin-extractable P (AER-P) (65% of variance accounted for) than by Olsen P, probably because the effectiveness of the AER depends on the soil P buffering capacity, a factor that greatly influences the availability of P to plants. The critical Olsen P level was found to depend on those soil properties affecting the relationship between sorbed P and P in soil solution, viz. the P buffering capacity of soil, the Na/Ca mole ratio in the 1:1 soil:water extract, which explained 63 and 84% of the variance in the critical level, respectively, and the affinity of the sorbing surfaces for P. These properties must be taken into account when using Olsen P as the P index for fertilizer management.  相似文献   

17.
Declining global P reserves require a better understanding of P cycling in soil and related plant uptake. On managed grasslands, application of lime and fertilizer affects not only soil nutrient status, but also plant‐species composition of the sward. We examined the P fractionation in the Rengen Grassland Experiment (RGE) on a naturally acid Stagnic Cambisol in the Eifel Mts. (Germany) 69 y after the setup of the experiment. A modified sequential Hedley fractionation was carried out for samples from 30 plots at 0–10 cm depth. Application of inorganic phosphorus fertilizer had diverse effects on inorganic (Pi) and organic P (Po) fractions. Resin‐Pi, NaHCO3‐Pi, NaHCO3‐Po, NaOH‐Pi, HCldil‐Pi, HClconc‐Pi, and HClconc‐Po contents increased, while NaOH‐Po significantly decreased and residual‐P remained unaffected. Strongest enrichment occurred in the HCldil‐Pi fraction, probably due to the chemical nature of the basic Thomas slag applied as P fertilizer. Without P fertilization, all fractions except residual‐P were more or less depleted. Strong P limitation of the vegetation in the limed treatments without P led to lowered contents also for NaOH‐Pi and NaOH‐Po. However, NaOH‐Po was largest in the Control and even exceeded the respective content in the treatments with P. It remained unclear why species adapted to a low soil P status did not access this P fraction though being P‐limited. Published theory on the availability of Hedley P fractions does neither match P exploitation nor P nutritional status of the vegetation in the RGE. Regarding NaOH‐Po as stable and HCldil‐Pi as moderately labile led to a more realistic evaluation of plant P uptake. Evaluation of P availability on the basis of chemical extractions alone is questionable for conditions like in the RGE. On long‐term grassland, plant‐species composition has to be taken into account to estimate access of plants to soil P.  相似文献   

18.
Fei  Chao  Zhang  Shirong  Wei  Wenliang  Liang  Bin  Li  Junliang  Ding  Xiaodong 《Journal of Soils and Sediments》2020,20(3):1199-1207
Purpose

Phosphorus (P) mobility in soil is controlled by its forms and soil sorption capacity. The P forms and soil sorption capacity are both affected by nitrogen (N) and carbon (C) addition. This paper aimed to (i) analyze effects of N and straw application on the different forms and content of P in the soil and its leachates in greenhouse soil, and (ii) explain variations in soil P transformation and transport in terms of contributing soil factors.

Material and methods

In this study, the impacts of N and straw application on the transformation and transport of soil P were investigated after 17 years in a greenhouse. Four fertilization regimes were implemented: farmer standard fertilization practice (CK), straw incorporation treatment (SC), optimized N fertilizer application (ON), and combined straw and optimized N fertilizer application (SN). P forms and its contents were determined in the selected leached water and its related soil samples.

Results and discussion

Compared with CK, ON treatment significantly (p < 0.05) decreased total phosphorus (Pt) and the proportion of organic phosphorus (Po) in soil, while straw amendment did not affect soil Pt content. SC, ON, and SN all decreased soil available phosphorus (Pa) but enhanced P transformation, as evidenced by the increase in the ratio of Pa to Pt and microbial phosphorus (MBP) and alkaline phosphatases (ALP) in soil. After SN implementation, soil P adsorption capacity increased significantly and was associated with higher soil organic matter (SOM) and CaCO3. ON showed lower Pt in the leachate than CK, but SC did not lead to significantly different. Under the SN regime, Pt loss by leaching decreased by 29.4% compared with CK and significantly reduced proportion of total dissolve P (DPt) in leachate.

Conclusions

Our study highlights that straw and optimized N fertilizer in SN treatment not only generates lower P loss by leaching but also promotes the transformation of soil P, which were attributed to higher soil Pa in greenhouse soil. This finding further indicates that P transformation and transport in the different fertilizer regimes was primarily linked to pH and SOM in greenhouse soil.

  相似文献   

19.
Abstract

Studies were conducted on some soils of Morogoro District to estimate economically optimum phosphorus (P) fertilizer recommendations for maize from soil tests. The studies involved the estimation of maize yield response to added P in pot and field experiments. Maize responded to added P at three sites. At all three sites, the residual effects of added P lasted up to three years suggesting that added P was not strongly fixed in these soils. Yield responses were related to extractable P contents by the Olsen and AB‐DTPA methods through a modification of the Mitscherlich‐Bray equation. Estimated model parameters were incorporated in equations for estimating optimum P fertilizer rates for different cost‐price ratios (p) and marginal rates of return (R). At the p and R values that prevailed in the study area during 1997, recommended P fertilizer rates (PR) could be determined by the equation: PR=68.497–1.191T (Olsen P). Calculated P fertilizer rates for P deficient sites in the district ranged from 15 to 60 kg P ha‐1. This wide range underscored the importance of site specific fertilizer recommendations.  相似文献   

20.
Abstract

Improving phosphorus (P) fertilizer efficiency while minimizing environmental impacts requires better understanding of the dynamics of applied P in soils. This study assessed the fate of fertilizer P applied in Quebec Humaquepts. A pot experiment with five textural Humaquepts, each receiving 0 (P0), 10 (P10), 20 (P20) and 40 (P40) mg P kg?1 soil was conducted under barley (Hordeum vulgare L.)-soybean (Glycine max L.) rotations. A modified Hedley procedure was used for soil P fractionation. The clayey soils reached a plateau of dry matter at less P applied than the coarser-textured soils. Plant P uptake, soil labile inorganic P (resin-P?+?NaHCO3-Pi) and moderately labile inorganic P (NaOH-Pi) increased proportionally with P rate. The coarser-textured soils had lower contents of labile and moderately labile Pi, but a larger increase in labile Pi than the finer-textured soils after receiving P additions. The applied P was retained primarily as soil labile Pi, accounting for 43–69% of total soil recovery of applied P, compared to 20–30% recovered as moderately labile Pi, and 7–29% assumed to be sparingly soluble P (HCl-P?+?H2SO4-P). The labile Pi recovery of applied P was linearly depressed with clay content, compared to a quadratic relation for the moderately labile Pi recovery. The results suggest the importance of accounting for soil texture along with soil P adsorption capacity when assessing the efficiency of applied P, P accumulation in soils and subsequently P nutrient management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号