首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Two studies were conducted to determine the effects of rearing Snake River cutthroat trout, Oncorhynchus clarki Richardson, and Eagle Lake rainbow trout, Oncorhynchus mykiss Richardson, in oxygen supersaturated water. The performance of cutthroat trout held at oxygen saturation as high as 172% was compared with that of control fish held in water at or below saturation. At an oxygen saturation level of 172%, total gas pressure reached 117% in late afternoon, and nitrogen saturation was reduced to 93%. The rainbow trout were held at a maximum of 150% oxygen saturation; total gas pressure did not exceed 112% in late afternoon and nitrogen saturation was reduced to 99%. Fish growth, fin quality and feed conversions were not significantly affected in either species. At the termination of the study gas bubble disease was observed in 94% of the cutthroat trout held in oxygen supersaturated water. Gas bubble disease was not observed in rainbow trout.  相似文献   

2.
Abstract Dam removal has been increasingly proposed as a river restoration technique. In 2011, two large hydroelectric dams will be removed from Washington State’s Elwha River. Ten anadromous fish populations are expected to recolonise historical habitats after dam removal. A key to understanding watershed recolonisation is the collection of spatially continuous information on fish and aquatic habitats. A riverscape approach with an emphasis on biological data has rarely been applied in mid‐sized, wilderness rivers, particularly in consecutive years prior to dam removal. Concurrent snorkel and habitat surveys were conducted from the headwaters to the mouth (rkm 65–0) of the Elwha River in 2007 and 2008. This riverscape approach characterised the spatial extent, assemblage structure and patterns of relative density of Pacific salmonids. The presence of dams influenced the longitudinal patterns of fish assemblages, and species richness was the highest downstream of the dams, where anadromous salmonids still have access. The percent composition of salmonids was similar in both years for rainbow trout, Oncorhynchus mykiss (Walbaum), coastal cutthroat trout, Oncorhynchus clarkii clarkii (Richardson) (89%; 88%), Chinook salmon, Oncorhynchus tshawytscha (Walbaum) (8%; 9%), and bull trout, Salvelinus confluentus (Suckley) (3% in both years). Spatial patterns of abundance for rainbow and cutthroat trout (r = 0.76) and bull trout (r = 0.70) were also consistent between years. Multivariate and univariate methods detected differences in habitat structure along the river profile caused by natural and anthropogenic factors. The riverscape view highlighted species‐specific biological hotspots and revealed that 60–69% of federally threatened bull trout occurred near or below the dams. Spatially continuous surveys will be vital in evaluating the effectiveness of upcoming dam removal projects at restoring anadromous salmonids.  相似文献   

3.
Conservation of native species is challenged by the introduction of non‐native pathogens and diseases into aquatic and terrestrial environments worldwide. In the Yellowstone Lake basin, Yellowstone National Park, the invasive parasite causing salmonid whirling disease Myxobolus cerebralis (Hofer) has been identified as one factor contributing to population declines of native Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri (Jordan & Gilbert). In 2002 and 2003, we examined relationships between the stream environment and severity of M. cerebralis infection in native trout. Coefficients of variation of environmental features were calculated to examine variability. Ten years later, we reassessed infection levels at 22 tributaries broadly across the system. Results of principal component analysis (PCA) of physical features (2003) were negatively correlated with infection severity, mostly in lower jaw cartilage of cutthroat trout, and PCA of chemical features (and temperature) correlated with infection severity in cranial cartilage. Pelican Creek, where M. cerebralis prevalence and severity was high 2002–2003, remained high in 2012. We did not find evidence that the parasite had dispersed further within the system. Variable environmental features (physiological stress) across short spatiotemporal scales within a stream or season may possibly predispose salmonids to infection in the wild and facilitate parasite establishment.  相似文献   

4.
The influence of cortisol on oxygen consumption and osmoregulatory variables was examined in coastal cutthroat trout (Oncorhynchus clarki clarki) parr kept in fresh water (FW) and transferred to seawater (SW). Intraperitoneal implants containing cortisol (50 g g–1) in vegetable oil resulted in elevated plasma cortisol titres similar to those observed in fish following a 24h SW exposure. Cortisol treatment significantly increased the oxygen consumption and plasma glucose levels of trout in FW, consistent with the glucocorticoid role of cortisol. Cortisol treatment did not cause any changes in plasma ion concentrations or gill Na+,K+-ATPase activity in FW after 10 days. Cortisol-implanted fish exposed to SW for 24h showed slightly improved ion regulatory ability compare to non-implanted controls. The results of this study suggest that during SW transfer in juvenile salmonids, increases in cortisol may act as both a mineralocorticoid and a glucocorticoid, depending on the developmental state of the fish (e.g., smolt versus parr). Furthermore, the relative energetic costs of osmoregulation and that of the stress associated SW transfer cannot be discerned using whole-animal oxygen consumption rates.  相似文献   

5.
A total of 600 hatchery trout were examined for signs of fin erosion including rainbow trout Oncorhynchus mykiss , cutthroat trout O. clarki , brook trout Salvelinus fontinalis and brown trout Salmo trutta . A scoring system was used to evaluate erosion on all fins from 20 fish samples. Water quality and hatchery rearing variables were also determined for corresponding raceways or ponds. For rainbow trout groups ( N = 24), stepwise multiple linear regression was used to interpret the relationship between fin erosion and the other variables. These fish groups averaged between 92 and 243 mm in total length and no significant correlation was observed between length and a fin erosion index ( r = 0.045). The best-fit regression model (adjusted R2 = 0.689) suggested that fin erosion was correlated with lower alkalinities, unnatural bottom substrates (concrete or steel), higher unionized ammonia levels, and higher fish densities. Despite significant variation between hatcheries, fin condition was significantly better in rainbow trout than in cutthroat trout in three of four hatcheries containing both species and the same substrate. Fin erosion in rainbow trout occurred primarily on dorsal fins, followed in order of decreasing severity, by pectoral, caudal, anal, and ventral fins.  相似文献   

6.
Marine and fisheries scientists are increasingly using metapopulation concepts to better understand and model their focal systems. Consequently, they are considering what defines a metapopulation. One perspective on this question emphasizes the importance of extinction probability in local populations. This view probably stems from the focus on extinction in Levins' original metapopulation model, but places unnecessary emphasis on extinction–recolonization dynamics. Metapopulation models with more complex structure than Levins' patch‐occupancy model and its variants allow a broader range of population phenomena to be examined, such as changes in population size, age structure and genetic structure. Analyses along these lines are critical in fisheries science, where presence–absence resolution is far too coarse to understand stock dynamics in a meaningful way. These more detailed investigations can, but need not, aim to assess extinction risk or deal with extinction‐prone local populations. Therefore, we emphasize the coupling of spatial scales as the defining feature of metapopulations. It is the degree of demographic connectivity that characterizes metapopulations, with the dynamics of local populations strongly dependent upon local demographic processes, but also influenced by a nontrivial element of external replenishment. Therefore, estimating rates of interpopulation exchange must be a research priority. We contrast metapopulations with other spatially structured populations that differ in the degree of local closure of their component populations. We conclude with consideration of the implications of metapopulation structure for spatially explicit management, particularly the design of marine protected area networks.  相似文献   

7.
Trout and charr, members of the salmonid family, have high conservation value but are also susceptible to anthropogenic threats in part due to the specificity of their habitat requirements. Understanding historical and future threats facing these species is necessary to promote their recovery. Of freshwater trout and charr in the Canadian Rocky Mountain region, westslope cutthroat trout (Oncorhynchus clarkii lewisi), bull trout (Salvelinus confluentus; a charr species) and Athabasca rainbow trout (Oncorhynchus mykiss) are of conservation concern. And indeed, range contractions and declining populations are evident throughout much of their ranges. Range contraction was most evident in the southern Alberta designatable unit (DU) of westslope cutthroat trout. Diminished populations were also evident in the downstream watersheds of the Alberta bull trout range, and throughout the Athabasca rainbow trout range. We assessed historical and future threats to evaluate the relative importance of individual threats to each DU and compare their impact among species. Individual threats fall into the broad categories of angling, non-native species and genes, habitat loss and alteration, and climate change. Severity of each threat varies by DU and reflects the interaction between species’ biology and the location of the DU. Severity of threats facing each DU has changed over time, reflecting extirpation of native populations, changes in management and industry best practices, expansion of non-native species and progressing climate change. The overall threat impact for each DU indicates a high probability of substantial and continuing declines and calls for immediate action.  相似文献   

8.
Abstract  The application of a drift-foraging bioenergetic model to evaluate the relative influence of prey abundance (invertebrate drift) and habitat (e.g. pool frequency) on habitat quality for young-of-the-year (YOY) and yearling juvenile cutthroat trout, Oncorhynchus clarki (Richardson) is described. Experiments and modelling indicated simultaneous limitation of fish growth by prey abundance and habitat, where depth and current velocity limit the volume of water and prey flowing through a fish's reactive field as well as swimming costs and prey capture success. Predicted energy intake and growth increase along a depth gradient, with slower deeper pool habitat generating higher predicted growth for both YOY and yearling trout. Bioenergetic modelling indicated that fish are constrained to use progressively deeper habitats to meet increasing energy requirements as they grow. Sensitivity of growth to prey abundance identified the need to better understand how variation in invertebrate drift and terrestrial drop affects habitat quality and capacity for drift-feeding fishes.  相似文献   

9.
Infectious hematopoietic necrosis virus (IHNV) is a major constraint to rainbow trout culture. Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri) have greater resistance to this virus than do rainbow trout (O. mykiss), but the genetic mechanism of this resistance is not understood. We conducted a genome scan using a backcross of cutthroat trout into a rainbow trout background to estimate the number and locations of quantitative trait loci (QTL) associated with IHNV resistance and growth in trout. IHNV resistance was considered in terms of both survival (binary trait) and days to death (quantitative trait). The genetic map was scanned using interval mapping via two different approaches: one model considered survival alone and a second two-part model combined both survival and days to death. Three QTL were significantly (P ≤ 0.05) associated with virus resistance genome-wide, explaining 32.5% of the phenotypic variation. Cutthroat alleles at two of these QTL resulted in increased resistance to the pathogen, as expected. No growth QTL were detected in this cross. We suggest that these traits are genetically independent.  相似文献   

10.
Salmonids are an important component of biodiversity, culture and economy in several regions, particularly the North Pacific Rim. Given this importance, they have been intensively studied for about a century, and the pioneering scientists recognized the critical link between population structure and conservation. Spatial structure is indeed of prime importance for salmon conservation and management. At first glance, the essence of the metapopulation concept, i.e. a population of populations, widely used on other organisms like butterflies, seems to be particularly relevant to salmon, and more generally to anadromous fish. Nevertheless, the concept is rarely used, and barely tested. Here, we present a metapopulation perspective for anadromous fish, assessing in terms of processes rather than of patterns the set of necessary conditions for metapopulation dynamics to exist. Salmon, and particularly sockeye salmon in Alaska, are used as an illustrative case study. A review of life history traits indicates that the three basic conditions are likely to be fulfilled by anadromous salmon: (i) the spawning habitat is discrete and populations are spatially separated by unsuitable habitat; (ii) some asynchrony is present in the dynamics of more or less distant populations and (iii) dispersal links populations because some salmon stray from their natal population. The implications of some peculiarities of salmon life history traits, unusual in classical metapopulations, are also discussed. Deeper understanding of the population structure of anadromous fish will be advanced by future studies on specific topics: (i) criteria must be defined for the delineation of suitable habitats that are based on features of the biotope and not on the presence of fish; (ii) the collection of long‐term data and the development of improved methods to determine age structure are essential for correctly estimating levels of asynchrony between populations and (iii) several key aspects of dispersal are still poorly understood and need to be examined in detail: the spatial and temporal scales of dispersal movements, the origin and destination populations instead of simple straying rates, and the relative reproductive success of immigrants and residents.  相似文献   

11.
Abstract –  The effects of constant (12, 18, and 24 °C) and cyclical (daily variation of 15–21 and 12–24 °C) thermal regimes on the growth and feeding of Lahontan cutthroat trout ( Oncorhynchus clarki henshawi ) of variable sizes were examined. Higher constant temperatures (i.e., 24 °C) and more variable daily temperatures (i.e., 12–24 °C daily cycle) negatively affected growth rates. As fish mass increased (from 0.24 to 15.52 g) the effects of different thermal regimes on mass growth became more pronounced. Following 14 days exposure to the thermal regimes, feeding rates of individual fish were assessed during acute exposure (40 min) to test temperatures of 12, 18, and 24 °C. Feeding rate was depressed during acute exposure to 24 °C, but was not significantly affected by the preceding thermal regime. Our results indicate that even brief daily exposure to higher temperatures (e.g., 24 °C) can have considerable sublethal effects on cutthroat trout, and that fish size should be considered when examining the effects of temperature.  相似文献   

12.
Yersinia ruckeri (Y. ruckeri) can cause mortalities that are contributing to substantial economic losses in the rainbow trout (Oncorhynchus mykiss) aquaculture sector. Because of its most characteristic clinical signs, the disease in rainbow trout caused by this pathogen is called enteric redmouth disease. Although it is considered to affect mainly salmonids, there are reports in the available literature of isolating this bacterium from other fish species, both clinically healthy and diseased. The aim of this study was to analyse the available data concerning yersiniosis in non‐salmonid fish. The analysed data indicate that Y. ruckeri is a threat not only to rainbow trout. Some of the affected species have high commercial importance and mortalities may contribute to high economic losses. The disease symptoms may not be specific and can be different from those characteristic for enteric redmouth in trout, which may lead to misdiagnosis. Collected information indicates that infection with Y. ruckeri should be taken into account in the diagnostic procedures not only in salmonids.  相似文献   

13.
The impacts of climate change on cold‐water fishes will likely negatively manifest in populations at the trailing edge of their distributions. Rio Grande cutthroat trout (Oncorhynchus clarkii virginalis, RGCT) occupy arid south‐western U.S. streams at the southern‐most edge of all cutthroat trout distributions, making RGCT particularly vulnerable to the anticipated warming and drying in this region. We hypothesised that RGCT possess a portfolio of life‐history traits that aid in their persistence within streams of varying temperature and stream drying conditions. We used otolith and multistate capture–mark–recapture data to determine how these environmental constraints influence life‐history trait expression (length‐ and age‐at‐maturity) and demography in RGCT populations from northern New Mexico, United States. We found evidence that RGCT reached maturity fastest at sites with warm stream temperatures and low densities. We did not find a strong relationship between discharge and any demographic rate, although apparent survival of mature RGCT decreased as stream temperature increased. Our study suggests plasticity in trait expression may be a life‐history characteristic which can assist trailing edge populations like RGCT persist in a changing climate.  相似文献   

14.
Sternecker K, Geist J. The effects of stream substratum composition on the emergence of salmonid fry.
Ecology of Freshwater Fish 2010: 19: 537–544. © 2010 John Wiley & Sons A/S Abstract – Salmonid fishes are target species for the conservation of freshwater habitats, but their natural reproduction is often insufficient. The emergence of fry is a crucial phase in the life cycle of salmonids and the stream substratum is the key habitat which regulates the emergence success. In this study, brown trout (Salmo trutta) and Danube salmon (Hucho hucho) eggs were exposed to different sediment textures and the emergence and the postemergence survival and growth were observed under constant water chemical conditions in the laboratory. In both species, textural effects on emergence rate, chronology of emergence, survival rate after emergence and growth after emergence were detected. Fine‐textured substratum (5–8 mm) formed a physical barrier to the posthatch migration of salmonids from the interstitial zone to the open water. The time period between the first and the last emerged fish was shorter in treatments with fine texture compared with coarse substratum. The survival rate was higher in treatments of coarser sediment. The effects of different textures on the growth of fry after emergence differed between brown trout and Danube salmon, which can be explained by different life history strategies. These results suggest that physical characteristics of substratum texture can have strong effects on salmonid emergence, and ultimately on the persistence of salmonid populations. They also suggest that biodiversity conservation in stream ecosystems can greatly benefit from an inclusion of the physical characteristics of the stream bed into catchment‐based management plans.  相似文献   

15.
Effects of exotic salmonids on juvenile Atlantic salmon behaviour   总被引:1,自引:0,他引:1  
Abstract –  We examined the effects of two salmonid species, chinook salmon ( Oncorhynchus tschwaytscha ) and brown trout ( Salmo trutta ), both exotic species to Lake Ontario, on behaviour and foraging success of juvenile Atlantic salmon ( S. salar ), a native species to Lake Ontario, in an artificial stream. We found that both exotic species have effects on Atlantic salmon behaviour, but that neither had an effect on foraging success. These results may explain why the Atlantic salmon re-introduction programme in Lake Ontario has had little success, as more than 3 million exotic salmonids are released in Lake Ontario streams annually.  相似文献   

16.
The non‐native rainbow trout (Oncorhynchus mykiss) has been introduced worldwide for angling purposes and has established self‐reproducing populations in many parts of the world. Introduced rainbow trout often have negative effects on the native salmonid species, ranging from decrease abundance, growth and survival, to their local extinction. Assessing the effects of introduced rainbow trout on the native species is thus crucial to better set up conservation programmes. In this study, we investigated the effects of non‐native rainbow trout on the diet of native marble trout (Salmo marmoratus) living in the Idrijca River (Slovenia). An impassable waterfall separates the stream in two sectors only a few hundred metres apart: a downstream sector (treatment) in which marble trout live in sympatry (MTs) with rainbow trout (RTs) and an upstream sector (control) in which marble trout live in allopatry (MTa). Specifically, we investigated using stable isotopes the effects of rainbow trout on dietary niche, diet composition, body condition, and lipid content of marble trout. We found dietary niche expansion and niche shift in marble trout living in sympatry with rainbow trout. Compared to MTa, MTs had higher piscivory rate and showed higher body condition and prereproduction lipid content. Our results indicate that the presence of rainbow trout did not have negative effects on marble trout diet and condition and that changes in dietary niche of marble trout are likely to be an adaptive response to the presence of rainbow trout, and further research is needed to better understand.  相似文献   

17.
Abstract– We used six polymorphic microsatellite loci to investigate a potential metapopulation system in bull trout ( Salvelinus confluentus ) from five spawning localities in the Lightning Creek drainage, a tributary to Lake Pend Oreille, Idaho. The number of spawners as estimated by redd counts is low in all populations sampled. Analytic viability models indicate that local isolated populations of these sizes are unlikely to persist. We tested two hypotheses: (1) these are remnant populations that are vulnerable to local extinction, or (2) these populations are interconnected by migration and are being maintained at larger effective sizes than indicated by the redd counts (i. e. metapopulation dynamics). All populations within the Lightning Creek basin are significantly differentiated ( P > 0.005), and the allele frequencies appear to be stable among temporally separated subsamples within locations. It is therefore unlikely that extensive dispersal has linked tributaries in a manner consistent with a metapopulation structure. The low number of spawning individuals combined with the degree of isolation indicated by the genetic data suggest that extinction of the tributary populations is probable if temporal variability and small size is prolonged. However, these populations contain amounts of genetic variation similar to populations throughout the range of bull trout. Therefore, if the apparent demographic trends are reversed, these populations may recover without suffering the detrimental effects of a severe bottleneck.  相似文献   

18.
19.
Abstract – Although homing behaviour has been observed in juvenile Atlantic salmon, brown trout and resident cutthroat trout, this behaviour has not been well studied in juvenile Pacific salmon. We examined the site fidelity and homing behaviour of juvenile coho salmon ( Oncorhynchus kisutch ) by marking and relocating them within an off-channel habitat. Over 80% of displaced fish returned to the area from which they were originally collected. The proportion of fish that returned to the original location did not vary significantly among three sampling dates. However, we found that this proportion decreased over time in a brackish lagoon when we statistically analysed the data reported by Day (1966) . Our results suggest that juvenile coho salmon exhibit strong site fidelity and are able to return to their home ranges after displacement. These behaviours are likely to be important for the winter survival of juvenile coho salmon.  相似文献   

20.
Minimizing phosphorus (P) wastes is considered to be a key factor for environmental sustainability of freshwater aquaculture operations in many parts of the world. A factorial P model, consisting of digestibility, whole-body P deposition, P waste output and limnological transformation sub-models, was constructed to simulate the effects of different dietary P sources and levels on P utilization in salmonids. This factorial P model was developed based on information from the literature for rainbow trout ( Oncorhynchus mykiss ). This factorial model runs on the platform of a fish bioenergetics model that provides dynamic estimates of feed intake of salmonids based on diet composition and growth rate. Simulations suggest that this model can potentially be a useful tool for waste output management of salmonid culture operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号