首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study compared visitor preferences of forestry professionals across six European countries (Sweden, Denmark, Great Britain, Austria, Romania and Portugal) using a questionnaire survey. The 598 interviewees were asked to rank photographs depicting recently thinned experimental plots in a 13-year old stand of pedunculate oak (Quercus robur L.) according to the criterion: “Which forest environment do you prefer as a visitor?” The plots represented five different residual stem densities: 7000 (no thinning, very high stem density), 5300 (heavy thinning, high stem density), 1000 (very heavy thinning, medium stem density), 300 (extremely heavy thinning, low stem density/open stand) and 100 (solitary trees, very low stem density/very open stand) stems ha?1. The results indicated geographical variation in the preferences for different thinning practices in young stands of oak. Portuguese, Austrian and Romanian respondents generally favoured thinned, but dense stands, whereas Danish and British respondents preferred very heavily thinned stands. Swedish respondents preferred open stands resulting from extremely heavy thinning. Photographs taken along rows were favoured to photographs across rows, indicating a preference for scenes offering perspective and accessibility. The results indicate a variation of visitor preferences among forestry professionals for different silvicultural regimes. We interpret this in the context of national traditions and forestry paradigms that influence the shaping of preferences.  相似文献   

2.

Context

Avoidance or control of epicormic shoots is among the major silvicultural challenges for the production of high-quality oak timber. In northern Europe, contemporary oak silviculture aims to produce valuable timber on a relatively short rotation, applying early, heavy thinning combined with artificial pruning.

Aims

The aim of this study was to analyse the effects of pruning and stand density on the production of new epicormic shoots on young trees of pedunculate oak (Quercus robur L.).

Methods

The study was based on two field experiments in even-aged stands of pedunculate oak subjected to different thinning practices and early selection of potential future crop trees. From ages 13 to 15 years, stem density was reduced to 300 trees ha?1, 1,000 ha?1 or stands remained unthinned. Pruning was conducted on selected trees at ages 22–24 years. At that age, the stem density in unthinned control plots ranged from 2,500 to 3,100 ha?1. All treatments were replicated twice within each experiment.

Results

Pruning led to an overall increase in the total production of new epicormic shoots. More epicormic shoots were produced in the lower part of the stem (0–3 m in height) than in the upper part (3–6 m). The number of new epicormic shoots increased with increasing stand density.

Conclusion

Early, heavy thinning combined with high pruning at regular intervals may help shorten the rotation length for pedunculate oak without further reduction in wood quality than that which is caused by wider annual growth rings.  相似文献   

3.
4.
Stand density management diagrams are average stand-level models that graphically display the relationship between stand yield, density, height and diameter throughout the various stages of forest development in even-aged stands. These are useful tools for designing, displaying and evaluating alternative density regimes in even-aged forest ecosystems to achieve a desired future condition. In this paper, we present a stand density management diagram constructed for sandalwood stands in Karnataka state of India. The relationship between stand density, dominant height, quadratic mean diameter, relative spacing and stand volume is exhibited in one graph. The relative spacing index was used to characterise the growing stock level. Two equations were fitted to the data collected from 19 sample plots measured annually for three years: one relates quadratic mean diameter with stand density and dominant height, whereas the other relates total stand volume with quadratic mean diameter, stand density and dominant height.  相似文献   

5.
The aim of this study was to investigate to which extent forestry professionals, other “green” professionals (mainly landscape architects) and natural resource students in Denmark agree with the general population regarding their recreational preferences for contrasting stem densities in young, even-aged stands of pedunculate oak (Quercus robur L.). The study was based on five pairs of colour photographs from each of the five recently thinned experimental plots in a 13-year-old stand. The plots represented five different residual stem densities: 7000 (unthinned), 5300 (traditional thinning), 1000, 300 and 100 stems ha?1. All cut trees were left on the ground. The analysis was carried out as a survey of forest and landscape experts (n=158) and the general public (n=243) based on questionnaires. Interviewees ranked the photographs according to the criterion: “Which forest environment do you prefer as a visitor?” Principal component factor analysis showed that the general public tended to perceptually group photos according to similar overall pattern of openness, presence of row structure and stand accessibility (including presence/absence of slash). As long as a stand appeared accessible, stand density had little influence on their preferences for a wide range of stand densities (5300?300 stems ha?1). In contrast, foresters, other “green” professionals and students seemed to perceptually group photos according to treatment type, and the presence of slash had little influence on their preferences. This suggests an influence of professional background, making experts visually analyse and evaluate stands according to contemporary management standards and paradigms within their own profession.  相似文献   

6.
Crown size is a good indicator of the growth potential of trees and is often used in forest management for outlining thinning guidelines or constructing forest growth models. The aim of this study was to analyse mean crown radius as a function of stem size, stand density and site productivity in even-aged stands of pedunculate oak (Quercus robur L.). Data included measurements of 620 trees from 53 plots in nine thinning experiments and one operational stand in Sweden, Denmark and Great Britain, representing a wide spectrum of thinning practices ranging from the strictly unthinned control to extremely heavy thinning with essentially solitary trees. Three sets of models were constructed based on different predictor variables, including indicators of individual stem size (diameter at breast height, DBH), stand density/thinning grade (quadratic mean diameter and stand basal area) and site productivity (stand top height). Preliminary results indicated a significant effect of DBH and (nominal) thinning grade on crown radius. The response pattern of the final models indicated an increasing crown radius with increasing DBH, with increasing thinning grade (decreasing stand density) and with decreasing site productivity. The models are valid for predicting the crown radius of pedunculate oak in even-aged forest stands.  相似文献   

7.
The aim of this study was to quantify 5-year growth, yield and mortality responses of 9- to 13-year-old naturally regenerated, even-aged paper birch (Betula papyrifera Marsh.) stands to pre-commercial thinning in interior British Columbia. The study included four residual densities (9902–21,807 stems ha−1 (unthinned control), 3000, 1000 and 400 stems ha−1) and four sites with 3-fold within-site replication in a randomised block design. The largest, straightest, undamaged trees were selected to leave during thinning. Thinning reduced stand basal area from 5.90 m2 ha−1 in the control to 2.50, 1.53 and 0.85 m2 ha−1 in the three thinning treatments, representing 42, 26 and 15% of control basal area, respectively. After 5 years, total stand volume per plot remained lower in the three thinning treatments than the control (50.20, 30.07, 18.99 and 11.86 m3 in the control, 3000, 1000 and 400 stems ha−1 treatments), whereas mean stand diameter, diameter increment, height, and height increment were increased by thinning, and top height (tallest 100 trees ha−1) was unaffected. When a select group of crop trees (largest 250 trees ha−1) in the thinning treatments was compared with the equivalent group in the control, there was a significant increase in mean diameter, diameter increment, basal area, basal area increment, and volume increment. Mean height, height increment, top height, and total volume were unaffected by thinning. Crop tree diameter increment was the greatest following thinning to 400 stems ha−1 for all diameter classes. Thinning to 1000 stems ha−1 resulted in lower diameter increment than thinning to 400 stems ha−1 but tended to have higher volume increment. Dominant trees responded similarly to subdominant trees at 400 stems ha−1, but showed the greatest response at 3000 stems ha−1. Results suggest that pre-commercial thinning of 9–13-year-old stands to 1000 stems ha−1 would improve growth of individual trees without seriously under-utilising site resources.  相似文献   

8.
In this work, new information is reported on water relations of the Mediterranean oak species Quercus pyrenaica based on environmental and physiological measurements carried out during the growing seasons of 2006 and 2007. The interest in this species has increased due to its use in reforestation programs and its impacts on the water resources due to the extensive spontaneous afforestation after the abandonment of forest (firewood, charcoal, livestock, etc.) and agricultural activities, in general in some areas in the Mediterranean region and in particular, in the studied area (Sistema Central range, Spain). The objectives were to evaluate the long-term water use of this stand and its limit and to analyse the specific traits to cope with summer drought, especially the use of stem water storage and deep soil water reserves. Tree water stress associated with depletion of soil water reserves was not observed since the oak trees appeared to avoid a marked water stress using water reserves from deeper soil layers as summer drought progresses. The contribution of mean daily stem water storage to transpiration was low (4%), although it could be greater under dryer conditions. Only at the end of summer of 2006, the transpiration and canopy conductance were reduced due to soil drought. Despite the absence of marked water stress an upper limit was found in transpiration (slightly higher than 3 mm day−1). The heavy use of soil water resources by this species (75% of available soil water in this study) should be considered when evaluating the impact of spontaneous afforestation and reforestation programs on water resources.  相似文献   

9.
10.
The forest industry is increasingly adopting alternative silvicultural systems, involving regeneration beneath an existing forest canopy, rather than clear-felling and replanting. To apply these silvicultural systems in windy regions such as Britain and Ireland, it is essential that the interactions between thinning intensity, stand stability and seedling growth are properly understood. Here, we present a modelling analysis of the three key relationships between: (i) stand density and the proportion of incident radiation transmitted through a forest canopy as a stand is thinned; (ii) transmitted radiation and seedling growth, and (iii) stand density and stand stability. These relationships were examined using separate models of radiative transfer (MAESTRO), seedling growth, and stand stability/wind risk (ForestGALES). Output from the three models was synthesised to calculate whether a given stand thinned to a pre-defined stability limit would allow sufficient light to penetrate the canopy for seedling growth. A minimum transmittance of 20% was identified as a requirement for seedling growth, which corresponds to removing 45% of stand basal area. A thinning of this intensity left some stands susceptible to unacceptable wind damage, especially in old or previously thinned stands on soils where rooting is impeded. The results emphasised the fact that rooting conditions, thinning history and age of intervention are major constraints on the silvicultural options. In general, older stands are not suitable for conversion to continuous cover forestry (CCF) systems, and the transformation process should begin at pole stage, when heavy thinning does not leave the stand unstable. The analysis approach used here illustrates the potential for combining models to address complex forest management issues.  相似文献   

11.

Context

Regular mortality (or self-thinning) is an integral part of woody plant dynamics, and the mortality model is one of the most important transition functions within dynamic growth models.

Aims

The main objectives of the present study were to derive one-step stand-level mortality models for estimating the reduction in stand density with stand dominant height growth and to examine the applicability of the models in predicting regular mortality trends in even-aged natural stands and plantations.

Methods

Four model formulations based on graphical examination of the main trends in the data and on defined desired properties of the selected mathematical functions were proposed and tested in algebraic difference equation form with two datasets from pine plantations and two datasets from natural broadleaved even-aged stands.

Results

The mortality patterns of three of the datasets were characterized by reverse sigmoid curves, while the forth dataset exhibited a reverse J-shaped trajectory. The models analyzed adequately represented the density decrease trends of the data through sets of polymorphic curves with multiple asymptotes.

Conclusion

The dominant height-dependent mortality equations provide a simple and reliable approach to modeling the regular density decrease trends and can be considered for incorporation as a submodel within the framework of a dynamic Stand Density Management Diagram.  相似文献   

12.
13.
Abstract

This study analysed the effects of young stand characteristics on optimal thinning regime and length of rotation periods for even-aged Norway spruce [Picea abies (L.) Karst.] stands. Stand development was based on a distance-independent, individual-tree growth model. The young stand data were collected from 12 well-stocked Norway spruce stands in southern Finland. Results showed that optimal thinning regimes and rotation period depend on site quality and initial stand characteristics. At the first thinning, optimal thinning type depended on initial density. Thinning from both ends of the diameter distribution turned out to be optimal for initially dense stands. At the second and subsequent thinnings, thinning from above was clearly superior. At a low interest rate, thinning from below was optimal for the first thinning regardless of stocking level. For the study data, optimal rotation periods varied from 61 to 92 years at 3% interest rate. The high variation in length of rotation period was due to the sensitivity of optimal length of rotation period to site qualities, initial stand structure and density.  相似文献   

14.
Three versions of an explanatory model to simulate competition between trees within forest stands are presented, based on the distribution of photosynthetically active radiation (PAR) over the trees in the stand. From the amount of PAR absorbed, the rates of assimilation and volume increment are calculated for the trees, which are presented in size classes. Volume increments calculated this way for periods of 35–45 years are compared with measurements from permanent field plots to evaluate different versions of the model.In the first elementary version of the model, it is assumed that the foliage of all trees is distributed uniformly over the field area, neglecting any differences in individual tree height. In this case, the growth of each tree is proportional to its share of the total foliage area of the stand and approximately proportional to its size. This model version slightly underestimated the variation in diameters observed in the field plots.The second version of the model takes into account differences in tree height. As a result of the prior assumption that the foliage of all classes is distributed uniformly over the field area, this model version severely overestimated the shading of short trees by tall neighbours, and the variation in diameters was overestimated as compared to the field data.The third version of the model accounts for clustering of needles within individual crowns in addition to height differences between the classes. This approach gave the better fit to the field data for normally stocked and for dense stands.  相似文献   

15.
Many invertebrates, birds and mammals are dependent on hollow trees. For landscape planning that aims at persistence of species inhabiting hollow trees it is crucial to understand the development of such trees. In this study we constructed an individual-based simulation model to predict diameter distribution and formation of hollows in oak tree populations. Based on tree ring data from individual trees, we estimated the ages when hollow formation commences for pedunculate oak (Quercus robur) in southeast Sweden. At ages of about 200–300 years, 50% of the trees had hollows. Among trees <100 years old, less than 1% had hollows, while all >400-year-old trees had hollows. Hollows formed at earlier ages in fast-growing trees than in slow-growing trees, which may be because hollows are formed when big branches shed, and branches are thicker on fast-growing trees in comparison to slow-growing trees of the same age. The simulation model was evaluated by predicting the frequency of presence of hollows in relation to tree size in seven oak stands in the study area. The evaluation suggested that future studies should focus on tree mortality at different conditions. Tree ring methods on individual trees are useful in studies on development of hollow trees as they allow analysis of the variability in time for hollow formation among trees.  相似文献   

16.
Altogether 82 plots (261 estimations) of Picea abies (L.) Karst, and 193 plots (360 estimations) of Pinus sylvestris (L.) stands were estimated by a vertical tube. The “crown free projection”, CFP, of stands thinned in three methods with different thinning grades was measured: unthinned, heavily and very heavily thinned, heavily thinned delayed first thinning, extra heavily thinned and thinned from the top. Basal area (m2ha?1) density (stems ha?1) and diameter sum (m ha?1) were plotted against CFP. Basal area was the best practical measure of stand in this study. Generally Scots pine stands have higher CFP and the curves are steeper than in Norway spruce stands. Depending on the grade of thinning, heavily and very heavily thinned spruce stands, delayed first thinning included, have CFP values of 10–15% and stands thinned from the top, 20–40%, compared with 30–80% and 30–60% respectively in pine stands. Extra heavily thinned stands have the highest CFP, 20–80% in spruce and 50–90% in pine stands. The CFP levels after thinning are too high in pine stands for avoidance of sucker and sprout production of aspen and birch. In dense Norway spruce stands thinned from the top or heavily and very heavily thinned, the CFP values are low enough (≤30%) to diminish the production of suckers.  相似文献   

17.
The study developed management instructions for even-aged Pinus sylvestris stands in Galicia (north-western Spain). Although these stands are highly productive, no silvicultural management schedules have been proposed so far for them on the basis of systematic analyses. This study used data from 2160 optimisation runs to develop the management instructions. Land expectation value was used as the objective function. Different prices of timber assortments were considered and the discounting rate was varied from 0.5 to 5%. The method employed to find the optimal management schedules of stands was the combination of a stand simulator and an optimisation algorithm. The simulator uses an earlier growth and yield model for Pinus sylvestris in Galicia to predict the future development of the stand with a given management schedule while the optimisation algorithm seeks the best management schedule among all the possible alternatives. The results show that optimal rotation lengths vary widely between 42 and 170 years, high discounting rates and good site quality resulting in the shortest rotations. Four thinnings were found to be suitable for all sites and discounting rates. With discounting rates higher than 1% the commercial thinnings should gradually decrease the stand basal area towards the end of the rotation.  相似文献   

18.
Due to the urgent demand for thinning in planted forests and the tend towards sustainable forest resource management, the forest stand age class eligible for the thinning subsidy in Japan was expanded during the period from 2000 to 2004. Currently, further expansion is under consideration in line with meeting the Kyoto Protocol target of carbon sequestration. In this paper, we conducted evaluation analyses of carbon sequestration and subsidy effects within the optimization framework for the forest stand management. The optimal forest stand management model called Dynamic Programming model for Kyushu Stand Simulator (DP-KYSS) was utilized for the analysis of the target sugi (Cryptomeria japonia) forest stand in the Kyushu region, Japan. Our results showed that the thinning subsidy was effective to stimulate thinning activities at the eligible age class for the subsidy, and that 20% of the current or proposed payment was appropriate to give an incentive to forest owners for conducting the same optimal thinning regime. The amount of carbon sequestered in remaining trees at final harvest was not always shown to increase over time. Depending upon the subsidy condition, it could decrease. The average annual amount of carbon sequestered under no subsidy showed its maximum at age 35, while under the other subsidy conditions, it was shortened to age 25. The net present value of cost per unit carbon loss associated with subsidy became the highest for the rotation age of 35 years for all subsidy policies considered here.  相似文献   

19.
Radial variation in sap flux density across the sapwood was assessed by the heat field deformation method in several trees of Quercus pubescens Wild., a ring-porous species. Sapwood depths were delimited by identifying the point of zero flow in radial patterns of sap flow, yielding tree sapwood areas that were 1.5-2 times larger than assumed based on visual examinations of wood cores. The patterns of sap flow varied both among trees and diurnally. Rates of sap flow were higher close to the cambium, although there was a significant contribution from the inner sapwood, which was greater (up to 60% of total flow) during the early morning and late in the day. Accordingly, the normalized difference between outer and inner sapwood flow was stable during the middle of the day, but showed a general decline in the afternoon. The distribution of sap flux density across the sapwood allowed us to derive correction coefficients for single-point heat dissipation sap flow measurements. We used daytime-averaged coefficients that depended on the particular shape of the radial profile and ranged between 0.45 and 1.28. Stand transpiration calculated using the new method of estimating sapwood areas and the radial correction coefficients was similar to (Year 2003), or about 25% higher than (Year 2004), previous uncorrected values, and was 20-30% of reference evapotranspiration. We demonstrated how inaccuracies in determining sapwood depths and mean sap flux density across the sapwood of ring-porous species could affect tree and stand transpiration estimates.  相似文献   

20.
The effects of partial cutting on tree size structure and stand growth were evaluated in 52 plots in 13 stands in southeast Alaska that were partially harvested 53–96 years ago and compared with 50-year-old even-aged stands that developed after clearcutting. The net basal-area growth was greater in the partially cut plots than in the uncut plots, and basal-area growth generally increased with increasing cutting intensity. However, the basal-area growth of all of the partially harvested stands was significantly less than the growth of 50-year-old even-aged stands, and net basal area growth over the 50 year period since partial harvesting was about 33–43% of the growth of the even-aged stands. Partial cutting maintained stand structures similar to uncut old-growth stands, and the cutting had no significant effect on tree species composition. The tree size distribution of the partially harvested stands was far more complex and well distributed in comparison with the 50-year-old even-aged stands, and included the presence of several trees with diameters of more than 100 cm. These trees included both large-diameter spruce and hemlock trees and were a distinctive structural feature that was noticeably lacking in the even-aged stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号