首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylazine and xylazine-ketamine in dogs   总被引:3,自引:0,他引:3  
The cardiopulmonary consequences of IV administered xylazine (1.0 mg/kg) followed by ketamine (10 mg/kg) were evaluated in 12 dogs. Xylazine caused significant decreases in heart rate, cardiac output, left ventricular work, breathing rate, minute ventilation, physiologic dead space, oxygen transport, mixed venous partial pressure of oxygen, and oxygen concentration. It caused significant increases in systemic blood pressure, central venous pressure, systemic vascular resistance, tidal volume, and oxygen utilization ratio. The subsequent administration of ketamine was associated with significant increases in heart rate (transient increase), cardiac output, the alveolar-arterial PO2 gradient and venous admixture (transient increase), and arterial PCO2 (transient increase). It caused significant decreases in stroke volume (transient decrease), left ventricular stroke work (transient decrease), effective alveolar ventilation, arterial PO2 and oxygen content (transient decrease).  相似文献   

2.
Xylazine and remifentanil in constant rate infusion (CRI) could be used for sedation in horses without adverse effects. The objective was to evaluate behavioral and cardiopulmonary effects of an intravenous (IV) infusion of xylazine and remifentanil for sedation in horses. Xylazine (0.8 mg/kg IV) followed after 3 minutes by a CRI of xylazine and remifentanil (0.65 mg/kg/h and 6 μg/kg/h, respectively) was administered in 10 healthy horses for 60 minutes. Sedation, ataxia, and cardiopulmonary, hematological, and blood gases variables were evaluated. Heart rate decreased significantly during the first 25 minutes after CRI of xylazine and remifentanil, whereas the respiratory rate showed a significant decrease at 20 minutes and remained significantly low until the endpoint. There were no statistically significant fluctuations in blood arterial pressure, blood pH, partial pressure of arterial carbon dioxide, lactate, creatinine, calcium, chlorine, and sodium, compared with baseline values. Blood partial pressure of arterial oxygen and bicarbonate values were significantly higher compared with baseline values, whereas potassium decreased. Sedation and ataxia developed immediately after the administration of xylazine in all horses. All horses recovered successfully within 10 minutes after interruption of the CRI of xylazine and remifentanil, with no ataxia. No adverse effects were observed. The use of a combination of xylazine and remifentanil as sedation protocol has no adverse effects at the described dosage.  相似文献   

3.
This study was carried out to assess the influence of xylazine administration on clinical, cardiopulmonary and haemocytological variables after acute exposure to different environmental conditions. Xylazine hydrochloride was administered intravenously at 0.1 mg/kg body mass to 6 clinically healthy, castrated male goats. All animals were exposed for 60 min to 3 sets of climatic conditions: 14 degrees C, 33% relative humidity; 24 degrees C, 55% RH, and 34 degrees C, 65% RH. The variables that were measured for a period of 60 min after xylazine administration were sedation, analgesia, salivation, urination, ventilation rate, heart-rate, mean arterial blood pressure, oesophageal temperature, haematocrit, mean corpuscular volume and mean corpuscular haemoglobin concentration. Xylazine induced sedation, analgesia, salivation and urination independently of the 3 environmental conditions. Environment had no influence on the onset, duration and recovery from sedation. In the 14 degrees C environment, xylazine resulted in a significant decrease in ventilation and heart-rate from baseline values. Significant changes in mean arterial blood pressure, haemoglobin concentration, mean corpuscular volume, haematocrit and red cell count were observed in the 3 environments. Total plasma protein was significantly altered at 24 degrees C and 34 degrees C. Acute exposure of goats to different environmental conditions had no significant influence on the clinical, cardiopulmonary and haemocytological variables. Physiological changes induced by xylazine were therefore independent of the environment.  相似文献   

4.
The effects of 3 commonly used dosages (0.3, 0.5, and 1.1 mg/kg of body weight, IV) of xylazine on ventilatory function were evaluated in 6 Thoroughbred geldings. Altered respiratory patterns developed with all doses of xylazine, and horses had apneic periods lasting 7 to 70 seconds at the 1.1 mg/kg dosage. Respiratory rate, minute volume, and partial pressure of oxygen in arterial blood (PaO2) decreased significantly (P less than 0.001) with time after administration of xylazine, but significant differences were not detected among dosages. After an initial insignificant decrease at 1 minute after injection, tidal volume progressively increased and at 5 minutes after injection, tidal volume was significantly (P less than 0.01) greater than values obtained before injection. Partial pressure of carbon dioxide in arterial blood (PaCO2) was insignificantly increased. After administration of xylazine at a dosage of 1.1 mg/kg, the mean maximal decrease in PaO2 was 28.2 +/- 8.7 mm of Hg and 22.2 +/- 4.9 mm of Hg, measured with and without a respiratory mask, respectively. Similarly, the mean maximal increase in PaCO2 was 4.5 +/- 2.3 mm of Hg and 4.2 +/- 2.4 mm of Hg, measured with and without the respiratory mask, respectively. Significant interaction between use of mask and time was not detected, although the changes in PaO2 were slightly attenuated when horses were not masked. The temporal effects of xylazine on ventilatory function in horses should be considered in selecting a sedative when ventilation is inadequate or when pulmonary function testing is to be performed.  相似文献   

5.
The anesthetic and cardiopulmonary effects of midazolam, ketamine and medetomidine for total intravenous anesthesia (MKM-TIVA) were evaluated in 14 horses. Horses were administered medetomidine 5 microg/kg intravenously as pre-anesthetic medication and anesthetized with an intravenous injection of ketamine 2.5 mg/kg and midazolam 0.04 mg/kg followed by the infusion of MKM-drug combination (midazolam 0.8 mg/ml-ketamine 40 mg/ml-medetomidine 0.1 mg/ml). Nine stallions (3 thoroughbred and 6 draft horses) were castrated during infusion of MKM-drug combination. The average duration of anesthesia was 38 +/- 8 min and infusion rate of MKM-drug combination was 0.091 +/- 0.021 ml/kg/hr. Time to standing after discontinuing MKM-TIVA was 33 +/- 13 min. The quality of recovery from anesthesia was satisfactory in 3 horses and good in 6 horses. An additional 5 healthy thoroughbred horses were anesthetized with MKM- TIVA in order to assess cardiopulmonary effects. These 5 horses were anesthetized for 60 min and administered MKM-drug combination at 0.1 ml/kg/hr. Cardiac output and cardiac index decreased to 70-80%, stroke volume increased to 110% and systemic vascular resistance increased to 130% of baseline value. The partial pressure of arterial blood carbon dioxide was maintained at approximately 50 mmHg while the arterial partial pressure of oxygen pressure decreased to 50-60 mmHg. MKM-TIVA provides clinically acceptable general anesthesia with mild cardiopulmonary depression in horses. Inspired air should be supplemented with oxygen to prevent hypoxemia during MKM-TIVA.  相似文献   

6.
The cardiovascular changes associated with anesthesia induced and maintained with romifidine/ketamine versus xylazine/ ketamine were compared using 6 horses in a cross over design. Anesthesia was induced and maintained with romifidine (100 microg/kg, IV)/ketamine (2.0 mg/kg, IV) and ketamine (0.1 mg/kg/min, IV), respectively, in horses assigned to the romifidine/ ketamine group. Horses assigned to the xylazine/ketamine group had anesthesia induced and maintained with xylazine (1.0 mg/kg, IV)/ketamine (2.0 mg/kg, IV) and a combination of xylazine (0.05 mg/kg/min, IV) and ketamine (0.1 mg/kg/min, IV), respectively. Cardiopulmonary variables were measured at intervals up to 40 min after induction. All horses showed effective sedation following intravenous romifidine or xylazine and achieved recumbency after ketamine administration. There were no significant differences between groups in heart rate, arterial oxygen partial pressures, arterial carbon dioxide partial pressures, cardiac index, stroke index, oxygen delivery, oxygen utilization, systemic vascular resistance, left ventricular work, or any of the measured systemic arterial blood pressures. Cardiac index and left ventricular work fell significantly from baseline while systemic vascular resistance increased from baseline in both groups. The oxygen utilization ratio was higher in the xylazine group at 5 and 15 min after induction. In conclusion, the combination of romifidine/ketamine results in similar cardiopulmonary alterations as a xylazine/ketamine regime, and is a suitable alternative for clinical anesthesia of the horse from a cardiopulmonary viewpoint.  相似文献   

7.
OBJECTIVE: To evaluate the influence of epidural administration of xylazine hydrochloride on the minimum alveolar concentration of isoflurane (MAC(ISAO)) and cardiopulmonary system in anesthetized dogs. ANIMALS: 6 clinically normal dogs. PROCEDURE: Dogs were anesthetized with isoflurane in oxygen after randomly being assigned to receive 1 of the following 4 treatments: epidural administration of saline (0.9% NaCl) solution or xylazine at a dose of 0.1, 0.2, or 0.4 mg x kg(-1). Experiments were performed on 5 occasions with at least a 1-week interval between experiments; each dog received all 4 treatments. Following instrumentation, the concentration of isoflurane was maintained constant for 15 minutes at the MAC(ISO) that had been determined for each dog, and data on heart rate, arterial blood pressure, respiratory rate, tidal volume, minute volume, arterial partial pressure of oxygen, arterial partial pressure of carbon dioxide, and arterial pH were collected. The epidural treatment was administered, and 30 minutes later, data were again collected. From this point on, determination of the MAC(ISO) following epidural treatment (ie, MAC(ISO+EPI)) was initiated. Cardiopulmonary data were collected before each electrical supramaximal stimulus during MAC(ISO+EPI) determinations. RESULTS: The mean (+/-SD) MAC(ISO) was 1.29 +/- 0.04%. The epidural administration of xylazine at doses of 0.1, 0.2, and 0.4 mg x kg(-1) decreased the MAC(ISO), respectively, by 8.4 +/- 2.4%, 21.7 +/- 4.9%, and 33.4 +/- 2.64%. Cardiopulmonary effects were limited. CONCLUSIONS AND CLINICAL RELEVANCE: Epidural administration of xylazine decreases the MAC(ISO) in a dose-dependent manner and is associated with few cardiopulmonary effects in anesthetized dogs.  相似文献   

8.
At present there is no alternative to the use of a demand valve and pressurised oxygen for emergency ventilation in large animal field anaesthesia, therefore we aimed at providing a proof‐of‐principle of a small (2.5 l) commercial foot pump to provide emergency intermittent positive pressure ventilation (IPPV) in large animals. The study was performed during elective field anaesthesia for castration of 5 Haflinger stallions. Horses were premedicated with acepromazine i.m. after catheterisation of the jugular vein, further sedation was obtained with detomidine and butorphanol i.v. Anaesthesia was induced with ketamine and midazolam i.v. and maintained with a constant rate infusion of midazolam, ketamine and xylazine. After endotracheal intubation the foot pump, modified with a manually operated expiratory valve, was connected to the endotracheal tube and oxygen (6 l/min) was supplied. Anaesthesia was monitored using spirometry, respiratory gas analysis, pulse oximetry and arterial blood gas analysis. When arterial partial pressure of carbon dioxide (PaCO2) exceeded 6.65 kPa, IPPV was provided by 2–4 consecutive compressions of the pump aiming at a tidal volume of 10 ml/kg bwt. The PaCO2 was maintained at 6.18 ± 3.06 kPa (mean ± s.d.) with a respiratory rate of 4–10 breaths/min. The tidal volume was 2678–8300 ml with a peak inspiratory pressure of 24 ± 6.6 cmH2O and a mean minute volume of 68.5 ± 13 l/min. Inspired oxygen concentration ranged from 26–46% (36 ± 7%) and arterial partial pressure of oxygen from 8.38–11.03 kPa (10.1 ± 0.93 kPa). The modified foot pump enables the practitioner to provide IPPV to large animals in emergency situations.  相似文献   

9.
Blood was withdrawn from 15 dogs over the course of about 1 hour until the mean arterial blood pressure was reduced to 60 mm Hg. Small aliquots of additional blood were withdrawn in order to maintain the mean arterial blood pressure near 60 mm Hg for an additional hour. Oxymorphone (0.4 mg/kg) was then administered intravenously to ten dogs, and all measurements were repeated in 5, 15, 30, and 60 minutes. Five dogs served as controls.
Heart rate, tidal volume, arterial oxygen, oxygen extraction, and pH significantly decreased after oxymorphone administration, while systemic and pulmonary arterial blood pressures, systemic vascular resistance (transiently), breathing rate, minute ventilation, physiologic dead space, venous admixture, venous oxygen, arterial and venous carbon dioxide, and bicarbonate concentration increased significantly. Cardiac output was also increased, but the change was not statistically significant. Oxymorphone was associated with significantly lower heart rate, tidal volume, arterial oxygen, and pH, and higher systemic and pulmonary arterial pressure, cardiac output, venous oxygen, and arterial and venous carbon dioxide, compared to the control group, which did not receive oxymorphone.
Oxymorphone significantly improved cardiovascular performance and tissue perfusion in these hypovolemic dogs. Oxymorphone did cause a significant increase in arterial carbon dioxide and a decrease in arterial oxygenation. Oxymorphone is an opioid agonist that may represent a reasonable alternative for the induction of anesthesia in patients who are candidates for induction hypotension.  相似文献   

10.
OBJECTIVE: To determine if a commonly used analgesic dose of xylazine has detrimental cardiovascular or haemodynamic effects in sheep. DESIGN: A physiological study following intramuscular administration of xylazine. PROCEDURE: Xylazine (50 micrograms/kg) was injected intramuscularly into six healthy Merino ewes. For 60 min heart rate, mean arterial blood pressure and cardiac output were recorded; arterial blood samples for the measurement of blood gas tensions were also collected. RESULTS: There were no significant changes in heart rate, mean arterial blood pressure, cardiac output or arterial carbon dioxide tension. A slight degree of arterial hypoxaemia was noted with a 10% reduction in arterial oxygen tension values at 30 min. CONCLUSION: The minimal changes to cardiovascular and respiratory values in this study verify the safety of previously suggested analgesic dosing regimens for sheep. Previously reported hypoxaemic effects in sheep as a result of intravenous xylazine administration appear to be reduced as a result of intramuscular administration.  相似文献   

11.
The cardiopulmonary effects of etomidate, a nonbarbiturate, short-acting, IV anesthetic, were compared and contrasted with those of thiamylal sodium in chronically instrumented conscious dogs. Etomidate, when administered IV at dosages of 1.5 and 3.0 mg/kg of body weight, produced anesthesia lasting from 8 +/- 5 and 21 +/- 9 minutes, respectively. Heart rate, aortic blood pressure, left ventricular peak pressure, left ventricular end diastolic pressure, left ventricular contractile force, and myocardial oxygen consumption were unchanged after administration of either dose of etomidate; however, the dosage of 1.5 mg/kg produced significant (P less than 0.05) increases in respiratory rate and decreases in tidal volume. The minute volume remained unchanged from base-line values. Significant (P less than 0.05) decreases in tidal volume, arterial pH, and partial pressure of oxygen were produced, and minute volume remained unchanged when 3.0 mg of etomidate/kg of body weight was administered. Thiamylal sodium (8.0 mg/kg of body weight; given IV) produced anesthesia lasting for 14 +/- 5 minutes. Significant increases (P less than 0.05) in heart rate, arterial blood pressure, left ventricular peak pressure, and myocardial oxygen consumption were observed after IV administration. Left ventricular contractility was significantly (P less than 0.05) decreased. Respiratory rate was not significantly (P less than 0.05) affected by thiamylal although tidal volume and minute volume were decreased. These respiratory alterations resulted in significant (P less than 0.05) increases in the arterial partial pressure of carbon dioxide and decreases in pH and the partial pressure of oxygen. On the basis of cardiopulmonary function, etomidate offered rapid, safe, short duration anesthesia superior to that of thiamylal sodium.  相似文献   

12.
Midazolam was administered intravenously to 8 bitches in a randomised, placebo-controlled clinical trial before propofol induction of surgical anaesthesia. Anaesthesia was maintained with isoflurane-in-oxygen during surgical endoscopic examination of the uterus and ovariohysterectomy. Clenbuterol was administered at the start of surgery to improve uterine muscle relaxation, and to facilitate endoscopic examination of the uterus. Ventilation was controlled. Induction of anaesthesia with propofol to obtain loss of the pedal reflex resulted in a statistically significant (P < 0.05) decrease in minute volume and arterial oxygen partial pressure in the midazolam group. Apnoea also occurred in 50% of dogs in the midazolam group. The dose for propofol in the midazolam group was 7.4 mg/kg compared to 9.5 mg/kg in the control. Minute volume was significantly (P < 0.05) higher in both groups during isoflurane maintenance, compared to the value after incremental propofol to obtain loss of the pedal reflex. Propofol induction resulted in a 25-26% reduction in the mean arterial blood pressure in both groups, and the administration of clenbuterol at the start of surgery resulted in a transient, but statistically significant (P < 0.05), decrease in mean arterial blood pressure in the midazolam group during isoflurane anaesthesia. It is concluded that intravenous midazolam premedication did not adversely affect cardiovascular function during propofol induction, but intra-operative clenbuterol during isoflurane maintenance of anaesthesia may result in transient hypotension. Midazolam premedication may increase adverse respiratory effects when administered before propofol induction of anaesthesia.  相似文献   

13.
Effects of the drug xylazine were determined on arterial pH, arterial oxygen pressure (PaO2), arterial carbon dioxide pressure (PaCO2), aortic blood pressure, aortic flow, heart rate, pulse pressure, stroke volume, and peripheral resistance of dogs. The drug was given intravenously (IV) with and without atropine and was given intramuscularly (IM) without atropine. After IV administration of xylazine (1.1 mg/kg), arterial pH, PaO2, and PaCO2 values were not changed from control values. However, the drug did produce a statistically significant decrease in heart rate, decrease in aortic flow, initial increase in blood pressure followed by decrease, and increase in peripheral resistance. Stroke volume and pulse pressure were not significantly changed. Atropine (0.02 mg/kg, IV) did not significantly change any of the effects produced by xylazine. Intramuscular administration of xylazine (2.2 mg/kg) did not produce significant changes in arterial pH, PaO2, or PaCO2. Heart rate and aortic flow decreased significantly, but statistically significant changes did not occur in aortic blood pressure or peripheral resistance; however, the changes in these last 2 values were in the same direction and were of similar magnitude as those which occurred afger IV administration of xylazine.  相似文献   

14.
OBJECTIVE: To determine the effects of ketamine hydrochloride, xylazine hydrochloride, and lidocaine hydrochloride after subarachnoid administration in goats. ANIMALS: 6 healthy goats. PROCEDURE: In each goat, ketamine (3 mg/kg), xylazine (0.1 mg/kg), lidocaine (2.5 mg/kg), and saline (0.9% NaCI) solution were injected into the subarachnoid space between the last lumbar vertebra and first sacral vertebra (time 0). Analgesic, ataxic, sedative, cardiovascular, and respiratory effects and rectal temperature were evaluated before (baseline) and 2, 5, 10, 15, and 30 minutes after administration and at 30-minute intervals thereafter as needed. RESULTS: Administration of anesthetics induced varying degrees of analgesia. Onset of the analgesic effect was more delayed for xylazine (mean +/- SD, 9.5 +/- 2.6 minutes) than for ketamine (6.7 +/- 2.6 minutes) or lidocaine (3.5 +/- 1.2 minutes). Duration of analgesia induced by xylazine (88.3 +/- 15 minutes) was twice as long as the duration of analgesia induced by ketamine (48.8 +/- 13.5 minutes) but similar to that induced by lidocaine (66.5 +/- 31 minutes). Xylazine induced bradycardia, whereas ketamine caused a nonsignificant increase in heart rate. Xylazine induced a reduction in arterial pressure, whereas ketamine or lidocaine did not affect arterial pressure. CONCLUSIONS AND CLINICAL RELEVANCE: Subarachnoid administration of xylazine in goats resulted in longer duration of analgesia of the tail, perineum, hind limbs, flanks, and caudodorsal rib areas than administration of ketamine or lidocaine. However, xylazine caused bradycardia and respiratory depression. Additional studies are needed to determine whether the analgesia would be sufficient to allow clinicians to perform surgical procedures.  相似文献   

15.
The effects of acute exposure to 3 different temperature and humidity conditions on arterial blood-gas and acid-base balance in goats were investigated after intravenous bolus administration of xylazine at a dose of 0.1 mg/kg. Significant (P<0.05) changes in the variables occurred under all 3 environmental conditions. Decreases in pH, partial pressure of oxygen and oxyhaemoglobin saturation were observed, and the minimum values for oxygen tension and oxyhaemoglobin saturation were observed within 5 min of xylazine administration. The pH decreased to its minimum values between 5 and 15 min. Thereafter, the variables started to return towards baseline, but did not reach baseline values at the end of the 60 min observation period. Increases in the partial pressure of carbon dioxide, total carbon dioxide content, bicarbonate ion concentration, and the actual base excess were observed. The maximum increase in the carbon dioxide tension occurred within 5 min of xylazine administration. The increase in the actual base excess only became significant after 30 min in all 3 environments, and maximal increases were observed at 60 min. There were no significant differences between the variables in the 3 different environments. It was concluded that intravenous xylazine administration in goats resulted in significant changes in arterial blood-gas and acid-base balance that were associated with hypoxaemia and respiratory acidosis, followed by metabolic alkalosis that continued for the duration of the observation period. Acute exposure to different environmental temperature and humidity conditions after xylazine administration did not influence the changes in arterial blood-gas and acid-base balance.  相似文献   

16.
Ketamine in dogs   总被引:1,自引:0,他引:1  
The cardiopulmonary consequences of ketamine (10 mg/kg, IV) were evaluated in 18 dogs. Heart rate, cardiac output, systemic blood pressure, left ventricular work, oxygen transport, oxygen consumption, carbon dioxide production, and core temperature increased. Breathing rate, minute ventilation, and arterial partial pressure of oxygen transiently decreased. Arterial partial pressure of carbon dioxide, alveolar-arterial oxygen gradient, and venous admixture transiently increased. The duration of action of ketamine for surgical anesthesia was short. Muscle tone and salivation were excessive, and spontaneous muscular activity was prominent.  相似文献   

17.
The effects of yohimbine (0.125 mg/kg) on cardiopulmonary parameters in six adult, xylazine treated (0.15 mg/kg), laterally recumbent sheep were studied. Following collection of baseline data, xylazine was administered intravenously and data were collected five and fifteen minutes later. At twenty minutes post-xylazine either yohimbine (0.125 mg/kg) or saline was given and further collection of data occurred at 25, 30, 40 and 50 minutes. Xylazine administration resulted in significant (P less than 0.05) respiratory depression, as reflected by a decrease in arterial oxygen partial pressure (PaO2). No significant changes in haemodynamic variables were observed. Yohimbine produced a significant improvement in PaO2 at the 50 minute period and abolished the paradoxical respiratory pattern when present. The results indicated that yohimbine can be used as an antagonist to control the duration of xylazine induced respiratory depression, although the degree of reversal was less than is clinically desirable.  相似文献   

18.
Twenty-five horses admitted for minor orthopaedic or soft tissue surgery were anaesthetised with detomidine, ketamine and halothane. Heart rate, arterial blood pressure, respiratory rate, tidal volume, minute volume, blood gases and occlusion pressures were measured before and for 30 mins after intravenous (iv) injection of saline, butorphanol 0.05 mg/kg bodyweight (bwt) or morphine 0.02 or 0.05 mg/kg bwt. Drug or saline treatment induced no significant changes from pre-treatment values within a group for arterial blood pressure, heart rate, respiratory rate, arterial carbon dioxide tension, arterial oxygen tension and occlusion pressure. In conclusion, both morphine and butorphanol at the stated doses cause no adverse effects on the cardiovascular and respiratory systems of anaesthetised horses.  相似文献   

19.
The quality and duration of anaesthesia, cardiorespiratory effects and recovery characteristics of a morphine, medetomidine, ketamine (MMK) drug combination were determined in cats. Six healthy, adult female cats were administered 0.2 mg/kg morphine sulphate, 60 microg/kg medetomidine hydrochloride, and 5 mg/kg ketamine hydrochloride intramuscularly. Atipamezole was administered intramuscularly at 120 min after MMK administration. Time to lateral recumbency, intubation, extubation and sternal recumbency were recorded. Cardiorespiratory variables and response to a noxious stimulus were recorded before and at 3 min and 10 min increments after drug administration until sternal recumbency. The time to lateral recumbency and intubation were 1.9+/-1.2 and 4.3+/-1.2 min, respectively. Body temperature and haemoglobin saturation with oxygen remained unchanged compared to baseline values throughout anaesthesia. Respiratory rate, tidal volume, minute volume, heart rate, and blood pressure were significantly decreased during anaesthesia compared to baseline values. One cat met criteria for hypotension (systolic blood pressure <90 mmHg). End tidal carbon dioxide increased during anaesthesia compared to baseline values. All but one cat remained non-responsive to noxious stimuli from 3 to 120 min. Time to extubation and sternal recumbency following atipamezole were 2.9+/-1.1 and 4.7+/-1.0 min, respectively. MMK drug combination produced excellent short-term anaesthesia and analgesia with minimal cardiopulmonary depression. Anaesthesia lasted for at least 120 min in all but one cat and was effectively reversed by atipamezole.  相似文献   

20.
OBJECTIVE: To compare the cardiopulmonary effects of administration of a solution of xylazine, guaifenesin, and ketamine (XGK) or inhaled isoflurane in mechanically ventilated calves undergoing surgery. ANIMALS: 13 male calves 2 to 26 days of age. Procedures-In calves in the XGK group, anesthesia was induced (0.5 mL/kg) and maintained (2.5 mL/kg/h) with a combination solution of xylazine (0.1 mg/mL), guaifenesin (50 mg/mL), and ketamine (1.0 mg/mL). For calves in the isoflurane group, anesthesia was induced and maintained with isoflurane in oxygen. The rates of XGK infusion and isoflurane administration were adjusted to achieve suitable anesthetic depth. All calves received 100% oxygen and were mechanically ventilated to maintain end-tidal carbon dioxide concentrations from 35 to 40 mm Hg and underwent laparoscopic bladder surgery through an abdominal approach. Cardiopulmonary variables were measured before induction and at intervals up to 90 minutes after anesthetic induction. RESULTS: The quality of induction was excellent in all calves. The XGK requirements were 0.57 +/- 0.18 mL/kg and 2.70 +/- 0.40 mL/kg/h to induce and maintain anesthesia, respectively. Heart rate was significantly lower than baseline throughout the anesthetic period in the XGK group. Systolic arterial blood pressure was significantly higher in the XGK group, compared with the isoflurane group, from 5 to 90 minutes. Cardiac index was lower than baseline in both groups. Differences between groups in cardiac index and arterial blood gas values were not significant. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of XGK resulted in excellent anesthetic induction and maintenance with cardiopulmonary alterations similar to those associated with isoflurane in mechanically ventilated calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号