首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An organophilic calcined hydrotalcite (OHTC) was prepared by treating calcined hydrotalcite (HTC) with sodium dodecylbenzene sulphonate (an anionic surfactant) to achieve a high loading of thiol functionality through the immobilization of 2-mercaptobenzimidazole (MBI) as a chelating agent. The adsorbent (MBI-OHTC) obtained was characterized using XRD, FTIR, SEM, TG/DTG, surface area analysis and potentiometric titration. The adsorption of MBI-OHTC to remove Hg(II) ions from aqueous solutions was studied as a function of pH, contact time, metal ion concentration, ionic strength and adsorbent dose. The optimum pH range for the maximum removal of Hg(II) was 6.0–8.0. The maximum value of Hg(II) adsorption was found to be 11.63 and 21.52 mg g?1 for an initial concentration of 25 and 50 mg l?1, respectively at pH 8.0. The equilibrium conditions were achieved within 3 h under the mixing conditions employed. A reversible pseudo-first-order used to test the adsorption kinetics. The adsorption mechanism consisted of external diffusion and intraparticle diffusion and the intraparticle mass transfer diffusion was predominated after 20 min of experiment. Extent of adsorption decreased with increase of ionic strength. The experimental isotherm was analyzed with two parameters (Langmuir and Freundlich) and three parameters (Redlich–Peterson) equations. The isotherm data were best modeled by the Freundlich isotherm equation. Complete removal (≈100%) of Hg(II) from 1.0 l of chlor-alkali industry wastewater containing 9.86 mg Hg(II) ions, was possible with 3 g of the adsorbent dose at pH 8.0. About 95.0% of Hg(II) can be recovered from the spent adsorbent using 0.1 M HCl.  相似文献   

2.
Granular bentonite has been assessed regarding its capacity to remove Hg(II), Cd(II) and Pb(II) from aqueous solutions. Sorption capacities, kinetics and the dependence of the sorption process on pH were determined. Fractional power, pseudo-first-order, pseudo-second-order and intra-particle diffusion equations were used to model the kinetics of metal adsorption. The pseudo-second-order model showed the best fit to experimental data. Different two-parameter sorption isotherm models (Langmuir, Freundlich, Temkin and Dubinin?CRadushkevich) were used to fit the equilibrium data. Freundlich's isotherm model gave the best fit to experimental data. The selectivity of granular bentonite towards these metals is Pb(II)?>?Cd(II)?>?Hg(II). The adsorption capacities of granular bentonite towards the metals expressed in milligramme metal per gramme granular bentonite are 19.45, 13.05 and 1.7 for Pb(II), Cd(II) and Hg(II), respectively (for an initial concentration of 100 mg metal/L).  相似文献   

3.
The selectivity and uptake capacity of horticultural peat available in Romania was evaluated with respect to the removal of Cd(II), Cr(VI) and Pb(II) ions from aqueous solution. The kinetics, sorption capacities, selectivity and pH dependence of sorption were determined. The influence of metal concentration in solution is discussed in the terms of Langmuir and Freundlich isotherm and constants. Sorption capacities increased with increasing metal concentration in solution. For solutions containing 300 mg/l of metal, the observed uptake capacities were 20 mg Cd(II)/g peat, 15 mg Cr(VI)/g peat and 30 mg Pb(II)/g peat. The study proved that horticultural peat is a suitable material for the removal of the studied heavy metal ions from aqueous solutions, achieving removal efficiencies higher than 90%, and could be considered as a potential material for treating effluent polluted with Cd(II), Cr(VI) and Pb(II) ions.  相似文献   

4.
A magnetic chitosan-modified Fe3O4@SiO2 with sodium tripolyphosphate adsorbent (MTPCS) was synthesized by surface modification of Fe3O4@SiO2 with chitosan using sodium tripolyphosphate (STPP) as the cross-linker in buffer solution for the adsorption of Cu(II) ions from aqueous solution. The structure and morphology of this magnetic nanoadsorbent were examined by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area measurements, Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The effects of initial pH, adsorbent amount, and initial concentration of heavy metal ions were investigated by batch experiments. Moreover, adsorption isotherms, kinetics, and thermodynamics were studied to understand the mechanism of adsorbing metal ions by synthesized MTPCS. The results revealed that adsorption kinetics was best depicted by the pseudo-second-order rate mode and intraparticle-diffusion models. The adsorption isotherm fitted well to the Langmuir model. Moreover, thermodynamic study verified the adsorption process was endothermic and spontaneous in nature. The maximum adsorption occurred at pH 5 ± 0.1, and the adsorbent could be used as a reusable adsorbent with convenient conditions.  相似文献   

5.
The adsorption of lead onto date palm fibers (palm fibers) and leaf base of palm (petiole) has been examined in aqueous solution by considering the influence of various parameters such as contact time, solution pH, adsorbent dosage, particle sizes, ionic strength, and temperature. The adsorption of Pb(II) increased with an increase of contact time. The optimal range of pH for Pb(II) adsorption is 3.0?C4.5. The linear Langmuir and Freundlich models were applied to describe the equilibrium isotherms, and both models fitted well. The monolayer adsorption capacity of Pb(II) on palm fibers and petiole was found as 18.622 and 20.040 mg/g, respectively, at pH 4.5 and 25°C. Dubinin-Radushkevich (D-R) isotherm model was also applied to equilibrium data. The mean free energy of adsorption (2.397 and 4.082 kJ/mol) onto palm fibers and petiole, respectively, may be carried out via physisorption mechanism. Pseudo-first-order rate equation and pseudo-second-order rate equation were applied to study the adsorption kinetics. In comparison to first-order kinetic model, pseudo-second-order model described well the adsorption kinetics of Pb(II) onto palm fibers and petiole from aqueous solution. From the results of the thermodynamic analysis, Gibbs free energy ??G, enthalpy change ??H, and entropy ??S were determined. The positive value of ??H suggests that interaction of Pb(II) adsorbed by palm fibers is endothermic. In contrast, the negative value of ??H indicates that interaction of Pb(II) ions by petiole is exothermic. The negative value of ??G indicates that the adsorption of Pb(II) ions on both palm fibers and petiole is a spontaneous process.  相似文献   

6.
The sorption of Pb(II), Cr(III) and Cr(VI) from aqueous solution using alum-derived water treatment sludge was investigated using the batch adsorption technique. Samples of sludge from two separate water treatment plants were used (one where alum was used alone and one where it was used in combination with activated C). The sorption characteristics of the two samples were generally very similar. Sorption isotherm data for all three ions fitted equally well to both Freundlich and Langmuir equations. Maximum sorption capacity and indices of sorption intensity both followed the order: Cr(III)?>?Pb(II)?>?Cr(VI). Kinetic data correlated well with a pseudo-second-order kinetic model suggesting the process involved was chemisorption. Sorption was pH-dependant with percentage sorption of Cr(III) and Pb(II) increasing from <30% to 100% between pH?3 and 6 whilst that of Cr(VI) declined greatly between pH?5 and 8. HNO3 at a concentration of 0.1?M was effective at removing sorbed Cr(III) and Pb(II) from the sludge surfaces and regeneration was successful for eight sorption/removal cycles. It was concluded that water treatment sludge is a suitable material from which to develop a low-cost adsorbent for removal of Cr and Pb from wastewater streams.  相似文献   

7.
The pH dependency of Cd, Cr(III), Cr(VI), Hg, and Pb uptake by 14 different types of minerals and soil materials has been studied. The solids were interacted with metal solutions separately in a batch procedure, and the percentage of metal uptake of different metal-solid combinations was compared and evaluated. The results were quantified by the pH values at which 10, 50 and 90% of the metal uptake took place. Physical and chemical characteristics of the solids were correlated with metal uptake. The results verify the importance of geochemical parameters of soils such as organic content, type of clay mineral, presence of complexing ions, and redox-potential for controlling metal uptake. Retention of Cd, Cr(VI), Hg, and Pb was found to be strongly dependent on organic content of the materials studied. Montmorillonite (in bentonite and smectite) showed the highest uptake of Cd, Cr(III) and Pb among all minerals and soil materials, while illite and kaolinite showed lower uptake than the soils. At low pH, the uptake percentage of Cr(VI) by organic soils was higher than that of any of the other metal ions. The uptake of Hg was low in comparison to other cations, which may be explained by formation of soluble Hg(CI)2° or Hg(CI)4 2? complexes.  相似文献   

8.
Different from direct application of free nanoparticles (NPs) in water treatment, a composite material is used to reduce the release and potential toxic effects of NPs with maintained adsorption capacity and kinetics. Novel monolithic composites with TiO2 NPs incorporated into the walls of macroporous cryogels were synthesized and evaluated for material characteristics and their efficiency for removal of Pb(II) from aqueous solution in batch test and continuous mode. The uniformly distributed 6% TiO2-cryogel is shown to be optimal for minimizing TiO2 NP losses while maximizing Pb(II) removal. Under (25.0 ± 0.1) °C with the initial Pb(II) concentration of 10 mg/l, TiO2-cryogels exhibit excellent adsorption characteristic for Pb(II) removal with adsorption capacity up to 23.27 mg/g TiO2, which is even a little higher than that of TiO2 NPs (21.58 mg/g TiO2), and the results fit well with Langmuir–Freundlich isotherm. Both adsorbents work well in higher pH range with the highest removal rate at pH 6 for TiO2-cryogel, and the adsorption mechanism might be strong chemical interaction. Pseudo-second-order process can better describe the adsorption process rather than pseudo-first-order for both adsorbents. The external mass transfer process of Pb(II) on TiO2 NPs is much faster than that on TiO2-cryogel, and the ultimate equilibrium time is about the same (3 h) on both adsorbents. The synthesized composites could also withstand a continuous treatment, and the effect of competing and co-existing constituents such as Cd2+, SO4 2? and dissolved organic matter (DOM) is almost negligible. The composite design with small particles embedded into cryogels is proved to successfully keep the adsorption activity of TiO2 NPs and prevent them from releasing into the environment in engineering practice.  相似文献   

9.
A separation and preconcentration procedure was developed for the determination of trace amounts of Cd(II), Cu(II), Ni(II), and Pb(II) in water and food samples using Amberlite XAD-2 fuctionalized with a new chelating ligand, 3-(2-nitrophenyl)-1H-1,2,4-triazole-5(4H)-thione (Amberlite XAD-2-NPTT). The chelating resin was characterized by Fourier transform infrared spectroscopy (FT-IR) and used as a solid sorbent for enrichment of analytes from samples. The sorbed elements were subsequently eluted with 10 mL of 1.0 M HNO(3), and the eluates were analyzed by inductively coupled plasma-atomic emission spectrometry. The influences of the analytical parameters including pH, amount of adsorbent, eluent type and volume, flow rate of the sample solution, volume of the sample solution, and effect of matrix on the preconcentration of metal ions have been studied. The optimum pH for the sorption of four metal ions was about 6.0. The limits of detection were found to be 0.22, 0.18, 0.20, and 0.16 μg L(-1) for Cd(II), Cu(II), Ni(II), and Pb(II), respectively, with a preconcentration factor 60. The proposed method was applied successfully for the determination of metal ions in water and food samples.  相似文献   

10.
The adsorption of Cu(II) ions by sodium-hydroxide-treated Imperata cylindrica (SoHIC) leaf powder was investigated under batch mode. The influence of solution pH, adsorbent dosage, shaking rate, copper concentration, contact time, and temperature was studied. Copper adsorption was considered fast as the time to reach equilibrium was 40–90 min. Several kinetic models were applied and it was found that pseudo-second-order fitted well the adsorption data. In order to understand the mechanism of adsorption, spectroscopic analyses involving scanning electron microscope (SEM) coupled with energy-dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR) spectrophotometer were carried out. Ion exchange was proven the main mechanism involved as indicated by EDS spectra and as there was a release of light metal ions (K+, Na+, Mg2+, and Ca2+) during copper adsorption. Complexation also occurred as demonstrated by FTIR spectra involving hydroxyl, carboxylate, phosphate, ether, and amino functional groups. The equilibrium data were correlated with Langmuir, Freundlich, and Dubinin–Radushkevich isotherm models. Based on Langmuir model, the maximum adsorption capacity was recorded at the highest temperature of 310 K, which was 11.64 mg g?1.  相似文献   

11.
A peanut shell-derived oxidized activated carbon (OAC) with high surface area was prepared by zinc chloride (ZnCl2) chemical activation and subsequent nitric acid oxidation. OAC was characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), and N2 adsorption-desorption. The results showed that OAC had the surface area of 1807 m2 g?1, with the total pore volume of 0.725 cm3 g?1 and average pore diameter of 3.8 nm. More importantly, when OAC acted as an adsorbent, it exhibited high efficiency to remove basic blue 41 (BB-41), congo red (CR), phenol, Cr(VI), and Pb(II) from aqueous solution due to its universality in adsorption. Batch adsorption experiments were carried out to study the effect of various parameters such as pH, initial concentration, temperature, and contact time. Also, the isotherms, kinetic models, and thermodynamics of adsorption process were investigated. The equilibrium data for CR and Pb(II) were fitted to Langmuir isotherm model, while Freundlich model was suitable for the equilibrium isotherm of BB-41, phenol, and Cr(VI), respectively. As the result indicated, peanut shell was a suitable raw material to synthesize OAC which could be employed as an efficient and universal adsorbent for removing organic pollutants and heavy metal ions from wastewater.  相似文献   

12.
This work examined the removal of heavy metals in a system consisting of ultrafiltration (UF) or microfiltration (MF) membranes combined with sludge and minerals. The metals under examination were Ni(II), Cu(II), Pb(II), and Zn(II), while the system performance was investigated with respect to several operating parameters. Metal removal was achieved through various processes including chemical precipitation, biosorption, adsorption, ion exchange, and finally retention of the metals by the membranes. The pH had a profound effect on metal removal, as the alkaline environment favored the metal removal process. The use of sludge resulted in increased levels of metal uptake which was further enhanced with the addition of minerals. The metal removal mechanisms depended on the pH, the metal, and mineral type. The combined sludge?Cmineral?CUF system could effectively remove metal ions at an alkaline environment (pH?=?8), meeting the US EPA recommended long-term reuse limits of lead and copper and the short-term reuse limits of nickel and zinc for irrigation purposes, provided that specific mineral dosages were added.  相似文献   

13.
The effect of I concentration on the mobility of Hg(II) in clay suspensions was studied over an environmentally-significant pH range. The addition of I decreased the adsorption of Hg(II), except at very low (50μg/L) I concentrations. In suspensions of greater I concentration (1.5 and 50 mg/L), Hg(II) adsorption was independant of pH; allow concentrations, Hg(II) adsorption decreased with increasing pH, presumably due to competition from hydroxycomplexes for surface adsorption sites. I was an effective extradant for Hg, outperforming all other halides in extraction efficiency.  相似文献   

14.
Sorption and desorption of Hg(II) on clay minerals can impact the biogeochemical cycle and bio-uptake of Hg in the environment. We studied the kinetics of the desorption of Hg(II) from kaolinite as affected by oxalate and cysteine, representing the ligands with carboxylic and thiol groups of different affinities for Hg(II). The effects of pH (3, 5, and 7), ligand concentration (0.25 and 1.0?mM), and temperature (15??C, 25??C, and 35??C) on the Hg(II) desorption were investigated through desorption kinetics. Our study showed that the Hg(II) desorption was pH dependent. In the absence of any organic ligand, >90% of the previously adsorbed Hg(II) desorbed at pH?3 within 2?h, compared to <10% at pH?7. Similar results were observed in the presence of oxalate, showing that it hardly affected the Hg(II) desorption. Cysteine inhibited the Hg(II) desorption significantly at all the pH tested, especially in the first 80?min with the desorption less than 20%, but the inhibition of the desorption appeared to be less prominent afterwards. The effect of the ligand concentration on the Hg(II) desorption was small, especially in the presence of oxalate. The effect of temperature on the Hg(II) desorption was nearly insignificant. The effect of the organic acids on the Hg(II) sorption and desorption is explained by the formation of the ternary surface complexes involving the mineral, ligand, and Hg(II). The competition for Hg(II) between the cysteine molecules adsorbed on the particle surfaces and in the solution phase probably can also affect the Hg(II) desorption.  相似文献   

15.
A thin film of well-ordered anatase TiO2 nanotubes prepared by anodic oxidation of titanium metal were synthesised and used as adsorbent medium for the purification of water from aqueous uranium and lead. The amount of subtracted metal ions was quantified by using X-ray photoelectron spectroscopy at the surface of the reacted TiO2 surface. Batch experiments for the sorption of U and Pb at the surface of the titania substrate were carried out in separated solution equilibrated with air of uranyl acetate and lead nitrate, in the pH range 3?C9. For uranium, the experiments were also repeated in anoxic (N2) atmosphere. The amount of metal ions adsorbed onto the titania medium was quantified by measurements of the surface coverage expressed in atomic percent, by recording high-resolution XPS spectra in the Ti2p, U4f and Pb4f photoelectron regions. Adsorption of the uranyl species in air atmosphere as a function of pH showed an adsorption edge near pH 4 with a maximum at pH 7. At higher pH the presence of very stable uranyl?Ccarbonate complexes prevented any further adsorption. Further adsorption increased until pH 8.5 was obtained when the uranyl solution was purged from dissolved CO2. Lead ion showed a sorption edge at pH 6, with a maximum uptake at pH 8. The results showed that the uptake of uranium and lead on the selected titania medium is remarkably sensitive to the solution pH. This study demonstrates the reliability of this type of material for treating water polluted with heavy metals as well as leachates from radioactive nuclear wastes.  相似文献   

16.
In this study, N-(2-aminoethyl)salicylaldimine bonded silica gel was synthesized and characterized using Fourier transform infrared and C, H, N elemental analysis. The analytical conditions such as the pH and volume of the solution, flow rates of the sample solution and the type of eluent to achieve the simultaneous preconcentration of Cu(II), Ni(II), Cd(II) and Zn(II) were optimised using the modified silica gel loaded column using a solid phase extraction technique. Samples (50?C500?ml) containing metal ions at optimal pH of 8 were passed through the column filled with the modified silica gel at 7?ml min?1 and then elution was achieved using 5?ml of 0.25?M HCl. The concentrations of metal ions in the eluates were determined using flame atomic absorption spectrometry (FAAS). The effects of matrix ions were also studied and none of the major ions interfered to the proposed method. The accuracy of the developed method was validated using a certified reference water sample (Ontario Lake water, NWTMDA-54.4). The method was successfully applied to the analysis of various natural water samples. The adsorption capacities of the modified silica gel for Cu(II), Ni(II), Cd(II) and Zn(II) ions were determined and found to be 0.332, 0.261, 0.130 and 0.375?mmol g?1, respectively.  相似文献   

17.
The aim of this work is the investigation of possible use of flyash in the removal of zinc (Zn2+) and cadmium (Cd2+) contained in aqueous solutions. Batch adsorption experiments wereperformed in order to evaluate the removal efficiency oflignite-based fly ash. The parameters studied include contact time, pH,temperature, initial concentration of the adsorbate and fly ashdosage. The contact time necessary to attain equilibrium was found to be two hours. Maximum adsorption occurred in the pH range of 7.0 to 7.5. The percent adsorption of Zn2+ and Cd2+ increased with an increase in concentration of Zn2+ and Cd2+, dosage of fly ash and temperature. Theapplicability of Langmuir isotherm suggests the formation ofmonolayer coverage Zn2+ and Cd2+ ions at the outer surface of the adsorbent. Thermodynamic parameters suggested the endothermic nature of the adsorption process. The fly ashwas found to be an metal adsorbent as effective as activated carbon.  相似文献   

18.
The adsorption and desorption of copper (II) ions from aqueous solutions were investigated using polydopamine (PD) nanoparticles. The nanoscale PD nanoparticles with mean diameter of 75?nm as adsorbent were synthesized from alkaline solution of dopamine and confirmed using scanning electron microscopy and X-ray diffraction analysis. The effects of pH (2?C6), adsorbent dosage (0.2?C0.8?g?L?1), temperature (298?C323?K), initial concentration (20?C100?mg?L?1), foreign ions (Zn2+, Ni2+, Cd2+, Fe2+, and Ag+), and contact time (0?C360?min) on adsorption of copper ions were investigated through batch experiments. The isotherm adsorption data were well described by the Langmuir isotherm model. The maximum uptake capacity of Cu2+ ions onto PD nanoparticles was found to 34.4?mg/g. The kinetic data were fitted well to pseudo-second-order model. Moreover, the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy, and enthalpy) were studied.  相似文献   

19.
This is a study of trace metal competition in the complexation of Pb(II) by well-characterized humic substances, namely Suwannee River Fulvic Acid (SRFA) in model solutions. It was found that Cu(II) seems to compete with Pb(II) for strong binding sites of SRFA when present at the same concentration as Pb(II). However, Cd(II) and Zn(II) did not seem to compete with Pb(II) for strong binding sites of SRFA. These two metals did compete with Pb(II) for the weaker binding sites of SRFA. Heterogeneity of SRFA was found to play a crucial role in metal–SRFA interactions. The environmental significance of this research for freshwater is that even at relatively low Pb(II) loadings, the metals associated with lead in minerals, e.g. Cu(II), may successfully compete with Pb(II) for the same binding sites of the naturally occurring organic complexants, with the result that some of the Pb(II) may exist as free Pb2+ ions, which has been reported to be one of the toxic forms of Pb in aquatic environment.  相似文献   

20.
This paper examined the ability of honeycomb biomass (HC), a by-product of the honey industry, to remove Pb(II), Cd(II), Cu(II), and Ni(II) ions from aqueous solutions. The equilibrium adsorptive quantity was determined as a function of the solution pH, amount of biomass, contact time, and initial metal ion concentration in a batch biosorption technique. Biosorbent was characterized by Fourier transform infrared (FTIR), scanning electron microscopy with energy-dispersive X-ray, and X-ray diffraction studies. FTIR spectral analysis confirmed the coordination of metals with hydroxyl, carbonyl, and carboxyl functional groups present in the HC. The metals uptake by HC was rapid, and the equilibrium time was 40?min at constant temperature and pH. Sorption kinetics followed a nonlinear pseudo-second-order model. Isotherm experimental data were fitted to Langmuir, Freundlich, Dubinin?CRadushkevich, and Temkin isotherm models in nonlinear forms. The mechanism of metal sorption by HC gave good fits for Langmuir model, and the affinity order of the biosorbent for four heavy metals was Pb(II)>Cd(II)>Cu(II)>Ni(II). The thermodynamic studies for the present biosorption process were performed by determining the values of ??G°, ??H°, and ??S°, and it was observed that biosorption process is endothermic and spontaneous. This work provides an efficient and easily available environmental friendly honeycomb biomass as an attractive option for removing heavy metal ions from water and wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号