首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Purpose

Rice-paddy-dominated watersheds in eastern China are intensively cultivated, and lands with two crops receive as much as 550–600 kg?ha–1?year–1 of nitrogen (N), mainly through the addition of N-based fertilizers. However, stream N concentrations have been found to be relatively low. Waterways in the watersheds are assumed to be effective “sinks” for N, minimizing its downstream movement. We directly measured net sediment denitrification rates in three types of waterways (ponds, streams/rivers, and a reservoir) and determined the key factors that control net sediment denitrification. Such information is essential for evaluating the impact of the agricultural N cycle on the quality of surface water.

Materials and methods

The pond–stream–reservoir continuum was sampled every 2 months at nine sites in an agricultural watershed between November 2010 and December 2011. Net sediment N2 fluxes/net sediment denitrification rates were determined by membrane inlet mass spectrometry and the N2/Ar technique. A suite of parameters known to influence denitrification were also measured.

Results and discussion

Net denitrification rates ranged between 28.2?±?18.2 and 674.3?±?314.5 μmol N2–N?m–2?h–1 for the streams, 23.7?±?23.9 and 121.2?±?38.7 μmol N2–N?m–2?h–1 for the ponds, and 41.8?±?17.7 and 239.3?±?49.8 μmol N2–N?m–2?h–1 for the reservoir. The mean net denitrification rate of the stream sites (173.2?±?248.4 μmol N2–N?m–2?h–1) was significantly higher (p?<?0.001) than that of the pond sites (48.3?±?44.5 μmol N2–N?m–2?h–1), and the three types of waterways all had significantly higher (p?<?0.01) mean net denitrification rates in summer than in other seasons. Linear regression and linear mixed effect model analysis showed that nitrate (NO3 ?–N) concentration in surface water was the primary controlling factor for net sediment denitrification, followed by water temperature. Using monitoring data on NO3 ?–N concentrations and temperature of the surface water of waterways and an established linear mixed effect model, total N removed through net sediment denitrification in the pond–stream–reservoir continuum was estimated at 46.8?±?24.0 t?year–1 from July 2007 to June 2009, which was comparable with earlier estimates based on the mass balance method (34.3?±?12.7 t?year–1), and accounted for 83.4 % of the total aquatic N. However, the total aquatic N was only 4.4 % of the total N input to the watershed, and thus most of the surplus N in the watershed was likely to be either denitrified or stored in soil.

Conclusions

High doses of N in a rice-paddy-dominated watershed did not lead to high stream N concentrations due to limited input of N into waterways and the high efficiency of waterways in removing N through denitrification.  相似文献   

2.
Washing-down parlours and standing areas, following milking on dairy farms, produce dairy soiled water (DSW) that contains variable concentrations of nutrients. Aerobic woodchip filters can remove organic matter, nutrients and suspended solids (SS) in DSW, but the effluent exiting the filters may have to be further treated before it is suitable for re-use for washing yard areas. The performance of a single-layer sand filter (SF) and a stratified SF, loaded at 20 L m?2 day?1, to polish effluent from a woodchip filter was investigated over 82 days. Average influent unfiltered chemical oxygen demand (CODT), total nitrogen (TN), ammonium–N (NH4–N), ortho-phosphorus (PO4–P) and SS concentrations of 1,991?±?296, 163?±?40, 42.3?±?16.9, 27.2?±?6.9 and 84?±?30 mg L?1 were recorded. The single-layer SF decreased the influent concentration of CODT, TN, NH4–N, PO4–P and SS by 39, 36, 34, 58 and 52 %, respectively. Influent concentrations of CODT, TNT, NH4–N, PO4–P and SS were decreased by 56, 57, 41, 74 and 62 % in the stratified SF. The single-layer SF and the stratified SF were capable of reducing the influent concentration of total coliforms by 96 and 95 %, respectively. Although a limited amount of biomass accumulated in the uppermost layers of both SFs, organic and particulate matter deposition within both filters affected rates of nitrification. Both types of SFs produced final water quality in excess of the standards for re-use in the washing of milking parlours.  相似文献   

3.
Microbial decomposition of extracted and leached dissolved organic carbon (DOC) and nitrogen (DON) was demonstrated from three pasture soils in laboratory incubation studies. DOC concentration in water extracts ranged between 29 and 148 mg C L?1 and DON concentration ranged between 2 and 63 mg N L?1. Between 17 and 61 % of the DOC in the water extracts were respired as CO2 by microbes by day 36. DON concentrations in the extracts declined more rapidly than DOC. Within the first 21 days of incubation, the concentration of DON was near zero without any significant change in the concentration of NO3 ? or NH4 +, indicating that microbes had utilized the organic pool of N preferentially. Decomposition of leached DOC (ranged between 7 and 66 mg C L?1) and DON (ranged between 6 and 11 mg N L?1) collected from large lysimeters (with perennial pasture; 50 cm diameter?×?80 cm deep) followed a similar pattern to that observed with soil extracts. Approximately 28 to 61 % of the DOC in leachates were respired as CO2 by day 49. The concentration of DON in the leachates declined to below 1 mg N L?1 within 7–14 days of the incubation, consistent with the observations made with extractable DON. Our results clearly show that DOC and DON components of the dissolved organic matter in pasture soils, whether extracted or leached, are highly decomposable and bioavailable and will influence local ecosystem functions and nutrient balances in grazed pasture systems and receiving water bodies.  相似文献   

4.
Amending vegetable soils with organic materials is increasingly recommended as an agroecosystems management option to improve soil quality. However, the amounts of NO, N2O, and N2 emissions from vegetable soils treated with organic materials and frequent irrigation are not known. In laboratory-based experiments, soil from a NO 3 ? -rich (340 mg N?kg?1) vegetable field was incubated at 30°C for 30 days, with and without 10 % C2H2, at 50, 70, or 90 % water-holding capacity (WHC) and was amended at 1.19 g?C kg?1 (equivalent to 2.5 t?C ha?1) as Chinese milk vetch (CMV), ryegrass (RG), or wheat straw (WS); a soil not amended with organic material was used as a control (CK). At 50 % WHC, cumulative N2 production (398–524 μg N?kg?1) was significantly higher than N2O (84.6–190 μg N?kg?1) and NO (196–224 μg N?kg?1) production, suggesting the occurrence of denitrification under unsaturated conditions. Organic materials and soil water content significantly influenced NO emissions, but the effect was relatively weak since the cumulative NO production ranged from 124 to 261 μg N?kg?1. At 50–90 % WHC, the added organic materials did not affect the accumulated NO 3 ? in vegetable soil but enhanced N2O emissions, and the effect was greater by increasing soil water content. At 90 % WHC, N2O production reached 13,645–45,224 μg N?kg?1 from soil and could be ranked as RG?>?CMV?>?WS?>?CK. These results suggest the importance of preventing excess water in soil while simultaneously taking into account the quality of organic materials applied to vegetable soils.  相似文献   

5.

Purpose

The main objective of this study was to evaluate the potential of a counter-current leaching process (CCLP) on 14 cycles with leachate treatment at the pilot scale for Pb, Cu, Sb, and Zn removal from the soil of a Canadian small-arms shooting range.

Materials and methods

The metal concentrations in the contaminated soil were 904?±?112 mg Cu kg–1, 8,550?±?940 mg Pb kg–1, 370?±?26 mg Sb kg–1, and 169?±?14 mg Zn kg–1. The CCLP includes three acid leaching steps (0.125 M H2SO4?+?4 M NaCl, pulp density (PD)?=?10 %, t?=?1 h, T?=?20 °C, total volume?=?20 L). The leachate treatment was performed using metal precipitation with a 5-M NaOH solution. The treated effluent was reused for the next metal leaching steps.

Results and discussion

The average metal removal yields were 80.9?±?2.3 % of Cu, 94.5?±?0.7 % of Pb, 51.1?±?4.8 % of Sb, and 43.9?±?3.9 % of Zn. Compared to a conventional leaching process, the CCLP allows a significant economy of water (24,500 L water per ton of soil), sulfuric acid (133 L H2SO4 t–1), NaCl (6,310 kg NaCl t–1), and NaOH (225 kg NaOH t–1). This corresponds to 82 %, 65 %, 90 %, and 75 % of reduction, respectively. The Toxicity Characteristic Leaching Procedure test, which was applied on the remediated soil, demonstrated a large decrease of the lead availability (0.8 mg Pb L–1) in comparison to the untreated soil (142 mg Pb L–1). The estimated total cost of this soil remediation process is 267 US$ t–1.

Conclusions

The CCLP process allows high removal yields for Pb and Cu and a significant reduction in water and chemical consumption. Further work should examine the extraction of Sb from small-arms shooting range.  相似文献   

6.
Several fog episodes occurred in California’s San Joaquin Valley during winter 2000/2001. Measurements revealed the fogs to generally be less than 50 m deep, but to contain high liquid water contents (frequently exceeding 200 mg/m3) and large droplets. The composition of the fog water was dominated by ammonium (median concentration?=?608 μN), nitrate (304 μN), and organic carbon (6.9 ppmC), with significant contributions also from nitrite (18 μN) and sulfate (56 μN). Principal organic species included formate (median concentration?=?32 μN), acetate (31 μN), and formaldehyde (21 μM). High concentrations of ammonia resulted in high fog pH values, ranging between 5.8 and 8.0 at the core measurement site. At this high pH aqueous phase oxidation of dissolved sulfur dioxide and reaction of S(IV) with formaldehyde to form hydroxymethanesulfonate are both important processes. The fogs are also effective at scavenging and removal of airborne particulate matter. Deposition velocities for key solutes in the fog are typically of the order of 1–2 cm/s, much higher than deposition velocities of precursor accumulation mode aerosol particles. Variations were observed in deposition velocities for individual constituents in the order NO2 ??>?fogwater?>?NH4 +?>?TOC ~ SO4 2??>?NO3 ?. Nitrite, observed to be enriched in large fog drops, had a deposition velocity higher than the average fogwater deposition velocity, due to the increase in drop settling velocity with size. Species enriched in small fog drops (NH4 +, TOC, SO4 2?, and NO3 ?) all had deposition velocities smaller than observed for fogwater. Typical boundary layer removal rates for major fog solute species were estimated to be approximately 0.5–1 μg m?3 h?1, indicating the important role regional fogs can play in reducing airborne pollutant concentrations.  相似文献   

7.
Ground-level dynamics of O3, NO x and benzene, toluene, ethylbenzene and xylenes were characterised at rural sites in the medium Ebro River Basin (Northern Spain) from April to September (2003–2007) and by means of automated and passive monitoring. The study registered high O3 levels within the area, which were influenced by traffic emissions, and a monthly evolution of these levels consistent with the occurrence of a broad summer maximum, typical of polluted areas. The mean ozone concentration registered in the studied area by means of passive sampling was 87?±?12 μg m?3. The 2008/50/EC objective value for the protection of vegetation was widely exceeded during this study (AOT40?=?57,147?±?14,114 μg m?3 h), suggesting that current ambient levels may pose a risk for crops and vegetation in this important agroindustrial region.  相似文献   

8.
Tartary buckwheat (Fagopyrum tataricum Gaertn.) contains protein of high nutritional value, polyphenols, vitamins and minerals. It is one of the most important minor crops in China and has a great potential as a health and functional food. However, information on the elemental mineral composition of its seeds remains limited. The concentrations of Cu, Zn, Fe, K, and Mg in seeds of 123 tartary buckwheat accessions from the same cultivation were studied by means of flame atomic absorption spectrometry. The results revealed that the average concentrations of Cu (x1), Zn (x2), Fe (x3), K (x4), and Mg (x5) elements in the accessions are 19.49 (with a range of 5.74–36.01 mg/kg), 27.41 (8.44–66.63 mg/kg), 656.24 (21.8–3,990 mg/kg), 3,639.23 (1,737–5,831 mg/kg), and 1,523.89 mg/kg (729–3,104 mg/kg) respectively. Among them, Fe concentration has the highest coefficient of variation (114.7 %). The results also revealed five significant positive correlations among Cu, Zn, Fe, K, and Mg concentrations. Therefore, distinct genotypes with high concentration of mineral elements should be effective for the development of special buckwheat varieties and improvement of its food nutritional quality.  相似文献   

9.
Manganese (Mn) release in 18 soil–water suspensions after their equilibration for 24 and 240 h periods at 25°C was studied in a laboratory experiment. Total dissolved Mn released into the soil solution was observed to increase from a range of 0.03–0.41 mg L?1 (mean = 0.13 mg L?1) to a range of 0.45–44.44 mg L?1 (mean = 22.40 mg L?1) with the increase in incubation periods from 24 to 240 h, respectively. The increase in Mn released was observed to be related with the redox potential (pe) induced by incubation conditions. After 24 h of equilibration period, pe of soil–water suspension ranged from ?1.75 to 0.77 (mean = ?0.24). Increasing the incubation period to 240 h, pe of soil–water suspensions declined in the range of ?4.49 to ?2.74 (mean = ?3.29). Laboratory results of redox pe and corresponding dissolved manganese concentrations of some soil–water equilibrated systems were compared with the leaf Mn content in wheat and rice plants grown in the fields, from where soil samples were collected for laboratory experiment. These results demonstrated that decline in pe due to longer equilibration period (240 h) of soil–water systems in the laboratory experiment or keeping standing water for a couple of weeks in the fields for cultivation of rice crop results in higher release of Mn and eventually its higher uptake in rice than in wheat plants. Leaf manganese content in rice ranged from 94 to 185 mg kg?1, which was markedly higher than its range from 25 to 62 mg kg?1 found in the wheat grown at 10 different sites. Pourbaix diagrams were drawn for different soil–water systems containing carbonate, phosphate, or sulfate along with manganese. The presence of carbonate and phosphate anions along with manganese oxides minerals in the soil–water systems of all soils results in its precipitation as MnCO3 and MnHPO4, respectively, in both oxidized and reduced soil field environment. In Punjab, wheat and rice crops are generally cultivated on soils heavily fertilized with P fertilizers. The presence of phosphate anion with manganese oxides minerals in the soil–water systems of all soils results in the precipitation MnHPO4 in both oxidized and reduced soil field environment. Thus, in P-fertilized soil, MnHPO4 compound is even more predominant than aqueous Mn2+ and its solubility actually controlled the availability of Mn2+ to plants.  相似文献   

10.
Excessive nitrogen (N) fertilizer application is common in the central Zhejiang Province area, China. A three-year (2009–11) experiment was conducted to determine the optimum N application rate for this area by studying the effects of various N rates on rice (Oryza sativa L.) yield, N-use efficiency (NUE), and quality of paddy field water. Results showed that no significant yield differences were observed under N rates from 180 to 315 kg ha?1. The NUE could be improved by reducing N application rates without significantly decreasing yield. Due to high ammonia (NH4+-N) and nitrate (NO3N) concentrations, 5–7 days after N application was a critical stage for reducing N pollution. The N rate for the greatest yield was 176 kg ha?1, accounting for 65 percent of the conventional N rate (270 kg ha?1). The N-rate reduction in this area may be necessary for maintaining high yield, improving NUE, and reducing environmental pollution.  相似文献   

11.
Phosphorus is one of the key elements causing lake eutrophication. This paper deals with phosphate removal by Sponge iron in batch and fixed-bed operation. Isotherm and kinetic studies are conducted. The isotherm data is described by the Freundlich and Langmuir model, while the kinetic data of adsorption is fitted by the pseudo-second-order kinetic model. The saturated adsorption capacity of Langmuir isothermal equation is about 3.25 mg/g. The concomitant anions have adverse effect on phosphate adsorption and the effects follow the order: NO3??>?Cl??>?SO42?. The phosphate adsorption capacities of SI were improved significantly under the acidic condition. The results of the fixed-bed operation show that, with the increase of the influent phosphate concentrations, the breakthrough curve becomes steeper while the break point time decrease. According to the Adams–Bohart model, the critical height of the column decrease from 0.135 to 0.105 m when the contact time increased from 10 to 30 min with the influent concentration of 1.0 mg/L. According to BDST model, the critical bed depth is 0.15 m when the influent concentration of phosphate is 1.0 mg/L and the contact time (h) is 20 min.  相似文献   

12.
The effect of waterborne zinc on survival, growth, and feed intake of Indian major carp, Cirrhinus mrigala (Hamilton), advanced fry was studied under laboratory condition. Survival rates of C. mrigala advanced fry (2.71?±?0.49 g) after 30 days exposure to control (0.01), 0.03, 0.06, 0.10, and 0.15 mg/L zinc using the static renewal method in freshwater at pH 7.3?±?0.2, temperature 26?±?2°C, and total hardness 114?±?16 mg/L as CaCO3 were 100%. Growth of the fish exposed to 0.10 and 0.15 mg/L of zinc was significantly lower (P?<?0.05) than in control (0.01), 0.03, and 0.06 mg/L of zinc after 30 days of exposure. However, there were no significant differences (P?>?0.05) in fish growth between 0.03 and 0.06 mg/L zinc concentrations. Feed intake rates were significantly (P?<?0.05) reduced in the fish exposed to 0.10 mg/L and higher levels of zinc. The zinc accumulation in the whole body of the fish increased with increasing concentrations of the metal.  相似文献   

13.
In order to study the potential use of microfauna as an indicator of effluent quality and operational parameters in an activated sludge system for treating piggery wastewater, an experimental sequencing batch reactor was set up and evaluated by biological and physical–chemical analyses for 12 months. Results show that microfauna (and specifically ciliate protozoa) are a good parameter for assessing effluent quality in terms of both chemical oxygen demand (COD) and ammonia and for assessing the organic and nitrogen load of the system. Specifically, the abundance of ciliates decreases from 20,000 individuals·mL?1 to ca. 2,500 individuals·mL?1 and from ca. 10,000 individuals mL?1 to ca. 200 individuals mL?1 when effluent concentration is between 550 and 750 mg L?1 and above 100 mg L?1 to the COD and ammonia concentrations, respectively. Furthermore, microfauna abundance is reduced from ca. 18,000 individuals mL?1 (organic load between 0.1 and 0.2 mg COD mg total suspended solids (TSS)?1 day?1) to ca. 500 individuals mL?1 (organic load between 0.3 and 04 mg COD mg TSS?1 day?1). Microfauna abundance also decreases as nitrogen loading increases. Nitrogen loading in the range of 5–60 mg NH4–N g TSS?1 day?1 does not have any significant effect on microfauna abundance. However, ammonia loading from 60 to 120 mg NH4–N g TSS?1 day?1 reduces microfauna abundance ca. 6-fold. Ciliate protozoa were the largest microfauna group during the whole period of study, representing ca. 75% of the total microfauna abundance. The largest group in the ciliate community was that of the free-swimming ciliates. This was followed by the group of attached and crawling ciliates. Specifically, the dominant ciliate species during the whole study period were Uronema nigricans, Vorticella microstoma-complex, Epistylis coronata, and Acineria uncinata.  相似文献   

14.
Soil and water samples were analysed for trace metals and As in two watercourses and 14 sampling plots in a salt marsh polluted by mine wastes in SE Spain. Groundwater levels, soil pH and Eh were measured ‘in situ’ for a 12-month period in each sampling plot, and total calcium carbonate was also determined. Low concentrations of soluble metals (maximum Mn 1.089 mg L?1 and maximum Zn 0.553 mg L?1) were found in the watercourses. However, total metal contents were extremely high in the soils of a zone of the salt marsh (maximum 1,933 mg kg?1 of Mn, 62,280 mg kg?1 of Zn, 16,845 mg kg?1 of Pb, 77 mg kg?1 of Cd, 418 mg kg?1 of Cu and 725 mg kg?1 of As), and soluble metals in the pore water reached 38.7 mg L?1 for Zn, 3.15 mg L?1 for Pb, 48.0 mg L?1 for Mn, 0.61 mg L?1 for Cd and 0.29 mg L?1 for As. Variable concentrations with depth indicate a possible re-mobilisation of the metals, which could be related to spatial and temporal variations of water table level, pH and Eh and to the presence of calcium carbonate. A tendency for the Eh to decrease in the warmest months and to increase in the coldest ones was found, especially, in plots that received water with a high content of dissolved organic carbon. Hence, the existence of nutrient effluent-enriched water may modify the physical–chemical conditions of the soil–water system and influence metal mobility.  相似文献   

15.
The photodegradation of azo dyes aqueous solution has been investigated using TiO2 as catalyst in sunlight. The effect of amount of catalyst, concentration of dye, and pH value on the degradation of Direct Blue 78 was observed. A complete degradation of 100 mg/L Direct Blue 78 solution under solar irradiation was achieved in 6 h at pH?3.0, dosage of TiO2 1.0 g/L. A possible pathway for the photodegradation of Direct Blue 78 in sunlight was proposed.  相似文献   

16.
Hydrochemical impacts of shallow rock industrial-scale mining activities close to sensitive constructed and natural wetlands were investigated. The shallow surficial groundwater and surface water in the Everglades Agricultural Area (EAA) were characterized. The chemical composition of sulfate and chloride in groundwater increased with depth. The average concentration of chloride averaged 182 mg?L?1 at 6 m deep and increased gradually to 1,010 mg?L?1 at 15 m deep, 1,550 mg?L?1 at 30 m deep to reach 7,800 mg?L?1 at 60 m deep. Comparatively, the surface water chemical composition in the surrounding areas showed much lower cationic and anionic charge. The specific conductivity and total dissolved solids of surface water in canals (close to the mining operations) are <900 ??S?cm?1 and <600 mg?L?1, respectively, which should be compared to groundwater quality in wells from the EAA area (>2,000 ??S?cm?1 and >1,000 mg?L?1, respectively). A steady-state groundwater fluid flow and transient solute transport modeling exercise was conducted to estimate surface/groundwater interactions. The modeled solute in surface water was transported downgradient through groundwaters, migrated approximately 30 m from the source area (after 5 years of operation), and needed more than 116 years to dissipate. An upward transport was also identified whereby chloride and sulfate, naturally present in deeper groundwaters, migrated approximately 200 m (after 1 year of mining) into the pristine shallower aquifer and reached the surface water with a concentration equaling 80% of that in the rock mining pit.  相似文献   

17.
The present study aims to understand the hydrochemistry vis-à-vis As-exposure from drinking groundwater in rural Bengal. The characteristic feature of the groundwaters are low Eh (range, ?151 to ?37 mV; mean, ?68 mV) and nitrate (range, 0.01–1.7 mg/l; mean, 0.14 mg/l) followed by high alkalinity (range, 100–630 mg/l; mean, 301 mg/l), Fe (range, 0.99–38 mg/l; mean, 8.1 mg/l), phosphate (range, 0.01–15 mg/l; mean, 0.54 mg/l), hardness (range, 46–600 mg/l; mean, 245 mg/l) and sulphate (range, 0.19–88 mg/l; mean, 7.2 mg/l), indicating reducing nature of the aquifer. The land use pattern (sanitation, surface water bodies, sanitation coupled with surface water bodies and agricultural lands) demonstrates local enrichment factor for As/Fe in groundwater. Among these, sanitation is the most prevailing where groundwater is generally enriched with As (mean, 269 μg/l) and Fe (mean, 9.8 mg/l). Questionnaire survey highlights that ~70% of the villagers in the study area do not have proper sanitation. This demonstrating the local unsewered sanitation (organic waste, anthropogenic in origin) could also cause As toxicity in rural Bengal. In the agricultural lands, higher mean values of alkalinity, phosphate, sulphate, hardness and electrical conductivity was observed, and could be linked with the excessive use of fertilizers for agricultural production. Bio-markers study indicates that the accumulation of As in hair and nail is related with the construction of exposure scenario with time dimension. The strength and weakness of the on-going West Bengal and Bangladesh drinking water supply scenario and achievability towards alternative options are also evaluated.  相似文献   

18.
To determine nitrogen (N) fate and environmental impact of applying anaerobic digestion slurry (ADS) to rice paddy (Oryza sativa L.), a field experiment was established using three treatments based on contrasting N application rate. The ADS (with ammonium-N accounting for >80 % of total N) treatment at a conventional application rate of 270 kg N?ha?1 was compared to a negative control (no N fertilizer) and a positive control of urea applied at 270 kg N?ha?1. The N budget showed the following distribution of applied N from ADS and urea: 41.3?±?5.1 % for ADS and 36.6?±?4.4 % for urea recovered by the rice plant (including straw, grain, and root), 16.4?±?3.7 % for ADS and 7.4?±?1.8 % for urea lost via ammonia volatilization, 0.26?±?0.15 % for ADS and 0.15?±?0.12 % for urea lost by direct N2O emission, 1.9?±?0.5 % for ADS and 2.3?±?0.8 % for urea leached downward, 0.70?±?0.15 % for ADS and 0.67?±?0.12 % for urea discharged with floodwater drainage, and 39.4?±?8.4 % for ADS and 53.0?±?9.1 % for urea retained by soil or lost by N2 emission. Compared to urea application, ADS application impacts the environment mainly through gaseous N losses rather than water N losses. ADS application had a positive impact on rice grain yield and reduced chemical fertilizer use. Considering the wide distribution of paddy fields and the ever-increasing quantities of ADS, ADS may serve as a valuable N source for rice cultivation, although mitigating ammonia and N2O losses should be further investigated.  相似文献   

19.
Diverting the infiltrating water away from the zone of N application can reduce nitrate–nitrogen (NO3–N) leaching losses to groundwater from agricultural fields. This study was conducted from 2001 through 2005 to determine the effects of N-application methods using a localized compaction and doming (LCD) applicator and spoke injector on NO3–N leaching losses to subsurface drainage water and corn (Zea mays L.)–soybean (Glycine max L.) yields. The field experiments were conducted at the Iowa State University’s northeastern research center near Nashua, Iowa, on corn–soybean rotation plots under chisel plow system having subsurface drainage ‘tile’ system installed in 1979. The soils at the site are glacial till derived soils. The N-application rates of 168 kg-N ha?1 were applied to corn only for both the treatments each replicated three times in a randomized complete block design. For combined 5 years, the LCD N-applicator in comparison with spoke injector showed lower flow weighted NO3–N concentrations in tile water (16.8 vs. 20.1 mg L?1) from corn plots, greater tile flow (66 vs. 49 mm), almost equivalent NO3–N leaching loss with tile water (11.5 vs. 11.3 kg-N ha?1) and similar corn grain yields (11.17 vs. 11.37 Mg ha?1), respectively, although treatments effects were found to be non-significant (p?=?0.05) statistically. The analysis, however, revealed that amount and temporal distribution of the growing season precipitation also affected the tile flow, NO3–N leaching loss to subsurface drain water, and corn–soybean yields. Moreover, the spatial variability effects from plot to plot in some cases, resulted in differences of tile flow and NO3–N leaching losses in the range of three to four times despite being treated with the same management practices. These results indicate that the LCD N-applicator in comparison with spoke injector resulted in lower flow weighted NO3–N concentrations in subsurface drain water of corn plots; however, strategies need to be developed to reduce the offsite transport of nitrate leaching losses during early spring period from March through June.  相似文献   

20.
Abstract

Ground water wells from unfertilized Florida rangelands were sampled to monitor water quality parameters. Ground water was collected (1990–92) monthly from three range sites (south Florida flatwoods, slough, and freshwater pond) at the Southwest Florida Research and Education Center near lmmokalee, Florida. Water samples were analyzed for pH, electrical conductivity, total phosphorus (P), potassium (K), and ammonium‐nitrogen (NH4‐N); and water table depth was monitored monthly. Levels of nutrients were highly variable during the sampling period. Levels of P at all three sites exceeded the South Florida Water Management District's (SFWMD) maximum allowed level (0.18 mg P/L) in surface water runoff from rangeland. Time series models were useful for predicting (p<0.15) future events for all nutrients and water table depth. Variation in water quality, related to its N, P, and K content, was minimized by excavating the ground water wells three times before sampling. Water samples continue to be collected from each range site to develop a longterm water quality database from unfertilized rangeland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号