首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper focuses on the influence of temperature conditions and the clay contents on enhancement of mechanical characterization of polypropylene (PP) nanocomposites. The nanocomposites were prepared using the melt mixing technique in a co-rotating intermeshing twin screw extruder followed by injection moulding. Nanocomposites properties such as impact strength and ultimate tensile strength, yield strength, failure strain, Young’s modulus and toughness are calculated. The addition of clay to PP matrix was showed remarkable enhancement in mechanical properties at the temperature of 25 oC and 120 °C. Nearly 36 % and 160 % increase in the Young’s modulus and about 45 % and 62 % increase in the impact strength were observed at both room temperature (RT) and high temperature (HT), respectively. But, the tensile strength was not affected much. The basal spacing of clay in the composites was measured by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to assess the surface morphology of the fractured surfaces and dispersion of the nanoclay.  相似文献   

2.
The Allyl-heptaisobutyl-polyhedral Oligomeric Silsesquioxane (AHO-POSS) grafted polypropylene (PP) nanocomposite monofilaments were prepared by γ-ray irradiation induced grafting. The structure and properties of physically blended and γ-ray irradiated AHO-POSS/PP nanocomposite filaments were investigated by FTIR, wide-angle X-ray diffraction (WAXD), Thermo-gravimetric Analysis and mechanical property studies. Chemical bonding of AHO-POSS with PP after γ-ray irradiation was confirmed by FT-IR spectroscopy. Grafting resulted in change in mechanical and thermal properties and the extent of change was critically dependent on loading of AHO-POSS in PP and radiation dose level. In general, tensile strength decreased almost continuously with increase in radiation dose whereas thermal stability increased upto a radiation dose of 5 kGy and then decreased. The loss in tensile strength was caused due to chain scission, cross linking and loss in orientation.  相似文献   

3.
Natural rubber and styrene butadiene rubber (NR/SBR) reinforced with both short nylon fibers and nanoclay (Cloisite 15A) nanocomposites were prepared in an internal and a two roll-mill mixer by a three-step mixing process. The effects of fiber loading and different loading of nanoclay (1, 3 and 5 wt. %) were studied on the microstructure and mechanical properties of the nanocomposites. The adhesion between the fiber and the matrix was improved by the addition of a dry bonding system consisting of resorcinol, hexamethylene tetramine and hydrated silica (HRH). This silicate clay layers was used in place of hydrated silica in a HRH bonding system for SBR/NR-short nylon fiber composite. Nanoclay was also used as a reinforcing filler in the matrix-short fiber hybrid composite. The cure and scorch times of the composites decreased while cure rate increased when the short fiber and nanoclay were added. The mechanical properties of the composites showed improvement in both longitudinal and transverse directions with increasing short fiber and nanoclay content. The structure of the nanocomposites was characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM). X-ray diffraction results of nanocomposites indicated that the interlayer distance of silicate layers increased. The mechanical properties of nanocomposites (tensile, hardness and tear strength) are examined and the outcome of these results is discussed in this paper.  相似文献   

4.
The Fe-montmorillonite (Fe-MMT) combined catalysis effects of Fe ion with barrier effects of silicate clays, was firstly synthesized by hydrothermal method, and then was modified by cetyltrimethyl ammonium bromide (CTAB). The organic-modified Fe-montmorillonite (Fe-OMT) was dispersed in the N, N-dimethyl formamide (DMF) and then compounded with polyacrylonitrile (PAN) solution which was dissolved in DMF. The composite solutions were electrospun to form PAN/Fe-OMT nanocomposite fibers. The influences of the Fe-OMT on the structure, morphology, thermal, flammability and mechanical properties of PAN nanocomposite fibers were respectively characterized by X-ray diffraction (XRD), High-resolution transmission electron microscopy (HRTEM), Scanning electron microscopy (SEM), Thermogravimetric analyses (TGA), Micro Combustion Calorimeter (MCC) and Electronic Single Yarn Strength Tester. It was found from XRD curves that there was not observable diffraction peak of silicate clay, indicating that the silicate clay layers were well dispersed within the PAN nanofibers. The HRTEM image indicated that the multilayer stacks of nanoclays could be found within the nanofibers and were aligned almost along the axis of the nanofibers. The SEM images showed that the diameters of nanocomposite fibers were decreased with the loading of the Fe-OMT. The TGA analyses revealed that the onset temperature of thermal degradation and charred residue at 700°C of PAN nanocomposite fibers were notably increased compared with the pure PAN nanofibers, contributing to the improved thermal stability properties. It was also observed from MCC analyses that the decreased peak of heat release rate (PHRR) of the PAN nanocomposite fibers reduced the flammability properties. The loadings of Fe-OMT increased the tensile strength of PAN nanocomposite fibers, but the elongation at break of PAN nanocomposite fibers was lower than that of the PAN nanofibers.  相似文献   

5.
Nanofibrous mats of poly (?-caprolactone)/nanoclay nanocomposites were fabricated using electrospinning method. Effects of nanoclay content of the nanocomposite on final nanofiber structures were investigated and characterized by scanning electron microscope (SEM) and differential scanning calorimetry (DSC) analysis. The results showed that the presence of the nanoclay promoted the creation of fibrous structure in comparison with solely poly (?-caprolactone). Furthermore, increase in nanoclay content led to the formation of more uniform nanofiber structures and caused a decrease in the mean nanofiber diameter. DSC results showed that the addition of nanoclay reduced the crystallinity of the nanocomposite in compared with pristine PCL. Studies of the mechanical properties, wettability and degradability showed that the presence of nanoclay improved tensile modulus, tensile strength, wettability and biodegradability of the nanocomposites. To evaluate the effect of nanoclay on the cell adhesion and bioactivity of the poly (?-caprolactone)/nanoclay nanocomposites, fibroblasts cells were seeded on the mats. The results showed that the prepared nanocomposite could be a potential candidate for tissue engineering.  相似文献   

6.
The mechanical and thermal behavior of compression molded jute/polypropylene (PP) composites were studied by evaluating tensile strength (TS), bending strength (BS), tensile modulus (TM), bending modulus (BM), impact strength (IS), thermogravimetric (TG/DTG) and differential thermal analysis (DTA). A chemical modification was made to jute fabrics using N,N-Dimethylaniline (DMA) in order to improve the interfacial adhesion between the fabrics and matrix. It was found that jute fabrics on treatment with N,N-Dimethylaniline (DMA) significantly improved the mechanical properties of the composites. Thermal analytical data of PP, both treated and untreated jute fabrics as well as composites revealed that DMA treatment increased the thermal stability of the fabrics and composite. DMA treatment also reduced the hydrophilic nature of the composite. DMA treated jute composite was found less degradable than control composite under water, soil and simulated weathering conditions.  相似文献   

7.
Composites were prepared with 13, 23 30 and 40 % fiber and evaluated the mechanical performance in tensile, flexural and impact. The mechanical properties of these composites were also evaluated function of time at 110 °C thermal exposure. Caroa fibers were characterized by techniques such as thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the best mechanical properties were achieved for composites containing 23 to 30 % fiber. The incorporation of 23 % fiber caroa increased both the modulus of elasticity in the tensile test as the flexural strength and impact, the composite with 30 % fiber caroa showed higher tensile strength. The results show that the tensile and flexural strength of the composite decreased with time of thermal exposure. The thermal aging at 110 °C caused a decrease in tensile properties of the composites.  相似文献   

8.
We have prepared a series of polypropylene/exfoliated graphene (PP/EG) nanocomposite films via efficient meltcompounding and compression, and investigated their morphology, structures, thermal transition behavior, thermal stability, electrical and mechanical properties as a function of EG content. For the purpose, EG, which is composed of disordered graphene platelets as reinforcing nanoscale fillers, is prepared by the oxidation/exfoliation process of natural graphite flakes. SEM images and X-ray diffraction data confirm that the graphene platelets of EG are well dispersed in PP matrix for the nanocomposites with EG contents less than 1.0 wt%. It is found that thermo-oxidative degradation of PP/EG nanocomposites is noticeably retarded with the increasing of EG content. Electrical resistivity of the nanocomposite films was dramatically changed from ∼1016 to ∼106 Ω·cm by forming electrical percolation threshold at an certain EG content between 1 and 3 wt%. Tensile drawing experiments demonstrate that yielding strength and initial modulus of PP/EG nanocomposite films are highly improved with the increment of EG content.  相似文献   

9.
In this research, possibility of producing and processing antibacterial organic/inorganic nanocomposite polypropylene filament yarns for permanent antimicrobial efficiency has been investigated. First PP powder and inorganic nanocomposite filler were mixed in a twin screw extruder and modified masterbatch was produced. Continuous filament yarn was made by a pilot plant melt spinning machine from the blend of PP granule and various blending contents of the prepared masterbatch. Pure PP and all other combined samples showed acceptable spinnability at the spinning temperature of 240 °C and take-up speed of 2000 m/min. After producing as-spun filament yarns, samples were drawn, textured and finally weft knitted. Physical and structural properties of as-spun and drawn yarns with constant and variable draw ratios were investigated and also tensile and crimp properties of textured yarns were evaluated. Moreover, the DSC, SEM, FTIR techniques have been used for characterization of samples. Finally antibacterial efficiency of knitted samples was evaluated. The experimental results indicated that the maximum crystallinity reduction of modified drawn yarns has reached to 5 %. The observed improvement in the tensile properties of modified as-spun yarns compared to the pure PP was significant. Drawing process improved generally the tensile properties of as-spun yarns. Tensile properties of modified textured and drawn yarns were higher than the pure PP. An optimum of antibacterial activity has been observed in the sample containing 0.75 wt% of nano-filler. It is interesting that the optimum of tensile properties has been also obtained for the sample with maximum bioactivity.  相似文献   

10.
In this work, the effect of organosolv lignin on properties of polypropylene (PP)/chitosan composites was investigated. Mechanical and thermal properties of the composites were analyzed by means of ASTM D 638-91, ASTM D 256, thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). Tensile strength and elongation at break of the PP composites decreased upon the presence of chitosan filler, but Young’s modulus improved. Impact strength was found to increase with the maximum value at 30 php of filler loading. At a similar loading, treated PP/chitosan composites were found to have higher tensile strength, elongation at break, Young’s modulus as well as impact strength than untreated composites. Furthermore, the presence of organosolv lignin imparted a plasticizing effect. Thermal properties of the treated PP/chitosan composites were better as compared with the untreated PP/chitosan composites; although the chemical treatment did not alter the thermal degradation mechanism. In addition, the obtained results were comparable to results from previous studies. This finding implied that the organosolv lignin could be a potential reagent to replace its synthetic counterpart.  相似文献   

11.
In the present study, nanocomposites films formed by hydroxyethyl cellulose (HEC) and graphene oxide (GO) were synthesized and characterized. Compared with pure hydroxyethyl cellulose film, the thermal stability and mechanical properties of the composite materials were significantly improved. When the graphene loading was only 1.0 wt%, the maximum weight loss temperature increased 11.14 °C. The tensile strength and Young’s modulus of HEC/GO nanocomposites films were increased by 30.28 and 75.63 % compared to the pure HEC films, with only 1.0 wt% GO. The X-ray diffraction and Fouriertransform infrared spectroscop showed that GO sheets were completely exfoliated in the HEC matrix and suggested the presence of the weak interaction between HEC and GO sheets because of large number of oxygen-containing hydrophilic functional groups on the surface and edge of GO sheets. Furthermore, the well-dispersed GO nanosheets in the films can be inferred from the SEM and Halpin-Tsai model analysis. On the other hand, the composite films showed improved barrier properties against oxygen. This simple process for preparation of HEC/GO films is attractive for potential development of high-performance films for packing applications.  相似文献   

12.
The objective of this study was to investigate the influence of nanoclay incorporation procedure on the mechanical and water vapor barrier properties of starch/nanoclay composite films. Cassava starch films were prepared with (nanocomposite) and without nanoclay (control) in two steps: firstly the production of extruded pellets and secondly thermo-pressing. The nanocomposite films were prepared via two different methods: in D samples the nanoclay was dispersed in glycerol and subsequently incorporated into the starch; and in ND samples all ingredients were added in a single step before the extrusion. All the composite-films were prepared with cassava starch using 0.25 g of glycerol/g of starch and 0.03 g of nanoclay/g of starch. Control samples showed VA-type crystallinity induced by the manufacturing process and the nanocomposites presented a semicrystalline and intercalated structure. The nanoclay improved the water vapor barrier properties of the starch film and this effect was more pronounced in D samples, where the water vapor permeability (Kw) was 60% lower than that of the control samples. The Kw reduction was associated with decreases in the effective diffusion coefficient (approximately 61%) and in the coefficient of solubility (approximately 22-32%). On the other hand, the incorporation of nanoclay increased the tensile strength and the rigidity of the films and this effect was more significant when the nanoclay was dispersed in glycerol. Thus, the incorporation of nanoclay into starch-based films is a promising way to manufacture films with better mechanical and water vapor barrier properties.  相似文献   

13.
Denim, a twilled cotton fabric, was used to enhance the mechanical and thermal properties of poly(lactic acid) (PLA). The denim fabric reinforced composites with different numbers of denim layers were fabricated by using a hand layup method. The impact, tensile, and dynamic mechanical properties of the composites were observed with increasing denim layers to examine the reinforcing effect of denim fabrics. Numerical analysis was carried out to model the elastic modulus of the composite by using a commercial software. Three-dimensional geometry of the denim fabric reinforced PLA composite was generated through a CAD program, and the elastic modulus was calculated by applying uniform deformation on one surface. The impact strength, tensile strength, and thermal properties of the composites were improved by piling denim fabrics. The denim fabric reinforced composites exhibited outstanding impact strength due to the retarded crack propagation as well as large energy dissipation. The 3 layer denim reinforced composite showed best results among all specimens, and its impact strength, tensile strength, and tensile modulus were measured to be 82 J/m, 75.76 MPa, and 4.65 GPa, respectively. The PLA/denim composites have good mechanical properties and can substitute traditional composites such as glass fiber or carbon fiber reinforced composites.  相似文献   

14.
Improvement of both the tensile and impact strength of the same polymeric material has always been a great challenge for the plastic industry. The study focuses on the effect of incorporation of calcium carbonate nanoparticles (0.3 wt% to 15 wt%) into three polypropylene (PP) based matrices viz. PP homopolymer, propylene-ethylene (PP-PE) copolymer and the blend of PP:PP-PE (30:70) to improve their impact behavior without hampering the tensile strength much. A loss in both the tensile and impact properties was observed in PP based nanocomposite. However, PP-PE based nanocomposites showed a significant improvement in impact strength (47 %) at 10 wt% loading with a loss of tensile strength by 22 %. To minimize this loss a blend of PP:PP-PE (30:70) was explored as a matrix. At 10 wt% loading, this matrix showed an improvement of 30 % in impact strength whereas the tensile loss was minimized to 10 %. Further, silane coupling agent which promoted good interfacial adhesion was used for best compositions. The variation of crystalline morphology of the nanocomposites with various formulations was analyzed using differential scanning calorimetry and X-ray diffraction.  相似文献   

15.
Composites based on pure Basalt and Basalt/Jute fabrics were fabricated. The mechanical properties of the composites such as flexural modulus, tensile modulus and impact strength were measured depending upon weave, fiber contents and resin. Dynamic mechanical analysis of all composites were done. From the results it is found that pure basalt fiber combination maintains higher values in all mechanical tests. Thermo-gravimetric (TG/DTG) composites showed that thermal degradation temperatures of composites shifted to higher temperature regions compared to pure jute fabrics. Addition of basalt fiber improved the thermal stability of the composite considerably. Scanning electron microscopic images of tensile fractured composite samples illustrated that better fiber-matrix interfacial interaction occurred in hybrid composites. The thermal conductivity of composites are also investigated and thermal model is used to check their correlation.  相似文献   

16.
The main objective of this research was to study the effect of fiber content variation and stearic acid (SA) treatment on the fundamental properties of unidirectional coir fiber (CF) reinforced polypropylene (PP) composites. Several percentages of filler contents were used (10–40 wt %) in order to gain insights into the effect of filler content on the properties of the composites. Coir/PP composites were fabricated by compression molding, and the properties of composites were studied by physico-mechanical and thermal properties. The results from mechanical properties such as tensile strength (TS), tensile modulus (TM) and impact strength (IS) of the CF/PP composites were found to be increased with increasing fiber content, reached an optimum and thereafter decreased with further increase in fiber content. Treatment of the coir with SA as the coupling agent enhanced the mechanical properties, crystallization temperature and crystallinity of virgin PP and water desorption of the resulting composites, resulting from the improved adhesion between the CF and PP matrix. Scanning electron micrographs (SEM) of the tensile fractured samples showed improved adhesion between fiber and matrix upon treatment with SA. Interfacial shear strength (IFSS) of the composites was measured by single fiber fragmentation test (SFFT).  相似文献   

17.
The Allyl-heptaisobutyl-polyhedral oligomeric silsesquioxane (AHO-POSS) grafted polypropylene (PP) was prepared by reactive extrusion and by physical blending routes. The structure and properties of physically blended and reactively blended POSS/PP nanocomposites were investigated by FTIR, wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analysis, SEM, spherutlic growth and mechanical properties studies. Chemical bonding of POSS with PP in reactive extrusion was confirmed by FT-IR spectroscopy. DSC and TGA studies showed that the thermal stability of AHO-POSS/PP nanocomposite prepared by reactive extrusion improved significantly as compared to only physically blended nanocomposites. WAXD studies showed decrease in crystallinity of the AHO-POSS/PP nanocomposites prepared by reactive extrusion. SEM studies showed aggregation tendency in case of physically blended AHO-POSS/PP nanocomposites. Spherulite growth studies show reactive blending retards spherulite growth in PP polymer.  相似文献   

18.
Soyprotein-jute fiber composites developed using water without any chemicals as the plasticizer show much better flexural and tensile properties than polypropylene-jute composites. Co-products of soybean processing such as soy oil, soyprotein concentrate and soy protein isolates are inexpensive, abundantly available and are renewable resources that have been extensively studied as potential matrix materials to develop biodegradable composites. However, previous attempts on developing soy-based composites have either chemically modified the co-products or used plasticizers such as glycerol. Chemical modifications make the composites expensive and less environmentally friendly and plasticizers decrease the properties of the composites. In this research, soyprotein composites reinforced with jute fibers have been developed using water without any chemicals as plasticizer. The effects of water on the thermal behavior of soyproteins and composite fabrication conditions on the flexural, tensile and acoustic properties of the composites have been studied. Soyprotein composites developed in this research have excellent flexural strength, tensile strength and tensile modulus, much higher than polypropylene (PP)-jute fiber composites. The soyprotein composites have better properties than the PP composites even at high relative humidity (90%).  相似文献   

19.
Siloxylated polypropylene fibers composed of polypropylene (PP) and aluminosiloxane (AS) were prepared by melt blending followed by spinning. The effects of blend compositions on the thermal behaviors, surface and tensile properties of PP/AS blend fibers were investigated by DSC, WAXD, SEM, static honestometer, etc. The heat of fusion of PP/AS blends decreased with increasing AS contents. In addition, the peak intensity of PP/AS blends in X-ray diffraction patterns decreased with increasing AS contents. It was observed that the silicone molecules exist and well distribute on the surface of siloxylated polypropylene fibers. From the results of the half-life period measurements, the anti-static properties of PP fibers siloxylated with AS was found to be significantly modified.  相似文献   

20.
In this study, flax shive (FS) and extracted flax shive (EFS) were fully characterized. The results showed that EFS presented lower noncellulose content, smaller porous tunnels and better thermal stability than FS. The 5 % weight loss temperature of EFS was over 200 °C, which can meet the requirements of the processing conditions for the natural fiber reinforced polymer composites. Consequently, the flax shive and extracted flax shive reinforced PP composites were prepared and characterized. It was found that the thermal stability of EFS/PP composites was better than that of FS/PP composites, and both FS and EFS behaved as nucleation agents, which could accelerate the crystallization process of PP in the composites. Mechanical test showed that EFS could be used as a reinforcing material for PP composite when compatibilizer was applied. The flexural strength and modulus of the composites containing 30 % EFS were about 8 % and 100 % higher than that of pure polypropylene, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号