首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid indica rice (Oryza sativa L.) cultivars play an important role in rice production system due to its heterosis, resistance to environmental stress, large panicle and high yield potential. However, no attention has been given to its yield responses to rising atmospheric [CO2] in conjunction with nitrogen (N) availability. Therefore we conducted a free air CO2 enrichment (FACE) experiment at Yangzhou, Jiangsu, China (119°42′0′′E, 32°35′5′′N), in 2004–2006. A three-line hybrid indica rice cv. Shanyou 63 was grown at ambient and elevated (ca. 570 μmol mol−1) [CO2] under two levels of supplemental N (12.5 g Nm−2 and 25 g Nm−2). Elevated [CO2] had no effect on phenology, but substantially enhanced grain yield (+34%). The magnitude of yield response to [CO2] was independent of N fertilization, but varied among different years. On average, elevated [CO2] increased the panicle number per square meter by 10%, due to an increase in maximum tiller number under enrich [CO2], while productive tiller ratio remained unaffected. Spikelet number per panicle also showed an average increase of 10% due to elevated [CO2], which was supported by increased plant height and stem dry weight per tiller. Meanwhile, elevated [CO2] caused a significant enhancement in both filled spikelet percentage (+5%) and individual grain weight (+4%). Compared with the two prior FACE studies on rice, hybrid indica rice cultivar appears to profit much more from elevated [CO2] than japonica rice cultivar (ca. +13%), not only due to its stronger sink generation, but also enhanced capacity to utilize the carbon sources in a high [CO2] environment. The above data has significant implication with respect to N strategies and cultivar selection under projected future [CO2] levels.  相似文献   

2.
This paper is the first of a series that investigates whether new cropping systems with permanent raised beds (PRBs) or Flat land could be successfully used to increase farmers’ incomes from rainfed crops in Lombok in Eastern Indonesia. This paper discusses the rice phase of the cropping system. Low grain yields of dry-seeded rice (Oryza sativa) grown on Flat land on Vertisols in the rainfed region of southern Lombok, Eastern Indonesia, are probably mainly due to (a) erratic rainfall (870–1220 mm/yr), with water often limiting at sensitive growth stages, (b) consistently high temperatures (average maximum = 31 °C), and (c) low solar radiation. Farmers are therefore poor, and labour is hard and costly, as all operations are manual. Two replicated field experiments were run at Wakan (annual rainfall = 868 mm) and Kawo (1215 mm) for 3 years (2001/2002 to 2003/2004) on Vertisols in southern Lombok. Dry-seeded rice was grown in 4 treatments with or without manual tillage on (a) PRBs, 1.2 m wide, 200 mm high, separated by furrows 300 mm wide, 200 mm deep, with no rice sown in the well-graded furrows, and (b) well-graded Flat land. Excess surface water was harvested from each treatment and used for irrigation after the vegetative stage of the rice. All operations were manual. There were no differences between treatments in grain yield of rice (mean grain yield = 681 g/m2) which could be partly explained by total number of tillers/hill and mean panicle length, but not number of productive tillers/hill, plant height or weight of 1000 grains. When the data from both treatments on PRBs and from both treatments on Flat land, each year at each site were analysed, there were also no differences in grain yield of rice (g/m2). When rainfall in the wet season up to harvest was over 1000 mm (Year 2; Wakan, Kawo), or plants were water-stressed during crop establishment (Year 1; Wakan) or during grain-fill (Year 3: Kawo), there were significant differences in grain yield (g/1.5 m2) between treatments; generally the grain yield (g/1.5 m2) on PRBs with or without tillage was less than that on Flat land with or without tillage. However, when the data from both treatments on PRBs and from both treatments on Flat land, each year at each site, were analysed, the greater grain yield of dry-seeded rice on Flat land (mean yield 1 092 g/1.5 m2) than that on PRBs (mean 815 g/1.5 m2) was mainly because there were 25% more plants on Flat land. Overall when the data in the 2 outer rows and the 2 inner rows on PRBs were each combined, there was a higher number of productive tillers in the combined outer rows (mean 20.7 tillers/hill) compared with that in the combined inner rows on each PRB (mean 18.2 tillers/hill). However, there were no differences in grain yield between combined rows (mean 142 g/m row). Hence with a gap of 500 mm (the distance between the outer rows of plants on adjacent raised beds), plants did not compensate in grain yield for missing plants in furrows. This suggests that rice (a) also sown in furrows, or (b) sown in 7 rows with narrower row-spacing, or (c) sown in 6 rows with slightly wider row-spacing, and narrower gap between outer rows on adjacent beds, may further increase grain yield (g/1.5 m2) in this system of PRBs. The growth and the grain yield (y in g/m2) of rainfed rice (with rainfall on-site the only source of water for irrigation) depended mainly on the rainfall (x in mm) in the wet season up to harvest (due either to site or year) with y = 1.1x − 308; r2 = 0.54; p < 0.005. However, 280 mm (i.e. 32%) of the rainfall was not directly used to produce grain (i.e. when y = 0 g/m2). Manual tillage did not affect growth and grain yield of rice (g/m2; g/1.5 m2), either on PRB or on Flat land.  相似文献   

3.
The moisture-dependent physical properties are important to design post harvest equipments of the product. The physical properties of Karanja kernel were evaluated as a function of moisture content in the range of 8.56–22.22% d.b. The average length, width, thickness and 1000 kernel mass were 25.29 mm, 15.58 mm, 7.88 mm and 1036.45 g, respectively, at moisture content of 8.56% d.b. The geometric mean diameter and sphericity increased from 14.55 to 15.97 mm and 0.57 to 0.6 as moisture content increased from 8.56 to 22.22% d.b., respectively. In the same moisture range, the bulk density decreased from 663 to 616 kg/m3, whereas the corresponding true density and porosity increased from 967 to 1081 kg/m3 and 31.44 to 43.02%, respectively. As the moisture content increased from 8.56 to 22.22% d.b., the angle of repose and surface areas were found to increase from 27.69 to 37.33° and 665.74 to 801.63 mm2, respectively. The static coefficient of friction of Karanja kernel increased linearly against the surfaces of three structural materials, namely plywood (28.72%), mild steel sheet (29.88%) and aluminium (18.86%) as the moisture content increased from 8.56 to 22.22% d.b.  相似文献   

4.
A 2-year field experiment was conducted during the wet seasons (July–October) of 2008 and 2009 on a Typic Hapludoll Mollisol in Indo-Gangetic Plains Region (IGPR) to: (i) investigate the effects of field water re-ponding intervals and plant spacing on the growth, yield, and water productivity (WP) of two rice cultivars under system of rice intensification (SRI) management, and (ii) assess comparative performance of SRI versus ‘best management practices’(BMP) of rice cultivation. This experiment was designed with 14 treatments, 12 under SRI, and 2 BMP (controls). SRI treatments comprised of 3 irrigation regimes viz, irrigation at 1, 3, and 5 day(s) after disappearance of ponded water (DADPW), 2 plant spacings (20 × 20, 25 × 25 cm), and 2 rice cultivars (Pant Dhan 4 and Hybrid 6444). Two BMP (control) treatments comprised of standard cultivation recommendations for flooding and spacing. The experiment was laid-out in a factorial randomized complete block design with three replications. Statistical analysis of data revealed significant variations in root–shoot characteristics and rice yield under SRI between years, reflecting different rainfall patterns. During 2009, a low rainfall year, the panicle numbers m?2, dry root weight m?2, root volume m?2, filled spikelet number panicle?1, and filled spikelet weight panicle?1 were significantly higher, which resulted in a rice grain yield enhancement by 5.1 % over 2008, when there was unusually heavy rainfall. Climate × irrigation regime interaction revealed a non-significant influence of irrigation regimes on growth and yield during 2008, whereas in 2009, irrigation at 1 DADPW and 3 DADPW increased grain yield by 12.8 and 8 %, respectively over 5 DADPW. Better root–zone soil moisture regimes, balancing water, and oxygen availability were responsible for higher yields under irrigation at 1 and 3 DADPW. In 2008, soil moisture content (SMC) in 0–15 cm layer was 91, 86, and 82 % of field capacity (FC) at panicle initiation, and 88, 80, and 77 % at panicle emergence stage when irrigation was at 1, 3, and 5 DADPW, respectively; the lower layers (15–30, 30–45 cm) retained their SMC between 87 and 94 % of FC at both stages. During 2009, SMC in all the three layers at both stages was more than 85 % of FC when irrigating at 1 DADPW, and a little more than 70 % for the 0–15 cm layer and >80 % for the other two layers when irrigation was done at 3 DADPW. SMC dropped to below 60 % of FC in the 0–15 cm layer and remained between 67 and 77 % of FC in the other two layers, with lower yield resulting when irrigations were applied at 5 DADPW. However, WP was the highest with irrigation at 5 DADPW (38.5 kg ha cm?1). Wider plant spacing (25 × 25 cm) resulted in generally and significantly higher grain yield and WP. On an average, SRI (6.1 t ha?1) resulted in yield advantage of 0.9 t ha?1 over BMP (5.2 t ha?1). Overall, it is inferred that in SRI, wider planting (25 × 25 cm) with field re-ponding at 3 DADPW if there is adequate water availability and at 5 DADPW under limited water supply conditions, may lead to higher rice yields and WP in sub-humid tarai Mollisols of IGPR and comparable agro-climatic conditions in Indian sub-continent.  相似文献   

5.
Intensive rice farming in aerobic soil, referred to herein as aerobic rice, can greatly reduce the water input compared to that of flooded rice cultivation. The objective of this study was to compare the potential productivity of aerobic rice and flooded rice using high-yielding varieties at two locations in Japan in two successive years. In aerobic fields, the total amount of water supplied (irrigation plus rainfall) was 800–1300 mm. The soil water potential at 20-cm depth averaged between −15 and −30 kPa each growing season, but frequently reached −60 kPa. The average yield under aerobic conditions was similar to or even higher than that achieved with flooded conditions (7.9 t ha−1 in 2007 and 9.4 t ha−1 in 2008 for aerobic versus 8.2 t ha−1 for flooded). The average water productivity under aerobic conditions was 0.8–1.0 kg grain m−3 water, slightly higher than common values in the literature. The super-high-yielding cultivar Takanari achieved yields greater than 10 t ha−1 with no yield penalty under aerobic conditions in 3 out of 4 experiments. The favorable agronomic characteristic of Takanari was its ample sink capacity (grain number × grain weight). In conclusion, high-productivity rice cultivation in aerobic soil is a promising technology for water conservation. With continued breeding, future aerobic rice varieties will possess large numbers of spikelets and sufficient adaptation to aerobic conditions such that they will consistently achieve yields comparable to the potential yield of flooded rice.  相似文献   

6.
The objective was to evaluate water‐soluble carbohydrate (WSC) and crude protein (CP) concentration of perennial ryegrass (PRG) cultivars with different genetic potential for producing WSC under two contrasting agronomic managements in temperate climate (southern Chile). A 4 × 2 factorial design was randomly allocated to 24 plots (31 m2 each, three blocks): four PRG cultivars (diploid standard cultivar, “2nSt”; tetraploid standard cultivar, “4nSt”; diploid high sugar cultivar developed in New Zealand, “2nHSNZ”; and tetraploid high sugar cultivar developed in Europe, “4nHSEU”) and two agronomic managements (“favourable,” defoliations at three leaves per tiller and nitrogen (N) fertilization rate of 83.3 kg N ha?1 year?1; “unfavourable,” defoliations at two leaves per tiller and N fertilization rate of 250 kg N ha?1 year?1). Herbage samples were collected in early spring, spring, summer and autumn. Concentration of WSC did not differ among cultivars in spring and summer, averaging 194 and 251 g/kg DM, respectively. The cultivar 4nHSEU had the greatest WSC concentration in early spring and autumn (187 and 266 g/kg DM, respectively) and the greatest CP concentration across samplings (average 230 g/kg DM). Favourable management improved WSC concentrations in early spring and summer and decreased CP in spring, summer and autumn. Annual DM yield did not vary with cultivar or management, averaging 8.43 t/ha. Within a 12‐month study at one site in a temperate environment in southern Chile, PRG cultivars have not shown a consistent expression of the “high sugar” trait, where a genetic × environment interaction might be operating.  相似文献   

7.
Weedy rice is a great threat to rice production in Sri Lanka. Selective herbicides to manage weedy rice in conventional rice cultivars are not available in Sri Lanka. In the absence of appropriate chemical control measures, cultural approaches may help to achieve effective control of weedy rice. A study was conducted in two consecutive seasons in farmers' fields at three sites (Atalla, Samanthurai, and Girithale villages) in Sri Lanka to evaluate the effect of different establishment methods (farmers' practice, random broadcast, row seeding, seedling broadcast, and transplanted rice) on weedy rice infestation and rice yield. The farmers' practice had a higher number of weedy rice panicles (60–80 m−2) than the random broadcast (39–48 panicles m−2), seedling broadcast (3–15 panicles m−2), and transplanted rice (1.3–3.0 panicles m−2) methods. The use of clean rice seeds in the random broadcast method reduced weedy rice seed production by 29–41% compared with the farmers' practice (0.6–2.0 t ha−1). Compared with the farmers' practice, the seedling broadcast method reduced weedy rice seed production by 71–87% and transplanted rice by 95–98%; and increased rice yield by 27–49% (7.5–9.1 t ha−1). At all three sites, the farmers' practice resulted in the lowest grain yield (5.1–6.7 t ha−1). Compared with the farmers' practice, the random broadcast and row seeding methods increased rice yield by up to 21% and 31%, respectively. The findings suggest that the use of clean rice seeds, the use of a row-seeded crop, and the adoption of different rice planting methods may help to suppress the spread of weedy rice.  相似文献   

8.
The critical crop-weed competition period in a dry-seeded rice system is an important consideration in formulating weed management strategies. Field experiments were conducted in the summer seasons of 2012 and 2013 at the Punjab Agricultural University, Ludhiana, India, to determine the extent of yield loss in two different rice cultivars (PR 114 and PR 115) with different periods of weed interference. Twelve weed control timings were used to identify critical periods of weed competition in dry-seeded rice. PR 114, a long-duration rice cultivar (145 d) having slower initial growth than PR 115 (125 d), was more prone to yield losses. In both years, 100% yield loss was observed where weeds were not controlled throughout the season. In weed-free plots, the grain yield of PR 114 was 6.39–6.80 t ha−1, for PR 115, it was 6.49–6.87 t ha−1. Gompertz and logistic equations fitted to yield data in response to increasing periods of weed control and weed interference showed that, PR 114 had longer critical periods than PR 115. Critical weed-free periods to achieve 95% of weed-free yield for PR 114 was longer than for PR 115 by 31 days in 2012 and 26 days in 2013. Weed infestation also influenced the duration of critical periods. Higher weed pressure in 2012 than in 2013 increased the duration of the critical period of crop-weed competition in that year. The identification of critical crop-weed competition periods for different cultivars will facilitate improved decision-making regarding the timing of weed control and the adoption of cultivars having high weed-suppressing abilities. This will also contribute to the development of integrated weed management in dry-seeded rice systems.  相似文献   

9.
Developing more competitive rice cultivars could help improve weed management and reduce dependency on herbicides. To achieve this goal, an understanding of key traits related to competitiveness is critical. Experiments were conducted at Gelemen and Bafra districts of Samsun province in Turkey between 2008 and 2009 to measure the competitiveness of rice cultivars against Echinochloa crus-galli, a problematic weed in rice fields. Five rice cultivars (Osmancık, Kızılırmak, Karadeniz, Koral and Neğiş) and five E. crus-galli densities (0, 5, 10, 20, and 30 plants m−2) were used. Koral produced significantly more tillers than the other cultivars irrespective of E. crus-galli densities and reduced E. crus-galli tiller production by about 29.5% at Gelemen and 15.8% at Bafra at the highest weed density. E. crus-galli interference reduced rice height and there was a density dependent relationship. Koral was the most competitive cultivar; it maintained high biomass accumulation in early growth stages and suffered smaller reductions in plant height in the presence of E. crus-galli, compared to the other cultivars. In the absence of weed competition, Koral and Neğiş produced the highest yields at both locations. Stepwise regression analyses of the combined data from both years showed tillering capacity, early growth crop biomass, and plant height were critical traits related to competitiveness. These traits should be considered by plant breeders in their efforts to develop rice cultivars with enhanced competitiveness against weeds. Development of such cultivars could substantially reduce herbicide and labor inputs for rice production.  相似文献   

10.
The concepts of fracture mechanics have been applied to quantify the fracture behaviour of vitreous and mealy wheat endosperm in a single wheat cultivar. Two new techniques were developed and used to measure fracture toughness (energy per unit area of fracture) of individual grains: (1) load cycling of a notched grain; and (2) instrumented microtome cutting. The load cycling method gave average fracture toughness values for vitreous endosperm of 130 ± 42 J/m2 and 50 ± 12 J/m2 for mealy endosperm. Fracture toughness measured using the instrumented microtome gave values of 159 ± 7·4 J/m2 for vitreous endosperm and 44 ± 4·6 J/m2 for mealy endosperm. The results are consistent with the hypothesis that vitreous endosperm has stronger starch-protein matrix bonding than mealy endosperm. The effect of changing grain moisture on cutting fracture properties was investigated. As moisture decreased, values of fracture toughness increased for both mealy and vitreous endosperms at the same rate down to 11% moisture content, below which fracture toughness increased more rapidly for vitreous than for mealy endosperm. Intra-grain fracture toughness was also investigated by cutting successive sections across individual wheat grains. These showed a decrease in cutting force from the outside of the grain towards the centre, and then an increase near the crease. The critical particle size at which a transition from brittle to ductile failure occurs was calculated, giving predicted values of 1·2 mm for vitreous endosperm and 0·9 mm for mealy endosperm at 15% moisture content. This shows that vitreous endosperm undergoes more ductile deformation during deformation than does mealy endosperm, and that larger particle sizes are predicted for vitreous endosperm as a result of milling.  相似文献   

11.
Physical properties of Salvia hispanica L. seeds were investigated and their application was also discussed. Physical properties were assessed for white and dark seed separately, except for the angle of repose and static coefficient of friction, which were determined for the seed mixture. The mean moisture content was 7.0% (dry basis). The average for the three characteristic dimensions, length, width and thickness was 2.11, 1.32 and 0.81 mm for dark seeds and 2.15, 1.40 and 0.83 mm for white seeds, respectively. The bulk density, true density and the porosity were between 0.667 and 0.722 g cm−3, 0.931 and 1.075 g cm−3, and 22.9 and 35.9%, respectively. The equivalent diameter ranged from 1.32 to 1.39 mm. The volume of single grain and sphericity ranged between 1.19 and 1.42 mm3, and 62.2 and 66.0%, respectively. The geometric mean diameter ranged between 1.31 and 1.36 mm for dark and white chia seeds, respectively. This parameter could be used for the theoretical determination of seed volume and sphericity. One thousand seed mass averaged 1.323 g for dark seeds, and 1.301 g for white seed. The angle of repose varied between 16° and 18° whereas the value of static coefficient of friction was 0.28 on galvanized sheet and 0.31 on mild steel sheet.  相似文献   

12.
《Field Crops Research》1999,63(3):187-198
Rice is subjected to excessive waterlogging and flash-flooding on large areas in south and south-east Asia. Besides cultivars, submergence tolerance of plants is influenced by various agronomic practices. A field experiment was conducted at Cuttack, India during 1994–1995 to study the effect of method of stand establishment (direct seeding and transplanting), vigour of seed (low and high-density) or seedlings (N-fertilized and unfertilized), plant population (normal and 50% more) and N fertilizer (single basal and split application) on yield performance of lowland rice under conditions of natural submergence and simulated flash-flooding (impounding up to 90 ± 3 cm depth for 10 days at vegetative stage). Flooding reached a maximum depth of 80 cm in 1994 and 52 cm in 1995 under natural submergence. The crop performance was better in 1994 due to timely sowing in dry soil and delayed accumulation of water (43 days after sowing) than in 1995 when sowing was done late in saturated soil followed by early water accumulation (28 days after sowing). Grain yield of rice decreased by 30.0–33.6% due to simulated flash-flooding compared with natural submergence, and by 21.4–33.1% due to transplanting in July compared with direct seeding in May-end/early June. The yield of direct-sown crop increased by using high-density seed of 22.9–23.0 mg weight (5.2–9.0%), higher seed rate of 600 m−2 (2.2–2.3%) and basal fertilization at 40 kg N ha−1 (19.4–25.7%) compared with low-density seed (19.4–20.1 mg), 400 seed m−2 and no N, respectively. The yield of transplanted crop increased by using N-fertilized seedlings of 0.49–1.65 g weight (29.5–38.5%), higher number of seedlings at 155 m−2 (3.5–16.7%) and basal fertilization at 40 kg N ha−1 (31.9–32.5%) compared with unfertilized seedlings (0.19–0.79 g), 115 seedlings m−2 and no N. Split application of 40 kg N ha−1 — 50% each at basal and top dressing (105–115 days of growth after flash-flooding) — improved yield significantly (10.1–13.1%) over single basal application under simulated flash-flooding, but not under natural submergence conditions. Regression analysis indicated that relative contribution of various factors in increasing grain yield was in order: N fertilizer > seed density > seed m−2 in direct-sown rice, and N fertilizer > seedlings m−2 > seedling dry weight in transplanted rice. It was concluded that grain yield of flood-prone lowland rice can be increased by establishing the crop early through direct seeding using high-density seed and basal N fertilization.  相似文献   

13.
Rice is prone to arsenic accumulation compared to other cereals as typically grown up under waterlogged situation favoring arsenic mobility. Arsenic in rice depends on arsenic availability to plants from irrigation water, even differs among cultivars and their plant parts. Present study was concentrated on arsenic accumulation in various plant parts of five common rice cultivars grown using irrigation water from different water sources in various fields in arsenic-endemic region. Additionally, dose response experiment under laboratory net house was conducted on the same cultivars excluding open environmental factors. The common cultivars were categorized according to high to low arsenic accumulator in rice grain, straw and root parts. The cultivar Shatabdi has shown highest arsenic accumulation in rice grain compared to other rice cultivars in fields and when grown at various soil arsenic doses. In field samples, a highest grain arsenic concentration ranged between 0.69 ± 0.04 and 0.78 ± 0.12 mg kg?1 for Shatabdi, whereas lowest grain arsenic concentration ranged between 0.37 ± 0.07 and 0.41 ± 0.07 mg kg?1 for the cultivars GB3 and Lalat. Speciation study detected more inorganic arsenic than organoarsenicals with a trend of arsenite > arsenate > DMA > MMA, which would be problem for consumers. The concluding remark is the characterization of common rice cultivars according to arsenic concentration to highlight an important remediation strand by changing to low arsenic cultivar.  相似文献   

14.
Field studies were conducted to determine the potential for intraspecific responses in crop growth and grain yield of 20 soybean cultivars to enhanced ultraviolet-B (UV-B, 280–315 nm) radiation. The supplemental UV-B radiation was 5.00 kJ m−2, simulating a depletion of 20% stratospheric ozone at Kunming (25°N, 1950 m). Out of the 20 soybean cultivars tested, 17 and 15 showed significant change in plant height at 80 DAP (days after planting) and ripening stages, respectively. Sensitivity in plant height was greater at 80 DAP than at ripening. The plant height of 3 cultivars increased, and that of 17 cultivars decreased. Under UV-B radiation, LAI (leaf area index), biomass and grain yield decreased, respectively. The greatest percent decrease was 95.7, 93.9 and 92.8, respectively. RI (response index) was the sum of percent change in plant height at ripening, LAI, biomass and grain yield. The results showed that all 20 soybean cultivars had a negative RI, indicating inhibition by UV-B radiation on soybean growth. The RI of 6 tolerant cultivars was higher than −163.1 and 5 out of 6 originated from south China (low latitude). The RI of the most tolerant cultivars, Yunnan 97801, was −72.4. Meanwhile, the RI of 5 sensitive cultivars was lower than −256.9 and 4 out of the 5 originated from north China (high latitude). The RI of the most sensitive cultivar, Huanxianhuangdou, was −295.7. These UV-B tolerant cultivars identified in this study might be useful in breeding programs.  相似文献   

15.
Water scarcity threatens sustainable rice production in many irrigated areas around the world. To cope with the scarcity, aerobic rice culture has been proposed as a promising water-saving technology. The objective was to elucidate the physiological attributes behind the performance of rice introgression lines in water-saving culture. We evaluated yield potential and physiological adaptation traits to water deficit of BC3-derived lines with the genetic background of an elite indica cultivar, IR64, in the field and in pot experiments. One line, YTH183, had 26% higher yield than IR64 under non-stress conditions (895 vs. 712 g m−2 on average). This was attributed to enlarged sink capacity due to large grain size, which contributed to more efficient use of assimilates and hence a higher harvest index. YTH183 also showed better dehydration avoidance under intermittent soil drying, due to the adaptive response of deep rooting to water deficiency. The grain yield of YTH183 exceeded that of IR64 by 92-102% under moderate water deficit caused by limited irrigation in aerobic rice culture (143 vs. 72 g m−2). Two introgressed segments on chromosomes 5 and 6 might, at least in part, confer the higher yield potential and greater dehydration avoidance in YTH183 simultaneously. Advanced backcross breeding combined with molecular genetics and physiological characterization of introgressed segments would be effective for developing new rice cultivars with high yield potential and drought adaptation traits.  相似文献   

16.
‘Khao Dawk Mali 105’ (KDML105), a Thai aromatic rice cultivar, has been accepted in markets as a prime jasmine rice with premium prices. It has been extensively used as a parental line to develop new cultivars for rainfed lowland areas in Thailand because of its favorable quality and fragrance. However, this cultivar is highly susceptible to brown planthopper (BPH), a phloem sap-feeding insect pest of rice. The main objective of this study was to combine KDML105 essential grain quality traits with BPH resistance from the donor cultivar, ‘Rathu Heenati’. The linkage drag between Bph3 and Wxa alleles was successfully broken by phenotypic and marker-assisted selections. All introgression lines (ILs) developed in this study showed a broad spectrum resistance against BPH populations in Thailand and had KDML105 grain quality standards. Finally this study was revealed that the ILs can be directly developed into BPH resistant varieties or can be used as genetic resources of BPH resistance to improve rice varieties with the Wxb allele in rice breeding programs.  相似文献   

17.
《Field Crops Research》2006,95(2-3):398-411
Spikelet fertility (seed-set) is an important component of yield that is sensitive to high temperature. The objectives of this research were (a) to quantify the effects of high temperature on spikelet fertility and harvest index of rice; (b) to determine if there were species, ecotype, and/or cultivar differences in response to high temperature; and (c) to understand the reasons for lower and/or differential spikelet fertility and harvest index of rice cultivars at high temperatures. Fourteen rice cultivars of different species (Oryza sativa and Oryza glaberrima), ecotypes (indica and japonica) and origin (temperate and tropical) were exposed to ambient and high temperature (ambient + 5 °C) at Gainesville, Florida. High temperature significantly decreased spikelet fertility across all cultivars, but effects varied among cultivars. Based on decreases in spikelet fertility at high temperature, cultivar N-22 was most tolerant, while cultivars L-204, M-202, Labelle, Italica Livorna, WAB-12, CG-14 and CG-17 were highly susceptible and cultivars M-103, S-102, Koshihikari, IR-8 and IR-72 were moderately susceptible to high temperature. There were no clear species or ecotype differences, as some cultivars in each species or within ecotypes of tropical and temperature origin were equally susceptible to high temperature (for example M-202 temperate japonica, Labelle tropical japonica, CG-14 O. glaberrima, and WAB-12 interspecific). Decreased spikelet fertility and cultivar difference at high temperature were due mainly to decreased pollen production and pollen reception (pollen numbers on stigma). Lower spikelet fertility at elevated temperature resulted in fewer filled grains, lower grain weight per panicle, and decreased harvest index. There is a potential for genetic improvement for heat tolerance, thus it is important to screen and identify heat-tolerant cultivars. Spikelet fertility at high temperature can be used as a screening tool for heat tolerance during the reproductive phase.  相似文献   

18.
Field experiment was arranged in a randomized complete block design to determine effects of nitrogen (N) application levels (J0: 150 ​kg/hm2, J1: 120 ​kg/hm2, J2: 90 ​kg/hm2, J3: 60 ​kg/hm2) on regulating dry biomass accumulation, allocation and translocation, and grain yield of oil flax during 2018 cropping season. Significant promotion was observed in dry matter during accumulation stage of oil flax, when N rate was reduced by 40% (from 150 to 90 ​kg/hm2). Under J2 treatment, translocation of dry matter from vegetative organs to pod increased by 38.46% and 61.54% respectively, when compared with J1 and J0 treatment. Dry matter distribution proportion of pod at maturity increased 4.47%–7.61%, contribution rate of leaf to grain upgraded 5.09%–8.77%, and number of effective pods and grains per pod increased by 27.16%–45.38% and 6.49%–26.59% respectively compared to other treatments. As a result, seed yield of oil flax under J2 treatment was 2.23%–18.21% higher than those of other treatments. Our study recommended 90 ​kg/hm2 as the best N fertilizer level to improve seed yield of oil flax.  相似文献   

19.
Present study aimed to assess silicon (Si) mediated yield, grain quality and regulations in 2-acetyl-1-pyrroline accumulation (2-AP) in aromatic rice. Four different levels of Si at 15, 30, 45 and 60 mg kg−1 were applied to two aromatic rice cultivars i.e., Nongxiang 18 and Meixiangzhan 2, while pots without Si were served as control (CK). Results revealed that Si fertilization improved 2-AP, Si and proline contents in leaves and grains as well as activities of proline dehydrogenase (PRODH) and net photosynthetic rates (Pn) (in leaves) while interfered with total N contents in leaves and grains. Moreover, leaves N and proline contents, and net photosynthetic rates (Pn) were decreased with plant age i.e., tillering > flowering > maturity while PRODH activities and Si contents were highest at flowering and maturity stages, respectively and minimum at tillering stage. Furthermore, growth, yield and quality components were also improved by Si application but results were not consistent regarding grain quality for both rice cultivars. Further, Si contents in leaves have significant positive relations (r = 0.3974, P < 0.05) with grain 2-AP contents at flowering stage. Hence, Si proved better for both rice cultivars whereas 2-AP contents were higher for Meixiangzhan 2 than Nongxiang 18.  相似文献   

20.
《Field Crops Research》2001,69(3):215-226
A field experiment compared two rice (Oryza sativa L.) cropping systems: paddy or raised beds with continuous furrow irrigation; and trialled four cultivars: Starbonnet, Lemont, Amaroo and Ceysvoni, and one test line YRL39; that may vary in adaptation to growth on raised beds. The grain yield of rice ranged from 740 to 1250 g/m2 and was slightly greater in paddy than on raised beds. Although there were early growth responses to fertilizer nitrogen on raised beds, the crop nitrogen content at maturity mostly exceeded 20 g/m2 in both systems, so nitrogen was unlikely to have limited yield. Ceysvoni yielded best in both systems, a result of good post-anthesis growth and larger grain size, although its whole-grain mill-out percentage was poor relative to the other cultivars. Starbonnet and Lemont yielded poorly on raised beds, associated with too few tillers and too much leaf area. When grown on raised beds all cultivars experienced a delay in anthesis resulting in more tillers, leaf area and dry weight at anthesis, and probably a greater yield potential. The growth of rice after anthesis, however, was similar on raised beds and in paddy, so reductions in harvest index and grain size on raised beds were recorded. The data indicated that water supply was not a major limitation to rice growth on raised beds, but slower crop development was an issue that would affect the use of raised beds in a cropping system, especially in rice-growing areas where temperatures are too cool for optimal crop development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号