首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
The finite element model involving geometric large deformation,materials and contact nonlinearity is established.Specimens of cold-formed steel quadruple-C built-up section members are simulated and the finite element models are proved to be valid.Then,numerical analysis on the behavior of specimens with different slenderness ratio and flange flakiness ratio are carried out,and then the axial bearing capacities of specimens are obtained.Based on effective width method and direct strength method (DSM) in related codes,two design methods of cold-formed steel quadruple-C built-up section members under axial compression are proposed:effective length method and correction factor method.It is shown that:the final failure characteristics of all specimens are local buckling and distortional buckling.In the case of not considering the reduction of effective length,the results calculated by each code are slightly lower than those of test and FEM when the slenderness ratio is less than 50,while the results are too conservative when the slenderness ratio is more than 50.  相似文献   

2.
The size effects on axial compression performances of reinforced concrete column under repeated load are needed. Specimens were designed and tested in accordance with the relevant similarity, whose geometric dimensions are: 400 mm×400 mm×1 200 mm, 600 mm×600 mm×1 800 mm and 800 mm×800 mm×2 400 mm. The result of the experiment, the failure characteristics, crack development process, strength, peak stress, peak strain and stiffness of various specimens were comparatively analyzed. The results show that, within size range of this test, size effect exists on performances of columns.  相似文献   

3.
The behavior of plate in compression plays a basic role in relevant research. There are significant differences between stainless steel and carbon steel plates in structural behavior. Analysis on the behavior of stainless steel plate in compression was presented. The development of FE models for analyzing stainless steel plates in compression was described based on the results of Rasmussen's test. And the strength curve was achieved by such advanced FE models with a high degree of accuracy. The explicit strength equations and design method were proposed for determining the local buckling strength of stainless plate and cold formed rectangular hollow section in compression. It is shown that the numerical simulation results achieved by using Quach model are accurate.  相似文献   

4.
The effects of the restraint stiffness ratio, the axial load ratio and the column slenderness on the buckling temperature and failure temperature of a restrained H section steel column under axial load in fire were studied with a calibrated finite element method (FEM) model. And the calculation methods of buckling temperature and failure temperature were proposed. The effect of the restraint stiffness ratio on the buckling temperature and failure temperatures could be expressed with an exponent curve while polynomial functions was appropriate for the effects of the axial load ratio and the column slenderness. The results of the proposed method were in good agreement with those by FEM method and on the safe side.  相似文献   

5.
To investigate mechanical behavior and seismic behavior of concrete filled steel tubular column node (CFSTCN) in space truss structure, both full-scale test and Finite Element Method (FEM) were employed. The test load was 1.6 times of design load and by incremental step loading. Meanwhile, stress and deformation in CFSTCN were observed to monitor bearing capacity of the node. The results show that steel tubular works in elastic state and a small part of concrete beyond of compressive stress limits; steel tube and concrete adhesive well. The hysteretic energy dissipation capacity and failure mode under cyclic loading were revealed by nonlinear FEM. weakest position and ultimate bearing capacity of the node were obtained from FEM results. The method of combining full-scale test and FEM can well reveal the mechanical behavior and the seismic behavior of the node.  相似文献   

6.
A total of three experimental specimens of penetrated interior diaphragm on one side had been tested under low-cyclic reversed loading to study the hysteric behavior,strength and stiffness degradation,ductility,energy dissipation capacity and the failure modes.The only difference of all specimens was the axial compression ratio.Experimental results show that the story drift ductility ratios are 2.11~2.32,and the energy dissipation ratios are 1.141~1.502 at the peak load.Additional anti-seismic design and research recommendations are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号