首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A 4 x 4 Latin square metabolism trial with a 2 x 2 factorial arrangement of treatments was conducted to determine N kinetics in steers. Steers were fed either untreated (UNT-WS) or alkaline hydrogen peroxide-treated wheat straw (AHP-WS) based diets supplemented with soybean meal (SBM) or blood meal (BM). Single doses of (15NH4)2SO4 were infused into ruminal pools to determine N kinetics. Ruminal NH3N concentrations (main effects) were 3.81, 1.65, 3.18, and 2.28 mg/dL in steers when fed diets that contained UNT-WS, AHP-WS, SBM, and BM, respectively. Ruminal N pool size was greater (P < .05) for UNT-WS than for AHP-WS diets and also was greater (P < .10) for SBM than for BM diets. Nitrogen flux rate into the rumen was not affected (P > .10) by diet. However, production rate of N from the ruminal pool was greater (P < .05) for UNT-WS than for AHP-WS diets and greater (P < .10) for SBM than for BM diets. Nitrogen recycled into the rumen was 33% greater (P < .05) for AHP-WS than for UNT-WS diets and 26% greater (P < .05) for BM than for SBM diets. Nitrogen recycling (percentage of N intake) was 33, 56, 36, and 49% for UNT-WS, AHP-WS, SBM, and BM diets, respectively. The blood urea N (BUN) concentrations were 10.23, 4.58, 7.15, and 7.65 mg/dL for UNT-WS, AHP-WS, SBM, and BM diets, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Five ruminally fistulated 3-yr-old mature Holstein steers (average BW 691+/-23 kg) were used in a 5 x 5 Latin square experiment with a 2 x 2 + 1 fact orial arrangement of treatments. Effects of protein concentration and protein source on nutrient digestibility, excretion of DM and fecal N, ruminal fluid volume and dilution rate, ruminal characteristics, and in situ DM disappearance of whole shelled corn, ground corn, and orchardgrass hay were measured in steers limit-fed high-concentrate diets at 1.5% of BW. A negative control basal diet (NC; 9% CP) was supplemented to achieve either 11 or 14% CP; supplemental CP was either from soybean meal (11 and 14% SBM) or a 50:50 ratio of CP from urea and soybean meal (11 and 14% U). Dry matter and OM digestibilities were 5% greater (P < .07) for steers fed the SBM diets than for those fed the U diets. Starch digestibility did not differ (P > .10) among steers fed any of the diets. Nitrogen source did not affect (P > .10) apparent N digestibility or fecal N excretion; however, steers fed the NC diet had the lowest (P < .10) apparent N digestibility compared with those fed all other diets. Ruminal fluid volume was lower (P < .06) when steers were fed the NC diet compared with all other diets; there were no differences (P > .74) among diets for ruminal fluid dilution rate. In general, ruminal ammonia N and VFA molar proportions were not affected by protein source or concentration. Although CP concentration affected (P < .06) in situ DM disappearance of ground corn, CP concentration did not (P > .48) affect total tract digestion of DM or OM. This indicates that CP concentration may have affected site of digestion, but not extent of digestion. When mature ruminants were limit-fed a corn-based diet to meet primarily a maintenance function, protein source and concentration had little effect on measures of nutrient digestion.  相似文献   

3.
The intestinal supply of amino acids (AA) in sheep fed alkaline hydrogen peroxide-treated wheat straw (AHPWS)-based diets supplemented with soybean meal (SBM) or corn grain plus combinations of corn gluten meal (CGM) and blood meal (BM) was measured in a 5 X 5 latin square. Sheep (avg wt 45 kg) with ruminal, duodenal and ileal cannulas were fed diets containing 65% AHPWS supplemented with the following protein sources: soybean meal (SBM), corn gluten meal (CGM), blood meal (BM), 2/3 CGM:1/3 BM and 1/3 CGM:2/3 BM. Total nitrogen (N) flow at the duodenum was not affected (P greater than .05) by protein source. Flows of bacterial N and AA increased (P less than .05) and flows of nonbacterial N and AA decreased (P less than .05) when wethers were fed SBM vs corn plus other protein sources. When diets contained SBM, quantities of total AA at the duodenum were lower (P less than .05) and the profile of AA supplied to the intestine was altered substantially. Total flows of AA at the duodenum and total quantities of AA disappearing from the small intestine were similar (P greater than .05) for all diets containing BM and CGM, but flows and disappearance of valine, histidine, lysine and arginine increased linearly (P less than .05), whereas flows and disappearance of leucine, isoleucine and methionine decreased linearly (P less than .05) as BM replaced CGM in the diets. Results suggest that quantities of individual AA flowing to the duodenum and disappearing from the intestine of wethers fed AHPWS-based diets can be altered by source of dietary protein. Furthermore, feeding protein sources resistant to ruminal degradation in combination may improve the profile of AA supplied to the intestine.  相似文献   

4.
Six beef steers (British x Brahman) cannulated at the rumen, duodenum and ileum (avg wt 334 kg) and three mature steers (British x British) cannulated at the esophagus were used in a replicated 3 x 3 latin square design and fed no supplement (C), .5 kg soybean meal (SBM) or .5 kg steam-flaked sorghum grain (SFS).head-1.d-1 (DM basis) while grazing blue grama rangeland. Periods of the latin square included a minimum of 14 d for adaptation and 11 d for esophageal masticate collection and digesta sampling. In September, October and November, respectively, forage collected by esophageally cannulated steers averaged 74.5, 88.8 and 71.0% grasses; 2.06, 1.53 and 1.77% N and 68.3, (P greater than .10) by treatment, but total N intake was greater (P less than .05) for SBM vs C and SFS treatments. No differences (P greater than .10) were detected among treatments in OM, NDF, ADF and N digestibilities in the rumen, small intestine or hindgut, but total tract OM digestibility was greater (P less than .10) for SBM and SFS than for C, and total tract N digestibility was greater (P less than .10) for SBM than for C or SFS. Duodenal ammonia N flow was greater (P less than .05) when SBM was fed that when SFS and C were fed, but microbial N and non-ammonia, non-microbial N flows and microbial efficiency were not altered by treatment. Likewise, ileal N flow was not affected (P greater than .10) by treatment. Particulate passage rate, gastrointestinal mean retention time, forage in vitro OM disappearance and in situ rate of forage NDF digestion also were not affected (P greater than .10) by treatments. Ruminal fluid volume was greater (P less than .05) for SFS vs SBM and C treatments, but no differences were noted in fluid dilution rate. Ruminal fluid ammonia concentration was greater (P less than .05) when SBM was fed than when SFS and C were fed (13.5, 9.9 and 8.7 mg/dl, respectively), whereas pH and total VFA concentrations were not different (P greater than .10). Proportion of acetate in ruminal fluid was less (P less than .10) for SBM and SFS than for C. Small amounts of supplemental SBM and SFS had little effect on forage intake, ruminal fermentation and site of digestion but both increased total tract OM digestion in steers grazing blue grama rangeland.  相似文献   

5.
Eight wether lambs fitted with ruminal, duodenal, and ileal cannulas were used in a replicated 4 x 4 Latin square design to study the effects of carbohydrate and protein sources on ruminal protein metabolism and carbohydrate fermentation and intestinal amino acid (AA) absorption. Treatments were arranged as a 2 x 2 factorial. Carbohydrate sources were corn and barley; protein sources were soybean meal (SBM) and fish meal (FM). Diets contained 15.5% CP, of which 40% was supplied by SBM or FM. Corn or barley provided 39% of dietary DM that contained equal amounts of grass hay and wheat straw. Fish meal diets produced a lower (P less than .05) ruminal NH3 concentration and resulted in less CP degradation and bacterial protein flow to the duodenum than did SBM diets. Replacing SBM with FM increased (P less than .05) ruminal digestion of all fiber fractions. In addition, cellulose and hemicellulose digestibilities in the rumen tended to increase (P greater than .05) when barley replaced corn in the FM diets. Carbohydrate x protein interactions (P less than .05) were observed for OM digestion in the rumen and AA absorption in the small intestine (percentage of AA entering); these interactions were highest for the barley-FM diet. These results suggest that feeding FM with barley, which is high in both degradable carbohydrate and protein, might benefit ruminants more than feeding FM with corn, which is high in degradable carbohydrate but relatively low in degradable protein.  相似文献   

6.
Five sheep (average BW 62 kg) were fed 65% roughage: 35% concentrate diets (CP = 15%) in a 5 x 5 Latin square design to study the effects of combinations of defaunation and N supplements (soybean meal [SBM], corn gluten meal [CGM], blood meal [BM], urea, and casein) differing in ruminal degradation on ruminal microbial numbers and activity. Diets were fed twice daily (DM intake 1,759 g/d). Defaunation was accomplished with doses of 30 ml of alkanate 3SL3.sheep-1.d-1 for 3 d with 2 d of fasting. Treatment 1 (control) involved feeding faunated sheep a diet in which the supplemental N was 67% SBM N and 33% urea N. Treatment 2 involved feeding defaunated sheep the same diet as the control. Treatments 3, 4, and 5 involved feeding defaunated sheep diets in which the supplemental N source was either 67% CGM-BM N (CGM and BM combined on a 1:1 N ratio): 33% urea N, or 33% CGM-BM N:67% urea N or 33% CGM-BM N:33% urea N:33% casein N, respectively. Compared with the faunated control, defaunation (Treatments 2, 3, 4, and 5) increased (P less than .05) total direct counts of ruminal bacteria (2.7 vs 1.3 x 10(11)/ml), fungal zoospores (2.8 vs 1.4 x 10(5)/ml), and ruminal microbial protease activity (1.4 vs 1.0 mg azocasein/[ml ruminal fluid.h]). Defaunation did not have a consistent effect on ruminal microbial deaminase activity. Compared with the control, defaunation resulted in lower (P less than .05) total perchloric acid-soluble amino N in ruminal fluid at 4 and 10 h after the morning feeding. Defaunation did not decrease (P greater than .05) total free amino acid concentrations in ruminal fluid, but it altered the profile of free amino acids. Although defaunation increased (P less than .05) ruminal bacterial numbers, no increases in total microbial CP or OM concentrations in ruminal contents were observed.  相似文献   

7.
Two experiments were conducted to determine the effects of supplemental CP source and level of urea on intestinal amino acid (AA) supply and feedlot performance of lambs fed diets based on alkaline hydrogen peroxide-treated wheat straw (AHPWS). In Exp. 1, five cannulated (ruminal, duodenal, and ileal) crossbred wethers (61 kg) were used in a 5 x 5 Latin square design. Treatments consisted of different sources of CP and included soybean meal (SBM), a combination of urea, distillers dried grains (DDG), and fish meal, each provided an equal portion of supplemental CP (UDF), and three levels of urea (17, 33, and 50% of supplemental CP) fed in combination with DDG (U17, U33, and U50). Organic matter and N digestibilities decreased (P less than .05) when lambs were fed U17 compared with those fed SBM. There were no differences (P greater than .05) in bacterial N or AA flows to the duodenum due to CP source despite large differences in ruminal NH3 N concentrations and lower ruminal OM digestion when lambs were fed U17. Duodenal nonbacterial N and AA flows were highest (P less than .05) in lambs fed U17 and UDF and lowest when lambs were fed U50 and SBM. Lysine concentration in duodenal digesta decreased with incremental increases in DDG. In Exp. 2, 30 individually penned ram lambs (33 kg) were allotted to five CP treatments in a randomized complete block design. Treatments were similar to those of Exp. 1, with the exception that U17 was replaced by a 14% CP diet with SBM as the supplemental CP source; all other diets were formulated to contain 12% CP. Lambs fed U50 had decreased (P less than .08) ADG and gain/feed compared with all other treatments, and lambs fed UDF had greater (P less than .05) ADG and gain/feed than lambs fed U33. It was concluded that 17% of the supplemental CP from urea seems adequate to maximize bacterial protein synthesis and that no more than 33% of the supplemental CP should be provided by urea in diets based on AHPWS. Feeding a combination of ruminally resistant protein sources with complementary AA profiles of lysine and methionine (UDF) may enhance quality of protein entering the duodenum and feedlot performance.  相似文献   

8.
Four Simmental steers with ruminal, duodenal, and ileal cannulas were used to examine effects of dietary forage: concentrate ratio and supply of ruminally degradable true protein on site of nutrient digestion and net ruminal microbial protein synthesis. Steers (345 kg) were fed ammoniated corn cob (high forage; HF)- or corn cob/ground corn/cornstarch (low forage; LF)-based diets supplemented with soybean meal (SBM) or a combination of corn gluten meal and blood meal (CB). Diets were fed at 2-h intervals with average DM intake equal to 2.2% of BW. Feeding LF vs HF increased (P less than .05) OM digestion (percentage of intake) in the stomach, small intestine, and total tract. Efficiency of microbial CP synthesis (EMCP; g of N/kg of OM truly fermented) decreased (P less than .05) for LF vs HF (24.1 vs 26.8), but microbial N and total N flows to the small intestine were similar (P greater than .05) between energy levels (average 112 and 209 g/d, respectively). Total N flows to the small intestine were 13.1% greater (P less than .05) for CB than for SBM because of increased (P less than .05) passage of nonmicrobial N. Feeding SBM vs CB increased (P less than .05) EMCP (27.3 vs 23.3) and microbial N flow to the small intestine (127.5 vs 112.5 g/d), but these increases were not likely due to increased ruminal concentrations of ammonia N (NH3 N). Decreased (P less than .05) incorporation of NH3 N into bacterial N and slower turnover rates of ruminal NH3 N for SBM vs CB suggest that direct incorporation of preformed diet components into cell mass increased when SBM was fed. Results of this study suggest that the inclusion of ruminally degradable protein in the diet may increase the supply of products from proteolysis and that this can increase EMCP and microbial protein flow to the small intestine.  相似文献   

9.
Concurrent in vivo and in vitro studies were conducted to evaluate urea (U), soybean meal (SBM), ground soybeans (RAW), extruded soybeans (ES) or extruded soybeans plus urea (ES + U) as primary supplemental N sources in starter diets for Holstein steers. Three groups of 48 Holstein steers each were fed five different starter diets to 181 kg BW in three experimental periods over 2 yr. Average daily gains were similar (P greater than .05) for steers fed ES + U (1.12 kg), ES (1.08 kg) and SBM (1.09 kg) but lower (P less than .05) for those fed U (1.00 kg) or RAW (.97 kg) diets. Feed/gain was similar (P greater than .05) for ES-fed steers vs those fed other diets except U. From 181 to 477 kg, all steers were fed the same diet. Steers fed the RAW starter diet had the lowest (P less than .05) ADG for the entire period. The starter diets were used as substrates for ruminal microbial metabolism in eight dual-flow continuous culture fermenters. True OM digestion was higher and NDF and ADF digestion was lower (P less than .05) for the ES + U diet than for the ES diet. Dietary protein degradation was lowest (P less than .05) for the ES diet (64.4%). Total bacterial N flow was higher (P less than .05) with the ES + U, SBM and U diets than with the ES diet. Lysine flow was higher (P less than .05) for the ES + U diet than for all other diets except ES. Results of these experiments indicate that ES as a protected ruminal escape N source with or without added urea did not improve steer performance above that obtained from SBM in starter diets.  相似文献   

10.
Two digestion studies were conducted to evaluate the use of pretanned leather shavings as a component of a protein supplement. In Exp. 1, the in situ and in vitro disappearance of pretanned leather shavings and soybean meal was evaluated. Results revealed that less than 18.4% of the pretanned leather shavings was solubilized and disappeared when exposed to McDougall's buffer for 48 h, but there was 90.0% disappearance with 48-h exposure to a .1 N HCl/pepsin treatment and 97.0% disappearance with exposure to a two-stage digestion. In situ disappearance following 72 h in the rumen allowed 6.8% disappearance. Thus, leather shavings seem to be relatively indigestible in the rumen, but postruminal digestion may be possible. In Exp. 2, six Angus x Holstein steers, fitted with ruminal and duodenal cannulas, were used in a replicated 3 x 3 Latin square to evaluate ruminal and digestion effects of the following supplements combined with fescue hay at 1.7% of BW (DM basis): no supplementation (control); supplementation intraruminally with soybean meal at .07% of BW (as-fed basis); and supplementation intraruminally with a combination of soybean meal and pretanned leather shavings (17:8 ratio) at .05% of BW (isonitrogenous to soybean meal; as-fed basis). Ruminal fluid passage rate was greater and fluid turnover time was shorter in steers fed leather shavings than in those fed soybean meal (P = .10). Ruminal pH was lower (P = .04) for supplemented steers than for control steers and ruminal NH3 N concentration was greater (P = .01) in steers fed soybean meal than in those fed leather shavings. Total VFA concentration was increased (P = .02) by supplementation. Supplementation with soybean meal increased (P < .05) ruminal molar proportions of butyrate, valerate, and isovalerate compared with leather shavings. Duodenal OM flow and OM disappearing in the intestines were increased by supplementation (P < .10), but not by the type of supplement fed (P > .10). Ruminal digestion of OM and total tract OM digestion were unaffected (P > .10) by supplementation and the type of supplement fed. Flow and digestion of NDF were unaffected (P > .10) by the treatments. Flow of N and the quantity of N disappearing in the intestines were increased (P < .05) by supplementation but did not differ (P > .10) between supplementation groups. Microbial N flow, N utilization for net microbial protein synthesis, and ruminal N disappearance were unaffected (P > .10) by supplementation and the type of supplement provided. Combining pretanned leather shavings with soybean meal seemed to have no deleterious effects on digestion or fermentation and to allow for escape of some N to the lower tract.  相似文献   

11.
Five ruminally, duodenally, and ileally cannulated sheep (average BW 62 kg) were fed 65% roughage: 35% concentrate diets (CP = 15%) in a 5 x 5 Latin square design to study the applicability of using a combination of defaunation with N supplements (soybean meal [SBM], corn gluten meal [CGM], blood meal [BM], urea, and casein) with different extents of ruminal degradation to manipulate microbial protein synthesis and amount of ruminal escape protein. Diets were fed twice daily (1,759 g DM/d). Defaunation was accomplished with 30-ml doses of alkanate 3SL3 (active ingredient: sodium lauryl diethoxy sulfate)/sheep daily for 3 d with 2 d of fasting. Treatment 1 (control) involved feeding faunated sheep a diet in which the supplemental N (45% of total dietary N) was 67% SBM N and 33% urea N. Treatment 2 involved feeding defaunated sheep the same diet as the control. Treatments 3, 4, and 5 involved feeding defaunated sheep diets in which the supplemental N source was either 67% CGM-BM (1:1 N ratio) N:33% urea N, or 33% CGM-BM N:67% urea N or 33% CGM-BM N:33% urea N:33% casein N, respectively. Compared with the faunated control, defaunation decreased (P less than .05) ruminal ammonia concentration (19 vs 26 mg/dl) and increased (P less than .05) CP flow to the duodenum (253 vs 214 g/d) due to a trend for increases in both bacterial (BCP) and nonbacterial (NBCP) CP flows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effects of ammoniation of wheat straw on site and extent of digestion of nutrients by cattle and the nutritive value of the N added to the straw were studied using eight Hereford steers during three consecutive 21-d periods and analyzed in an incomplete block design with steers and periods as orthogonal blocking factors. The steers, approximately 30 mo old and weighing 360 +/- 24 kg, were cannulated in the rumen, duodenum and ileum. Diets consisted of untreated (US) or ammoniated (AS) wheat straw supplemented with a mineral-vitamin mixture. Steers fed US received four supplements in which the percentages of supplemental N from soybean meal (SBM) and urea were 0:100; 33:67; 67:33 or 100:0. Percentage of N and in vitro DM digestibility values were increased in US by the ammoniation process from .42 to 1.82 and 34.8 to 54.3, respectively. Total tract digestibility of OM consumed was similar among treatments, although total tract digestibility of dietary N was decreased by ammoniation. Ammoniation doubled (P less than .05) the synthesis of microbial N per unit of dietary OM truly fermented in the rumen. When SBM and urea were fed in combination they depressed (P less than .10) microbial N flow and synthesis of microbial N per unit of OM truly fermented more than each depressed flow and synthesis individually. The nutritive value of the increased N of AS was equivalent to between 67 and 100% of SBM N based on amounts (g/d) of non-ammonia N apparently digested in the small intestine.  相似文献   

13.
Seven Holstein steers (340 kg) fitted with ruminal, duodenal and ileal cannulae were used to measure the influence of supplemental N source on digestion of dietary crude protein (CP) and on ruminal rates of protein degradation. Diets used were corn-based (isonitrogenous, 12% CP on a dry matter basis, and isocaloric, 80% total digestible nutrients) with urea, soybean meal (SBM), linseed meal (LSM) or corn gluten meal (CGM) as supplemental N. Ruminal ammonia N concentrations were higher (P less than .05) in steers fed LSM than in those fed CGM, but did not differ from those in steers fed urea or SBM (11.7, 6.7, 9.1 and 9.2 mg/100 ml, respectively). Due to the high degradability of urea, ruminal digestion of dietary CP was greater (P less than .05) in steers fed urea than in those fed CGM, but intermediate in steers fed SBM and LSM (58.4, 48.8, 53.1 and 53.9%, respectively). Flow of bacterial nonammonia N to the duodenum was highest (P less than .05) in steers fed SBM or LSM, intermediate (P less than .05) for urea and lowest (P less than .05) for CGM (86.8, 86.1, 76.3 and 65.9 g/d, respectively). Efficiency of bacterial protein synthesis was lowest in steers fed CGM and differed (P less than .05) from SBM (15.6 vs 21.8 g N/kg organic matter truly digested, respectively). Rate of ruminal digestion for SBM-CP differed (P less than .05) from that of CGM-CP but not from that of LSM-CP (17.70, 5.20 and 10.13%/h, respectively). The slow rate of ruminal degradability of CGM resulted in increased amounts of dietary protein reaching the intestinal tract but lower amounts of bacterial protein, thus intestinal protein supply was not appreciably altered.  相似文献   

14.
In Exp. 1, four Holstein heifers (112+/-5.5 kg BW) fitted with ruminal cannulas were used in a 4 x 4 Latin square to evaluate the effects of N source on ruminal fermentation and urinary excretion of purine derivatives. A 2 x 2 factorial arrangement of treatments was used; the factors were the type of protein source (soybean meal, SBM, vs a 50:50 mixture of fish meal and corn gluten meal, FMCGM) and the partial substitution of protein source by urea (with vs without). Heifers were allowed to consume concentrate and barley straw on an ad libitum basis. Barley straw:concentrate ratio (12:88) and average ruminal pH (6.25) were not affected (P > 0.05) by treatment. Ruminal NH3 N concentration and urinary excretion of purine derivatives were not affected (P > 0.05) by supplemental N source. In situ CP degradability of supplemented SBM was very low (50%). In Exp. 2, eight dual-flow continuous-culture fermenters were used to study diet effects on microbial fermentation and nutrient flow, using forage:concentrate ratio, solid and liquid passage rates, and pH fluctuation to simulate in vivo conditions. The treatment containing SBM without urea reached the greatest total VFA concentration (P < 0.01), molar percentage of acetate (P < 0.05), and NH3 N concentration (P < 0.05), followed by treatments with partial substitution of protein source by urea, and finally by the treatment containing FMCGM. True OM digestion tended to increase (P = 0.13) in treatments containing SBM. These results suggest that amino N from SBM and NH3 N concentration stimulated nutrient digestion. Microbial protein synthesis was lowest in treatments with FMCGM and without urea, indicating that rapidly available N limited microbial growth. The low CP degradability of SBM observed may have contributed to the limitation in N supply for microbial growth. Efficiency of microbial protein synthesis increased in treatments containing urea (P < 0.05). Protein source affected total (P < 0.05) and essential AA (P < 0.10) flows, which were greater in treatments containing FMCGM. Partial replacement of protein supplements by urea did not affect total and essential AA flows. Because mean dietary protein contribution to total N effluent was 46%, the AA profile of supplemental protein sources had a great impact on total AA flow and its profile.  相似文献   

15.
Six pregnant Holstein heifers fitted with ruminal cannulas and T-type duodenal cannulas were used in a 6 x 6 latin square design experiment to determine whether diets formulated on a rumen undegraded CP (UDP) equivalent basis would provide a more accurate estimate of protein quality for ruminants. Six diets (barley [B]/brome-alfalfa hay-based) were formulated to contain three concentrations of CP (14.0%, 16.5% and 19.0%) and three protein sources (canola meal [CM], meat and bone meal [MBM] and soybean meal [SBM]). The six diets were B, 14% CP, CM, 16.5% CP; SBM, 16.5% CP; MBM, 16.5% CP; CM, 19% CP; and SBM, 19% CP. The diets were formulated so that the 16.5% CP diets were equivalent on a CP basis, whereas the MBM16.5, CM19 and SBM19 were equivalent on a UDP basis. Diets were compared with regard to protein degradability in the rumen and protein flow to, and digestion in, the intestine. Animals fed the CM and SBM diets had higher (P less than .05) ruminal levels of branched-chain VFA than the control diet. Ruminal ammonia nitrogen (N) concentrations were affected (P less than .05) by supplemental protein source and concentration (8.8, 10.9, 11.2, 11.2, 13.2 and 17.7 mM for B14, CM16.5, SBM16.5, MBM16.5, CM19 and SBM19, respectively). Ruminal OM digestion was affected (P less than .05) by protein source MBM16.5, which was lower than protein source in all other diets. Total N flow to the small intestine for the three diets formulated on a UDP equivalent basis was 224.0, 225.6 and 241.1 g N/d for MBM16.5, CM19 and SBM19, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Four diets containing 15% CP were formulated to study the effects of dietary carbohydrate and protein sources on N metabolism and carbohydrate fermentation by ruminal bacteria. Diets were supplied to eight dual-flow continuous culture fermenters during three experimental periods in a randomized complete block design. Six replications were obtained for each diet. Treatments were arranged as a 2 X 2 factorial with two carbohydrate and two protein sources. Carbohydrate sources were corn and barley and protein sources were soybean meal (SBM) and fish meal (FM). Approximately 40% of the dietary CP was derived from SBM or FM and corn or barley provided 39% of dietary DM. All diets contained 15% grass hay, 20% wheat straw, and 10.1 to 15.3% solka floc (DM basis). Interactions (P less than .05) were observed between dietary carbohydrate and protein sources, resulting in a depression of VFA production (moles/day) and digestion (percentage) of ADF and cellulose when the corn-FM diet was fed. True OM digestion (percentage) was higher (P less than .05) for SBM than for FM diets and for corn than for barley diets. Although dietary CP degradation (percentage) was higher (P less than .05) for SBM than for FM diets, non-NH3 N in the effluent (grams/day) was not different among diets due to a greater (P less than .05) bacterial N flow for SBM than for FM diets. Despite the lower amino acid (AA) intake (P less than .05) for corn than for barley diets and also for FM than for SBM diets, flows (grams/day) of total AA, essential AA (EAA), and nonessential AA (NEAA) were similar (P greater than .05) among diets. However, greater (P less than .05) total AA, EAA, and NEAA flows (percentage of AA intake) were found for corn than for barley diets and for FM than for SBM diets. It is concluded, therefore, that ruminal escape protein derived from corn or FM has a significant effect on manipulating AA leaving the ruminal fermentation.  相似文献   

17.
Eighty-eight yearling beef steers (308 +/- 1.4 kg) were used in two separate trials to determine the protein-sparing value of the N added to wheat straw during the ammoniation process and to determine the effects of supplementing ammoniated straw diets with energy and ruminal escape protein. In Exp. 1, steers were fed untreated straw (US) with either 0, 150, or 500 g of soybean meal (SBM) for 88 d. The addition of SBM to US diets increased (P less than .01) straw intake and average daily gains (ADG), indicating that N was limiting. When ammoniated straw (AS) was substituted for US, the N in the AS was used as efficiently as 500 g of SBM for growth. In Exp. 2, steers had ad libitum access to AS with three levels of supplemental corn (0, 1.23, or 2.45 kg DM.animal-1.d-1) either with or without .41 kg DM of corn gluten meal (CGM) added. Straw intake decreased (P less than .01) as the amount of corn in the diet was increased, but ADG increased (P less than .01) with the addition of corn. Straw consumption was not altered by the addition of CGM, but ADG was increased (P less than .01) by an average .35 kg by CGM. Rumen and blood N components indicated that the N from AS was contributing to the ruminal N pool and that CGM was compensating for microbial protein deficiencies postruminally.  相似文献   

18.
Five crossbred wethers (58 kg) fitted with cannulas in the rumen, duodenum, and ileum were used in a 5 x 5 Latin square design to study effects of feeding combinations of alkaline hydrogen peroxide-treated wheat straw (AHP-WS) and alfalfa hay at restricted intakes on site and extent of nutrient digestion. Additionally, flows and disappearance of N and amino acids (AA) in the small intestine were regressed on alfalfa nitrogen intake (ANI) to estimate alfalfa's contribution to postruminal N and AA supplies. Diets consisted of 80:20 forage:concentrate mixtures; diet designations were 80:0, 80% AHP-WS and no alfalfa; 60:20, 60% AHP-WS and 20% alfalfa; 40:40, 40% AHP-WS and 40% alfalfa; 20:60, 20% AHP-WS and 60% alfalfa; and 0:80, no AHP-WS and 80% alfalfa. A modest positive quadratic (P less than .05) response was noted for total tract digestibility (TTD) of OM; values were 76.5% for diets 80:0 and 0:80 vs 78% for diet 40:40. Ruminal digestibility (percentage of intake) of NDF and ADF increased in a quadratic manner from 43 and 30%, respectively, for diet 0:80 to 71 and 70%, respectively, for diet 80:0. Ruminal digestibility of fiber may have been enhanced due to linear (P less than .05) decreases in liquid and particulate dilution rates, resulting in increased ruminal residence time of fiber as alfalfa hay replaced AHP-WS. Liquid and particulate dilution rates decreased linearly from 6.4 and 5.2%/h, respectively, for diet 80:0 to 5.4 and 3.4%/h, respectively, for diet 0:80. Regression analysis of N data indicated that alfalfa N had a ruminal escape value of 26%.  相似文献   

19.
The effects of increasing dietary CP level on N retention (Exp. 1) and intestinal supply of amino acids (AA; Exp. 2) were studied in lambs fed diets based on alkaline hydrogen peroxide-treated wheat straw (AHPWS). Soybean meal (SBM) was substituted for corn to increase CP level in both experiments. In Exp. 1, an incomplete design for the two-way elimination of error was used to allot 24 ram lambs (mean BW = 25 kg) within breed to six CP levels (6, 8, 10, 12, 14, and 16% of DM). Neutral detergent fiber digestibility and N retention increased quadratically (P = .06 and P less than .01, respectively) with increasing CP level. Nitrogen retention, expressed as a percentage of N intake, was greatest for lambs fed 12% CP (20.7%) but was greatest for lambs fed 14% CP when expressed as grams per day (4.0 g/d). In Exp. 2, five multicannulated St. Croix lambs (34 kg) were used in a 5 x 5 Latin square design. Treatments were 8.5, 11, 13.5, 16, and 18.5% dietary CP. Chromic oxide was used as a digesta flow marker and purines were used as a bacterial marker. Protein level had no effect on extent of dietary CP degradation in the rumen (69 +/- 3.2%). True ruminal OM digestibility increased (P less than .01) linearly and ruminal fluid NH3 N concentration increased (P less than .01) quadratically with increasing CP level. Total, bacterial, and nonbacterial N and AA flows to the duodenum increased (P less than .05) linearly with increasing CP level. Duodenal AA profile (g/100 g total AA) was altered slightly. The essential AA valine, isoleucine, phenylalanine, lysine, and arginine increased (P less than .05) and methionine decreased (P less than .05) in proportion to other AA with increasing CP level. Flows of all essential AA increased with increasing CP level. Apparent small intestinal N and AA disappearance increased linearly (P less than .05) and apparent total tract N digestibility increased (P less than .01) quadratically with increasing CP level. These data are interpreted to indicate that maximal N retention and fiber digestibility in diets based on AHPWS are obtained at 12% CP, even though the intestinal supply of AA continues to increase with increasing CP level. Supplementation of diets based on AHPWS with an extensively degraded protein source (SBM) does not substantially alter the profile of AA entering the duodenum compared to the AA profile of bacterial protein.  相似文献   

20.
Eight cannulated wethers (BW = 52.5 +/- 5.7 kg) were used in a replicated 4 x 4 Latin square designed experiment to evaluate the effects of oscillating dietary protein concentrations on ruminal fermentation, site and extent of digestion, and serum metabolite concentrations. Four treatments consisted of a 13, 15, or 17% CP diet fed daily or a regimen in which dietary CP was oscillated between 13 and 17% on a 48-h basis (ACP). All diets consisted of 65% bromegrass hay (10.5% CP, 61.9% NDF, 37.2% ADF) plus 35% corn-based supplement and were formulated to contain the same amount of degradable intake protein (9.6% of DM) plus additional undegradable intake protein (SoyPLUS, West Central Cooperative, Ralston, IA) to accomplish CP levels above 13%. Each of four experimental periods were 16 d in duration with 12 d for diet adaptation followed by 4 d for sample collection. All wethers were fed at 3.0% of initial BW (DM basis) throughout the experiment, resulting in an average organic matter intake of 1.39 kg/d across treatments. When compared to the 15% CP daily treatment, feeding ACP had no effect (P > or = 0.10) on ruminal or lower tract N, NDF, ADF, or OM digestion. True ruminal OM digestion responded quadratically (P = 0.07) to increasing dietary CP, reaching a maximum of 52.0% of OM intake with the 15% CP treatment. Sheep fed ACP tended to have lower (P = 0.08) ruminal NH3 N concentrations and an overall higher (P = 0.0001) molar proportion of acetate compared to those fed 15% CP daily. Total VFA concentrations were not affected (P > or = 0.45) by increasing dietary CP. Microbial efficiency did not differ (P > or = 0.55); thus, bacterial N flow at the duodenum responded quadratically (P = 0.04) to increasing dietary CP. Nonbacterial N (P = 0.001) and total N (P = 0.01) flows at the duodenum and total tract N digestibility (P < or = 0.04) increased linearly as dietary CP increased. Wethers fed ACP maintained a lower (P = 0.002) serum glucose and lower (P = 0.0006) serum urea N compared to those fed 15% CP daily. Because the CP content of the diet was increased at the expense of corn, the response to increased CP observed in this experiment is most likely due to negative associative effects of supplemental starch on ruminal fermentation and microbial growth. Oscillating the CP content of the diet on a 48-h basis has little effect on digestion or N utilization in sheep compared with feeding the same quantity of protein on a daily basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号