首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了评价氟环唑在小麦生产上使用的残留安全性,建立了气相色谱-电子捕获检测器检测氟环唑在小麦植株、小麦籽粒及土壤中残留的分析方法,并对氟环唑在小麦植株、小麦籽粒和土壤中的最终残留量及小麦植株和土壤中的消解动态进行了研究。结果表明:在添加水平为0.01、0.1和2 mg/kg(小麦籽粒和土壤)和0.01、0.1和10 mg/kg(小麦植株)下,氟环唑的回收率为82%~93%,相对标准偏差为3.0%~9.7%。氟环唑在小麦植株、小麦籽粒和土壤中的定量限均为0.01 mg/kg。氟环唑在小麦植株和土壤中的消解半衰期分别为3.5~8.4和10~30 d。当以有效成分112.5 g/hm2的剂量施药2次、采收间隔期为21 d时,小麦籽粒中氟环唑的残留量为<0.05 mg/kg,低于中国制定的小麦中氟环唑的最大残留限量值(0.05 mg/kg)。建议氟环唑在小麦上使用时最大剂量为有效成分112.5 g/hm2,施药2次,安全间隔期为21 d。  相似文献   

2.
采用QuEChERS前处理与液相色谱-串联质谱 (LC-MS/MS) 技术,建立了糙米中氟唑环菌胺残留的分析方法。样品采用V(乙腈) : V(水)=80 : 20混合溶液涡旋提取,经PSA分散固相萃取净化,LC-MS/MS测定,外标法定量。结果表明:在0.001~0.1 mg/L范围内,氟唑环菌胺的质量浓度与对应的峰面积间线性关系良好,R2 > 0.996。在0.004、0.01和0.1 mg/kg添加水平下,氟唑环菌胺在糙米中的回收率为83%~95%,相对标准偏差 (RSD) 为3.9%~12%。以最小添加浓度确定氟唑环菌胺在糙米中的定量限 (LOQ) 为0.004 mg/kg,远低于国际食品法典委员会规定的最大残留限量 (MRL) 0.01 mg/kg。所建方法操作简单、准确度和灵敏度高,可用于糙米中氟唑环菌胺残留的检测。对中国6个省 (市) 40个糙米样品进行检测,氟唑环菌胺的残留量均低于LOQ 0.004 mg/kg。膳食风险评估结果表明,氟唑环菌胺目前在中国水稻上使用对一般人群的的健康风险很低。  相似文献   

3.
建立了小麦扬花期和收获期麦穗中氟唑菌酰羟胺超高效液相色谱-串联质谱法(UPLC-MS/MS)检测方法,明确了氟唑菌酰羟胺在小麦麦穗中的消解动态。试验结果表明,在室温条件下,当乙腈浓度为60%,液固比为20 mL/g,超声破碎时间为15 min,扬花期和收获期样品中氟唑菌酰羟胺提取量均达到较高水平,分别为3.34μg/g和1.12μg/g;利用空白加标试验,扬花期和收获期样品加标回收率为80.3%~115.8%,方法的检出限为0.03 ng/mL,定量限为0.15 ng/mL。氟唑菌酰羟胺在麦穗上的消解动态符合一级反应动力学方程,半衰期为3.2~4.4 d。收获后麦粒中氟唑菌酰羟胺残留量为0.12μg/g,低于美国规定的农药残留限量标准(0.3μg/g)。结果表明,氟唑菌酰羟胺用于小麦病害防治是安全的。  相似文献   

4.
苯醚·丙环唑30%乳油在稻田中的残留动态研究   总被引:2,自引:0,他引:2  
通过田间试验,研究了苯醚·丙环唑30%乳油在稻田中的残留动态过程,借助残留分析方法和气相色谱技术,得到添加回收率为80.1%~120.0%。苯醚甲环唑在稻田水、土壤及水稻植株中的半衰期分别为0.86、2.27、4.08d;丙环唑的半衰期分别为0.78、2.10、3.47d,说明这两种农药在稻田环境中易降解。最终残留试验结果表明苯醚·丙环唑30%乳油在推荐剂量条件下施药,农药的残留量不会对环境和人体的健康造成影响。  相似文献   

5.
建立了超高效液相色谱-串联质谱测定糙米、谷壳、稻秆、土壤和稻田水中环戊草酮残留的分析方法,结合田间试验研究了环戊草酮在稻田中的残留及消解动态。结果表明:在0.01~1 mg/L范围内,环戊草酮的质量浓度与相应的峰面积间呈良好的线性关系。在0.02、0.05和0.5 mg/kg添加水平下,环戊草酮在糙米、谷壳、稻秆、土壤和稻田水样品中的平均回收率在75%~95%之间,相对标准偏差在1.5%~9.5%之间,检出限 (LOD) 为0.01 ng,在糙米、谷壳、稻秆、土壤和稻田水中的最低检出浓度 (LOQ) 为0.02 mg/kg。浙江、山东和湖南3地2年的田间试验表明:环戊草酮在稻秆和土壤中的半衰期分别为4.2~9.0 d和7.0~11.6 d,其消解规律符合一级反应动力学方程。分别以有效成分含量375(低剂量) 和562.5 g/hm2(高剂量)2个剂量施用90 g/L环戊草酮悬浮剂1次,于收获成熟期采样检测发现,环戊草酮在糙米中的最终残留量均小于0.02 mg/kg,该研究结果可为制定环戊草酮在糙米中的最大残留限量值 (MRL) 提供数据支撑。  相似文献   

6.
应用超高效液相色谱-串联质谱(UPLC-MS/MS)建立了乙螨唑在柑桔和土壤中残留的分析方法,并研究了田间试验条件下乙螨唑在柑桔和土壤中的消解动态。样品采用乙腈提取,硅胶柱净化,UPLC-MS/MS检测,外标法(ESTD)定量。在0.002 ~1 mg/L质量浓度范围内,乙螨唑的仪器响应值与质量浓度呈良好线性关系,相关系数为0.998 9。该方法的最小检出量为6.0×10-6 μg,乙螨唑在柑桔和土壤中的最低检测浓度均为0.002 mg/kg。当乙螨唑在柑桔和土壤中的添加水平为0.002 ~1 mg/kg时,平均回收率为87.3% ~98.4%,相对标准偏差在5.5% ~8.6%之间。消解动态试验表明,乙螨唑的消解动态曲线符合一级动力学方程,在柑桔和土壤中的半衰期分别为5.6 ~7.6 d 和 5.3 ~8.6 d。  相似文献   

7.
为评价氯氟醚菌唑在黄瓜中残留产生的膳食摄入风险, 于2017年-2018年进行了2年12地规范残留试验, 建立了黄瓜中氯氟醚菌唑的超高效液相色谱-串联质谱(UPLC-MS/MS)分析检测方法, 并对我国一般人群进行了膳食摄入风险评估。样品经乙腈提取,C18净化, UPLC-MS/MS检测, 外标法定量。结果表明:在0.01~1 mg/kg添加水平下, 氯氟醚菌唑的平均回收率为90%~108%, 相对标准偏差(relative standard deviation, RSD)为3%~12%, 定量限(limit of quantification, LOQ)为 0.01 mg/kg。400 g/L氯氟醚菌唑悬浮剂按有效成分150 g/hm 2施药3次, 于末次施药后1、3、5 d采样测定, 黄瓜中氯氟醚菌唑残留量为<0.01~0.64 mg/kg。膳食摄入风险评价结果显示:我国一般人群的氯氟醚菌唑国家估计每日摄入量(national estimates of daily intake, NEDI)为0.217 0 mg, 风险商(risk quotient, RQ)为6.9%, 表明氯氟醚菌唑在黄瓜中残留不会对一般人群健康造成不可接受的风险。  相似文献   

8.
为研究吲唑磺菌胺在烟草中的残留消解特征,建立了采用Qu ECh ERS前处理与液相色谱-串联质谱(LC-MS/MS)检测相结合的烟叶中吲唑磺菌胺残留量的分析方法。样品经乙腈提取,N-丙基乙二胺(PSA)吸附剂净化,液相色谱-串联三重四级杆质谱法检测,外标法定量。结果表明:在0.01、0.1和10 mg/kg 3个添加水平下,吲唑磺菌胺在鲜烟叶和干烟叶中的平均回收率分别为88%~93%和93%~107%,相对标准偏差(RSD)分别为2.5%~13.9%和6.7%~7.4%,定量限(LOQ)分别为0.01和0.02 mg/kg。利用该方法分别于2013年和2014年检测了山东和四川烟叶中吲唑磺菌胺的残留消解动态和最终残留量。结果表明:吲唑磺菌胺在烟叶中的半衰期为5.1~9.8 d;按照有效成分105和157.5 g/hm2的剂量,分别施药3次和4次,距末次施药14 d后,烟叶中吲唑磺菌胺残留量为LOQ~5.95 mg/kg。  相似文献   

9.
为探明噁唑酰草胺及其3个代谢物(N-(2-氟苯基)-2-(4-羟基苯氧基)-N-甲基丙酰胺(HPFMPA)、N-(2-氟苯基)-2-羟基-N-甲基丙酰胺(HFMPA)和6-氯-苯并噁唑酮(6-CBO))在水稻上的最终残留量,在我国10个主要水稻产区开展了噁唑酰草胺的田间残留试验.建立了糙米、稻壳和稻秆中噁唑酰草胺及其代...  相似文献   

10.
建立25%氟吗啉·唑菌酯悬浮剂在人参土壤上残留分析方法。样品经过乙腈提取,弗罗里硅土层析柱净化,高效液相色谱法进行定量分析。此条件下氟吗啉和唑菌酯的平均回收率分别是87.9%~99.0%和89.2%~99.9%,相对标准偏差为2.7%~7.3%和1.9%~13.4%。氟吗啉在人参土壤中的降解半衰期为2.7~10.7d,唑菌酯的半衰期为0.3~18.4d。该方法简单,快速,适用于人参土壤中氟吗啉和唑菌酯的残留分析。  相似文献   

11.
本文采用高效液相色谱法,以乙腈加0.1%磷酸水溶液为流动相,使用Eclipse Plus C 18色谱柱和二极管阵列检测器,在210nm波长下对12%氟唑菌酰胺·氟环唑乳油进行分离和定量测定。结果表明,该分析方法条件下氟唑菌酰胺和氟环唑的线性相关系数分别为0.9997和0.9991,标准偏差分别为0.02和0.02,变异系数分别为0.31%和0.32%,平均回收率分别为100.18%和100.44%。  相似文献   

12.
采用高效液相色谱-串联质谱(HPLC-MS/MS)建立了水稻中多杀霉素的残留分析方法。样品经乙腈提取,乙二氨基-N-丙基硅烷(PSA)和石墨化碳黑(GCB)净化,HPLC-MS/MS检测。结果表明:多杀霉素A在0.006 ~1.2 mg/L范围内线性关系良好,相关系数(R2)为0.990 5;多杀霉素D在0.001~0.2 mg/L范围内线性关系良好, R2 为0.994 9。多杀霉素A和D的检出限(LOD)在田水中均为0.001 mg/L,在稻田土壤、水稻植株、糙米、稻壳和稻杆中均为0.005 mg/kg;多杀霉素A和D的定量限(LOQ)在田水中均为0.005 mg/L,在稻田土及各水稻基质中分别为0.06和0.01 mg/kg。在添加水平为0.005~6.0 mg/kg范围内,稻田土壤、田水及水稻各基质中多杀霉素A和D的平均回收率为72.9%~107.9%,相对标准偏差( RSD )为1.7%~13.5%。采用该方法对多杀霉素在田间水稻中的消解动态和最终残留进行了测定。结果表明,多杀霉素在稻田土壤、田水和水稻植株样品中的消解均符合一级动力学方程,半衰期分别约为7.5、1.2和 4.8 d,属于易降解农药。  相似文献   

13.
丙环唑在香蕉和土壤中的消解动态及残留安全性评价   总被引:4,自引:0,他引:4  
采用田间试验方法研究丙环唑在香蕉和土壤中的残留动态。超高效液相色谱-串联四极杆液质联用法进行(UPLC-MS/MS)定量定性分析。丙环唑在香蕉中的平均回收率为81.9%~100.2%;在香蕉全果中的平均回收率为72.8%~103.6%;在土壤中的平均回收率为81.9%~94.6%。动态结果表明:丙环唑在香蕉全果中比在土壤中消解快,其消解半衰期分在香蕉全果和土壤中分别为13.9d和23.3d。在香蕉上按照推荐剂量最多施药2次,采收期距最后一次施药40d,香蕉果肉中丙环唑残留量小于0.011mg/kg。低于中国规定的最高残留限量(MRL,0.1mg/kg),说明该药为低残留、易消解农药。  相似文献   

14.
采用气相色谱-电子捕获检测器(GC-ECD)测定了己唑醇在田水、土壤、水稻植株和糙米、稻壳样品中的消解动态及最终残留。田水样品用二氯甲烷萃取,土壤、水稻植株、糙米和稻壳样品用甲醇提取,提取液经柱层析净化、GC-ECD检测。当己唑醇在田水中的添加浓度为0.005~1.0mg/kg时,其回收率为94.38%~97.28%之间,相对标准偏差(RSD)为1.93%~2.87%,在土壤、植株、糙米和稻壳中的添加浓度为0.02~2.0mg/kg时,其平均回收率在86.20%~96.30%之间,RSD为2.25%~6.39%;己唑醇的最小检出量为2.0×10~(-11)g,在田水中的最低检测浓度为0.005mg/kg,土壤、水稻植株、糙米和稻壳中的最低检测浓度为0.02mg/kg。消解动态试验结果显示,己唑醇在水稻植株、土壤以及田水中的消解动态规律均符合一级动力学方程,其半衰期分别为4.12~7.33d,11.77~23.18d和2.89~7.17d;最终残留试验结果表明,药后45d糙米中的己唑醇最终残留量为0.085 7mg/kg,低于我国规定的最大残留限量值0.1mg/kg,建议在稻田上使用50%己唑醇可湿性粉剂时,施药剂量为75~112.5g.a.i/ha,施药2~3次,安全间隔期为45 d。  相似文献   

15.
本实验通过润湿分散剂、防冻剂、增稠剂等助剂的筛选,以及加工工艺的改变,最终完成了氟环唑60%悬浮剂的配方筛选。氟环唑60%悬浮剂最佳配方为:氟环唑60%,润湿分散剂5%,防冻剂2%,黄原酸胶0.05%,防腐剂0.1%,消泡剂0.5%,水补足100%。  相似文献   

16.
为了明确氟啶胺在冬瓜上使用后的消解规律和最终残留水平,在北京、山东、安徽、湖南、云南和广东6地开展了500 g/L氟啶胺悬浮剂在冬瓜上的最终残留试验,同时在其中的北京和安徽两个试验点开展了消解动态试验。样品经乙腈提取,N-丙基乙二胺 (PSA) 净化,采用超高效液相色谱-串联质谱 (UPLC-MS/MS) 测定,外标法定量。结果表明:在0.01~1 mg/kg添加水平下,氟啶胺在冬瓜上的平均回收率在89%~109%之间,相对标准偏差 (RSD) 在2.8%~12%之间,定量限 (LOQ) 为0.01 mg/kg;北京和安徽两地的消解动态试验结果显示,氟啶胺在冬瓜上降解半衰期分别为2.04和2.17 d;6地的最终残留试验结果显示,氟啶胺在冬瓜上的残留量在 相似文献   

17.
建立了高效液相色谱-串联质谱(HPLC-MS/MS)测定人参中仲丁灵残留的分析方法,并研究其在人参中的最终残留量与消解规律.样品经乙腈提取,NH2固相萃取柱净化,液相色谱-串联质谱仪检测,外标法定量.结果表明:在0.002~0.5 mg/L内,仲丁灵的质量浓度与对应的峰面积间线性关系良好,鲜人参和干人参在0.01、0....  相似文献   

18.
为明确手性农药氯氟醚菌唑(mefentrifluconazole,MFZ)在水稻环境中的立体选择性行为,本研究基于高效液相色谱-串联质谱(HPLC-MS/MS)法建立了氯氟醚菌唑对映体在水稻植株、根系、土壤和田水中的残留测定方法,并通过水稻环境盆栽模拟试验,考察了氯氟醚菌唑在水稻环境中的行为规律及微塑料对氯氟醚菌唑在水稻环境中的立体选择性及降解动态的影响。结果表明:氯氟醚菌唑对映体在手性柱Chiralpak IG上可完全分离,且在0.000 5~0.1 mg/L范围内,对映体的峰面积与相应的质量浓度间呈良好线性关系(R2均大于0.999),其在水稻环境样本中的平均回收率为76%~108%,相对标准偏差(RSD)为1.3%~12%。盆栽模拟试验结果表明,氯氟醚菌唑对映体在水稻植株、根系、土壤和田水中均无立体选择性差异(P>0.05);微塑料对氯氟醚菌唑在水稻环境中的立体选择性无显著影响(P>0.05),但可显著延长其在田水和水稻植株中半衰期。氯氟醚菌唑R体和S体在田水中的半衰期分别从6.7和6.7 d延长至11.6和11.7 d,在水稻植株中则分别从7....  相似文献   

19.
为评价呋虫胺在水稻生态系统中的残留与消解行为,分别在海南、湖南和黑龙江省3地进行了规范残留试验。建立了超高效液相色谱-串联质谱 (UPLC-MS/MS) 检测呋虫胺 (DNF) 及其代谢物1-甲基-3-[(3-四氢呋喃) 甲基]脲 (UF) 与1-甲基-3-[(3-四氢呋喃) 甲基]二氢胍盐 (DN) 在水稻稻株、土壤、田水、糙米和稻壳中残留的分析方法。样品经含体积分数为1%的乙酸水溶液或乙腈溶液提取,QuEChERS方法净化,以甲醇-水混合溶液为流动相梯度洗脱,多反应监测 (MRM) 模式扫描,外标法定量。结果表明:3种分析物的进样浓度与其峰面积之间呈良好线性相关,R2>0.999。DNF、UF和DN在稻株、土壤、田水、糙米和稻壳中的平均回收率在71%~102%之间,在稻株、土壤、田水和糙米中的相对标准偏差 (RSD) 在1.2%~8.3%之间,在稻壳中的RSD在4.4%~20%之间。3种分析物在稻株、土壤、田水、糙米和稻壳中的最低检测浓度 (LOQ) 分别为0.1 mg/kg、0.02 mg/kg、0.01 mg/L、0.02 mg/kg和0.1 mg/kg。DNF、UF和DN的最小检出量分别为1、0.4和4 pg。3种分析物的消解半衰期分别为:DNF在稻株上为0.41~2.7 d,土壤中为1.6~4.2 d,田水中为0.90~2.2 d;DN在稻株上为2.9~13 d,土壤中为64~65 d,田水中为4.2 d;UF在稻株上为0.43~3.1 d。20%呋虫胺悬浮剂以有效成分120~180 g/hm2的剂量于水稻抽穗期施用2~3次,施药间隔期21 d,分别于距末次施药后14 d与21 d采收,呋虫胺在糙米中的残留最大值为0.11 mg/kg,低于中国制定的其在糙米上的最大残留限量标准1 mg/kg。  相似文献   

20.
二氯喹啉草酮是经中国农业农村部批准登记的茎叶处理除草剂,迄今为止对其潜在的环境污染尚未见报道。本研究建立了一种采用QuEChERS前处理方法结合高效液相色谱-串联三重四极杆质谱 (HPLC-MS/MS) 联用技术检测二氯喹啉草酮在水稻植株、稻谷和土壤中残留的方法,并采用该方法测定了二氯喹啉草酮在水稻植株中的消解动态和最终残留。结果表明:二氯喹啉草酮的进样质量浓度与其峰面积间呈良好的线性相关,R2>0.99;其在植株、土壤、田水、稻壳和糙米中的平均回收率在78%~99%之间,相对标准偏差 (RSD) 在3.9%~11%之间,在植株、土壤、田水、稻壳和糙米中的最低检测浓度 (LOQ) 均为0.002 mg/kg。二氯喹啉草酮在水稻植株中的消解半衰期为6.7~12.8 d。以有效成分900~1 350 g/hm2的剂量于水稻苗期施用1次,在施药96 d后采集的土壤、稻壳和糙米中均未检测出二氯喹啉草酮。本研究结果可为水稻中二氯喹啉草酮最大残留限量值和田间使用规范的制定提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号