首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Use of blood and blood products   总被引:1,自引:0,他引:1  
It is sometimes necessary for the practitioner to transfuse the ruminant with whole blood or plasma. These techniques are often difficult to perform in practice and are time-consuming, expensive, and stressful to the animal. Acute loss of 20-25% of the blood volume will result in marked clinical signs of anemia, including tachycardia and maniacal behavior. The PCV is only a useful tool with which to monitor acute blood loss after intravascular equilibration with other fluid compartments has occurred. An acutely developing PCV of 15% or less may require transfusion. Chronic anemia with PCV of 7-12% can be tolerated without transfusion if the animal is not stressed and no further decline in erythrocyte mass occurs. Seventy-five per cent of transfused bovine erythrocytes are destroyed within 48 hours of transfusion. A transfusion rate of 10-20 ml/kg, recipient weight, is necessary to result in any appreciable increase in PCV. A nonpregnant donor can contribute 10-15 ml of blood/kg body weight at 2-4 week intervals. Sodium citrate is an effective anticoagulant, but acid citrate dextrose should be used if blood is to be stored for more than a few hours. Blood should not be stored more than 2 weeks prior to administration. Heparin is an unsuitable anticoagulant because the quantity of heparin required for clot-free blood collection will lead to coagulation defects in the recipient. Blood crossmatching is only rarely performed in the ruminant. In field situations, it is advisable to inject 200 ml of donor blood into the adult recipient and wait 10 minutes. If no reaction occurs, the rest of the blood can probably be safely administered as long as volume overload problems do not develop. Adverse reactions are most commonly seen in very young animals or pregnant cattle. Signs of blood or plasma transfusion reaction include hiccoughing, tachycardia, tachypnea, sweating, muscle tremors, pruritus, salivation, cough, dyspnea, fever, lacrimation, hematuria, hemoglobinuria, collapse, apnea, and opisthotonos. Intravenous epinephrine HCl 1:1000 can be administered (0.2 to 0.5 ml) intravenously or (4 to 5 ml) intramuscularly if clinical signs are severe. Pretreatment with antipyretics and slowing the administration rate may decrease the febrile response. Blood or plasma administered too rapidly will also result in signs of cardiovascular overload, acute heart failure, and pulmonary hypertension and edema. Furosemide and slower administration of blood or plasma should alleviate this problem.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
It is sometimes necessary for the practitioner to transfuse the ruminant with whole blood or plasma. These techniques are often difficult to perform in practice, are time-consuming, expensive, and stressful to the animal. Acute loss of 20% to 25% of the blood volume will result in marked clinical signs of anemia, including tachycardia and maniacal behavior. The PCV is only a useful tool with which to monitor acute blood loss after intravascular equilibration with other fluid compartments has occurred. An acutely developing PCV of 15% or less may require transfusion. Chronic anemia with PCV of 7% to 12% can be tolerated without transfusion if the animal is not stressed and no further decline in erythrocyte mass occurs. Seventy-five percent of transfused bovine erythrocytes are destroyed within 48 hours of transfusion. A transfusion rate of 10 to 20 mL/kg recipient weight is necessary to result in any appreciable increase in PCV. A nonpregnant donor can contribute 10 to 15 mL of blood/kg body weight at 2- to 4-week intervals. Sodium citrate is an effective anticoagulant, but acid citrate dextrose should be used if blood is to be stored for more than a few hours. Blood should not be stored more than 2 weeks prior to administration. Heparin is an unsuitable anticoagulant because the quantity of heparin required for clot-free blood collection will lead to coagulation defects in the recipient. Blood cross-matching is only rarely performed in the ruminant. In field situations, it is advisable to inject 200 mL of donor blood into the adult recipient and wait 10 minutes. If no reaction occurs, the rest of the blood can probably be safely administered as long as volume overload problems do not develop. Adverse reactions are most commonly seen in very young animals or pregnant cattle. Signs of blood or plasma transfusion reaction include hiccoughing, tachycardia, tachypnea, sweating, muscle tremors, pruritus, salivation, cough, dyspnea, fever, lacrimation, hematuria, hemoglobinuria, collapse, apnea, and opisthotonos. Intravenous epinephrine HCl 1:1000 can be administered (0.2 to 0.5 mL) intravenously or (4 to 5 mL) intramuscularly (preferable) if clinical signs are severe. Pretreatment with antipyretics and slowing the administration rate may decrease the febrile response. Blood or plasma administered too rapidly will also result in signs of cardiovascular overload, acute heart failure, and pulmonary hypertension and edema. Furosemide and slower administration of blood or plasma should alleviate this problem. Administration rates have been suggested starting from 10 mL/kg/hr; faster rates may be necessary in peracute hemorrhage. Plasma should be administered when failure of absorption of passive maternal antibody has occurred or when protein-loosing enteropathy or nephropathy results in a total protein of less than 3 g/dL or less than 1.5 g albumin/dL. Plasma can be stored at household freezer temperatures (-15 to -20 degrees C) for a year; coagulation factors will be destroyed after 2 to 4 months when stored in this manner. To maintain viability of coagulation factors, plasma must be stored at -80 degrees C for less than 12 months. When administering plasma, a blood donor set with a built-in filter should always be used. When bovine plasma is thawed, precipitants form in the plasma and infusion of these microaggregates may result in fatal reactions in the recipient.  相似文献   

3.
4.
5.
6.
7.
8.
动物机体的外周血可用于疾病的诊断、科研实验及抗血清的制备。普通的采血方法通常易交叉污染、溶血或凝血等,而真空采血避免上述情况,特别是采血管内含有负压对于采血十分有利,适合于宠物血液化验、中等大小试验动物血液分析。  相似文献   

9.
The purpose of this study was to evaluate changes in systolic arterial blood pressure (SABP) immediately after collection of blood for transfusion in retired racing Greyhounds. We prospectively evaluated 19 blood donor Greyhounds before and after the collection of a unit (450 mL) of blood. The SABP was measured with Doppler in the right forearm after the dogs had been in the blood collection room for a few minutes (PRE-FLOOR) and again 5-10 minutes after the dogs were placed on the table where they would be bled (PRE-TABLE). A total of 3-5 minutes after completing the blood collection, the SABP was measured again while the dogs were still in lateral recumbency on the table (POST-TABLE) and once more 60-90 minutes later, when the dogs were on the floor after completing the donation (POST-FLOOR). All dogs were monitored for clinical signs of hypotension, including depression, weakness, collapse, and pallor, for a minimum of 2 hours after donation. There was a significant difference in SABP for the group between PRE-FLOOR and POST-TABLE (P = .02) and between PRE-TABLE and POST-TABLE determinations (P = .01). There were no significant differences for any of the other time points; there were no adverse events. Therefore, we conclude that the collection of 450 mL of blood from normal Greyhounds results in a short-lived yet significant decrease in SABP, but the likelihood of adverse events is negligible.  相似文献   

10.
11.
12.
The accuracy of a portable blood gas analyzer (OPTI 1) was evaluated using canine blood and aqueous control solutions. Sixty-four arterial blood samples were collected from 11 anesthetized dogs and were analyzed for pH, partial pressure of carbon dioxide (PCO2) partial pressure of oxygen (PO2), and bicarbonate concentration ([HCO3-]) values by the OPTI 1 and a conventional blood gas analyzer (GASTAT 3). The conventional analyzer was considered as a standard against which the OPTI 1 was evaluated. Comparison of OPTI 1 results with those of GASTAT 3 by linear regression analysis revealed a high degree of correlation with the GASTAT 3 (r = .90-.91). The mean +/- SD of the differences between OPTI 1 and GASTAT 3 values was -0.008 +/- 0.017 for pH, -0.88 +/- 3.33 mm Hg for PCO2, 3.71 +/- 6.98 mm Hg for PO2, and -0.34 +/- 1.45 mEq/L for [HCO3-]. No statistically significant difference was found between the OPTI 1 and the GASTAT 3. Agreement between these 2 methods is within clinically acceptable ranges for pH, PCO2, PO2, and [HCO3-]. The coefficients of variation for measured pH, PCO2, and PO2 values of 3 aqueous control solutions (acidic, normal, and alkalotic) analyzed by the OPTI 1 ranged from 0.047 to 0.072% for pH, 0.78 to 1.81% for PCO2, and 0.73 to 2.77% for PO2. The OPTI 1 is concluded to provide canine blood gas analysis with an accuracy that is comparable with that of conventional benchtop blood gas analyzers.  相似文献   

13.
Techniques used in sampling and storage of a blood sample for pH and gas measurements can have an important effect on the measured values. Observation of these techniques and principles will minimize in vitro alteration of the pH and blood gas values. To consider that a significant change has occurred in a pH or blood gas measurement from previous values, the change must exceed 0.015 for pH, 3 mm Hg for PCO2, 5 mm Hg for PO2, and 2 mEq/L for [HCO-3] or base excess/deficit. In vitro dilution of the blood sample with anticoagulant should be avoided because it will alter the measured PCO2 and base excess/deficit values. Arterial samples should be collected for meaningful pH and blood gas values. Central venous and free-flowing capillary blood can be used for screening procedures in normal patients but are subject to considerable error. A blood sample can be stored for up to 30 minutes at room temperature without significant change in acid-base values but only up to 12 minutes before significant changes occur in PO2. A blood sample can be stored for up to 3.5 hours in an ice-water bath without significant change in pH and for 6 hours without significant change in PCO2 or PO2. Variations of body temperatures from normal will cause a measurable change in pH and blood gas values when the blood is exposed to the normal water bath temperatures of the analyzer.  相似文献   

14.
Blood coagulation is a basic physiological defense mechanism that occurs in all vertebrates to prevent blood loss following vascular injury. In all species the basic mechanism of clot formation is similar; when endothelium is damaged a complex sequence of enzymatic reactions occurs that is localized to the site of trauma and involves both activated cells and plasma proteins. The reaction sequence is initiated by the expression of tissue factor on the surface of activated cells and results in the generation of thrombin, the most important enzyme in blood clot formation. Thrombin converts soluble fibrinogen, via soluble fibrin monomers, into the insoluble fibrin that forms the matrix of a blood clot as well as exerting positive-feedback regulation that effectively promotes additional thrombin generation that facilitates the rapid development of a thrombus. Both spontaneous and trauma-induced haemorrhagic episodes can develop in all mammals with inherited or acquired abnormalities in one or more of the coagulant proteins. Experimental studies with plasma from a wide range of species have led to the conclusion that there are extensive differences in the rates of thrombin generation and fibrin formation among species. However, current evidence suggests that at least some of these quantitative differences are likely due to the use of non-species specific laboratory reagents. Although the individual proteins involved in the procoagulant pathways exhibit similar functions in all animals, differences in amino acid sequence cause incomplete homology and varying degrees of immunological cross-reactivity for the same protein across species.  相似文献   

15.
喷雾干燥血浆蛋白粉和血球蛋白粉是两种来源于动物血液的优质动物蛋白质。本文通过分析生产工艺和研究欧盟对待血液产品的历史来说明动物血液制品的安全性主要受原料来源、加工工艺、管理水平3个方面影响。  相似文献   

16.
17.
18.
Capillary sampling in swine can be performed as an accurate assay of arterial blood gases. Studies with swine provided results similar to, or slightly more favorable than, those reported for human beings, depending upon which cutaneous technique was used on human beings. On the basis of free flow or arterilization of the cutaneous sample and of the correlation between capillary and arterial pH, CO2 partial pressure (PCO2), and O2 partial pressure (PO2) values, the capillary sampling technique of complete incisement of a 2-mm section from the tip of the warmed porcine ear could be a substitution technique for arterial blood sampling. Free flow with this technique was maximized and high correlation coefficients (r) for pH (r = 0.96), PCO2 (r = 0.82), and PO2 (r = 0.90) capillary-arterial values (n = 37) were obtained.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号