首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The annual plant Impatiens glandulifera (Himalayan balsam) is the most widespread invasive non‐native weed in the British Isles. Manual control is widely used, but is costly and laborious. Recently, biological control using the rust fungus Puccinia komarovii var. glanduliferae has been trialled. We designed an experiment to assess the impact of these control methods on invertebrate communities in relation to unmanaged and uninvaded habitats, and to determine whether mycorrhizal inoculation aided post‐control recovery of these communities. Sixty invaded and twenty uninvaded field soil blocks were transplanted to the experiment site, where a mycorrhizal inoculum was added to half of all blocks. Biological and mechanical control treatments were applied to twenty invaded blocks independently; the twenty remaining invaded blocks were left intact. Above‐ and belowground invertebrate samples were collected from the blocks at the end of the growing season. Overall, aboveground invertebrate abundance increased with the removal of I. glandulifera, and several groups showed signs of recovery within one growing season. The effect of mechanical control was more variable in belowground invertebrates. Biological control did not affect aboveground invertebrate abundance but resulted in large increases in populations of belowground Collembola. Our experiment demonstrates that mechanical removal of I. glandulifera can cause rapid increases in invertebrate abundance and that its biological control with P. komarovii var. glanduliferae also has the potential to benefit native invertebrate communities.  相似文献   

4.
The rust fungus, Puccinia komarovii var. glanduliferae, has been introduced into the UK for biological control of the invasive weed, Impatiens glandulifera (Himalayan balsam). However, establishment of the pathogen has differed across the country, which may be partly explained by variation in plant genotype. The aim of this study was to examine whether there is a further layer of phenotypic resistance, provided by indigenous foliar endophytic fungi. Culturable endophytes were isolated from a number of different balsam populations, and the commonest species were inoculated into ‘clean’ balsam plants, to test their interactions with the rust. We found that endophyte communities within balsam are low in diversity and become more dissimilar with increasing distance between populations. Three endophytes (Colletotrichum acutatum, Alternaria alternata and Cladosporium oxysporum) were common and appeared to be antagonistic to the rust, reducing pustule number and mitigating the effect of the pathogen on plant biomass. I. glandulifera thus partially conforms to the endophyte-enemy release hypothesis, in that as an introduced species, it has an impoverished endophyte complement, acquired from the local environment. However, these endophytes represent a potential barrier to effective biological control and future weed control strategies need to find strains of rust that can overcome plant genetic resistance and the overlaying phenotypic resistance, conferred by endophytes. Future classical biological control programmes of weeds must therefore take into account the fungal bodyguards that invasive species may acquire in their introduced ranges.  相似文献   

5.
Impatiens glandulifera is one of the most widespread invasive plant species in the UK. Although aspects of its biology are known, there is little information about its association with microbial communities, both above ground and below ground. Furthermore, it is unknown whether this species exhibits any form of plant–soil feedback (PSF), commonly seen in other invasive weeds. We conducted a PSF experiment, in which plants of I. glandulifera were grown in soil that supported the species and compared with plants grown in a control soil from the same locality. Soil nutrients were measured, and the soil and foliar microbial communities were assessed. Impatiens glandulifera grew larger and faster in conditioned soil compared with the control. Higher levels of phosphate were also found in conditioned soils. Arbuscular mycorrhizal fungal (AMF) colonisation was lower in conditioned soils, suggesting that I. glandulifera may rapidly alter AMF communities in invaded areas. PSFs had a significant effect on the foliar endophyte community, with clear separation of species between conditioned and control soils. These results show that I. glandulifera displayed a positive PSF and the PSF mechanism extended beyond the soil microbial community to affect foliar endophytes. The observed increase in endophytes in plants grown in conditioned soil could enhance resistance to herbivory, thus further accentuating the invasive properties of this species.  相似文献   

6.
为明确禾草内生真菌和丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)互作对多年生黑麦草Lolium perenne生长发育及叶斑病的影响,设置禾草内生真菌处理(由带有和不带禾草内生真菌种子建立)、AMF(幼套球囊霉Claroideoglomus etunicatum和根内球囊霉Rhizophagus intraradices)单独接种和混合接种处理及不接菌处理(对照),并在植物生长6周后接种或不接种多年生黑麦草叶斑病病原菌根腐离蠕孢Bipolaris sorokiniana,测定各处理多年生黑麦草的发病率、叶绿素含量、净光合速率、水分利用效率、AMF侵染率、P含量和生物量。结果表明:接种病原菌2周后,多年生黑麦草叶斑病的发病率为25.00%~38.75%,禾草内生真菌和幼套球囊霉均在一定程度上降低了多年生黑麦草的发病率,二者共同作用时发病率显著降低了35.48%。禾草内生真菌与AMF互作能在一定程度上提高植物叶绿素含量,促进光合作用,并促进P吸收和植物生长,二者的互作效应因禾草内生真菌与AMF组合而异,但均优于二者单独使用时的效应,其中禾草内生真菌与幼套球囊霉互作对多年生黑麦草生长及叶斑病防治的效果最好。  相似文献   

7.
Arbuscular mycorrhizal(AM)fungi penetrate the cortical cells of the roots of vascular plants,and are widely distributed in soil.The formation of these symbiotic bodies accelerates the absorption and utilization of mineral elements,enhances plant resistance to stress,boosts the growth of plants,and increases the survival rate of transplanted seedlings.We studied the effects of various arbuscular mycorrhizae fungi on the growth and development of licorice(Glycyrrhiza glabra).Several species of AM,such as Glomus mosseae,Glomus intraradices,and a mixture of fungi(G.mosseae,G.intraradices,G.cladoideum,G.microagregatum,G.caledonium and G.etunicatum)were used in our study.Licorice growth rates were determined by measuring the colonization rate of the plants by the fungi,plant dry biomass,phosphorus concentration and concentration of secondary metabolites.We established two cloned strains of licorice,clone 3(C3)and clone 6(C6)to exclude the effect of genotypic variations.Our results showed that the AM fungi could in fact increase the leaf and root biomass,as well as the phosphorus concentration in each clone.Furthermore,AM fungi significantly increased the yield of certain secondary metabolites in clone 3.Our study clearly demonstrated that AM fungi play an important role in the enhancement of growth and development of licorice plants.There was also a significant improvement in the secondary metabolite content and yield of medicinal compounds from the roots.  相似文献   

8.
Arbuscular mycorrhizal(AM)fungi penetrate the cortical cells of the roots of vascular plants,and are widely distributed in soil.The formation of these symbiotic bodies accelerates the absorption and utilization of mineral elements,enhances plant resistance to stress,boosts the growth of plants,and increases the survival rate of transplanted seedlings.We studied the effects of various arbuscular mycorrhizae fungi on the growth and development of licorice(Glycyrrhiza glabra).Several species of AM,such as Glomus mosseae,Glomus intraradices,and a mixture of fungi(G.mosseae,G.intraradices,G.cladoideum,G.microagregatum,G.caledonium and G.etunicatum)were used in our study.Licorice growth rates were determined by measuring the colonization rate of the plants by the fungi,plant dry biomass,phosphorus concentration and concentration of secondary metabolites.We established two cloned strains of licorice,clone 3(C3)and clone 6(C6)to exclude the effect of genotypic variations.Our results showed that the AM fungi could in fact increase the leaf and root biomass,as well as the phosphorus concentration in each clone.Furthermore,AM fungi significantly increased the yield of certain secondary metabolites in clone 3.Our study clearly demonstrated that AM fungi play an important role in the enhancement of growth and development of licorice plants.There was also a significant improvement in the secondary metabolite content and yield of medicinal compounds from the roots.  相似文献   

9.
In 2014, the rust fungus Puccinia komarovii var. glanduliferae, native to the foothills of the Himalayas from Kashmir to Western Nepal, became the first fungal agent to be released into Europe for the classical biological control of a non-native weed. The target, Impatiens glandulifera or Himalayan balsam, is a prolific invader of riparian habitats in Europe and North America. During the period 2015–2018, a strain of the rust from India was released at a total of 36 sites, in 17 counties in England and Wales. There was limited field infection in 2015 and inoculation experiments conducted under controlled conditions revealed significant variation in the susceptibility of plant populations to the rust, with some showing immunity. Subsequently, a second strain of the rust from Pakistan was released in 2017 and was found to infect a different cohort of Himalayan balsam populations. The rust mass production methodology, and field inoculation and monitoring protocol, are detailed, and plants were tested for susceptibility to both rust strains prior to field release. Levels of foliar infection at selected sites in 2017 and 2018 are presented, as well as seedling infection rates in the spring of 2019. The results show that the rust is able to overwinter and establish populations in stands of Himalayan balsam in England. The issues involved with measuring the impact of the biological control agent are discussed.  相似文献   

10.
荒漠生态系统中丛枝菌根真菌多样性   总被引:1,自引:2,他引:1  
到目前为止,在全球荒漠生态系统中,共报道了69个科389种丛枝菌根真菌的寄主植物,其中,Compositae,Gramineae和Leguminosae 3个科的植物为荒漠生态系统中丛枝菌根真菌寄主植物的优势类群;共发表了7个属的89种丛枝菌根真菌,其中,Acaulospora和Glomus 属的真菌为荒漠生态系统中的优势类群.在此基础上,分析了荒漠生态系统中AM真菌多样性研究中存在的问题,并探讨了荒漠生态系统中AM真菌的研究方向.  相似文献   

11.
Over the last decades, tillage, chemical fertilizers, and pesticides have reduced the beneficial fungal population size in arable soils. Though soil inoculation can be a practical way to restore arbuscular mycorrhizal fungi (AMF) population size, weeds may also be benefited, as well. This study was aimed to evaluate the effect of three AMF species (Funneliformis mosseae, Rhizoglomus fasciculatum, and Rhizoglomus intraradices) on photosynthetic rate, secondary metabolites content, reproductive organs percentage and nutrient uptake in Solanum nigrum L. and Digitaria sanguinalis L. weed species. Our results showed species variation in response to AMF inoculation, so that, while inoculation with R. intraradices fungal species decreased total biomass in S. nigrum plants significantly, it increased total biomass of D. sanguinalis plants by 26–49%. In addition, inoculation with F. mosseae species increased phenol, anthocyanin, and total terpenoid content in S. nigrum plants much more than D. sanguinalis. Increased photosynthetic rate, secondary metabolites content, and flowering percentage in AMF‐inoculated S. nigrum plants show the enhanced competitive ability and allelopathic potential of this weed when associated with AMF, which makes it a good competitor against other plant species in the environment.  相似文献   

12.
为明确丛枝菌根(arbuscular mycorrhizal,AM)真菌对加拿大一枝黄花Solidago canadensis与本地菌根植物和非菌根植物种间竞争格局的调控作用,采用温室盆栽试验,通过接种摩西球囊霉Glomus mosseae(GM)、根内球囊霉G. intraradices(GI)及其混合菌种(GM+GI)3种处理,分析AM真菌对加拿大一枝黄花与本地菌根植物玉米Zea mays和非菌根植物油菜Brassica campestris种间作用的影响。结果表明:与对照相比,接种AM真菌均显著提高了加拿大一枝黄花和玉米的菌根侵染率,菌根侵染率为13.720%~50.015%,且前者的菌根侵染率明显高于后者。单独种植时,与对照相比,接种AM真菌尤其是接种混合菌种显著提高了加拿大一枝黄花的株高、叶片数和总干重。在加拿大一枝黄花与玉米混合种植时,与单独种植相比,加拿大一枝黄花的株高、叶片数、根长和总干重均较低;同时,与对照相比,接种AM真菌显著提高了玉米的相对竞争强度而对加拿大一枝黄花的相对竞争强度没有显著影响。在加拿大一枝黄花和油菜混合种植时,与对照相比,接种AM真菌则显著提高了加拿大一枝黄花的株高、叶片数、净光合速率和总干重;同时,接种AM真菌促进了入侵种的竞争优势而抑制了非菌根植物油菜的生长。说明加拿大一枝黄花与本地种的竞争格局受到与之混生物种的菌根依赖性强度以及AM真菌的种类差异影响。  相似文献   

13.
In the semi-arid and arid regions of northern China,geochemical behavior of the aeolian deposit is closely related to climatic and environmental changes,which was used to reconstruct the past history of environmental evolution and possibly forcing mechanisms.However,the related result was still scarce due to the lack of detailed geochemical analysis results in the desert sediments.In the present study,we systematically analyzed the geochemical components and parameters of the paleo-aeolian sand dune and modern mobile sand deposits in the Mu Us Desert and discuss the climatic variation inferred from the paleo-aeolian sand dune during the past 4.2 ka BP.The results indicated that (1) geochemical composition of the sandy deposits were dominated by SiO_2,Al_2O_3 and Na_2O and the deposits probably originated from the widespread upper continental crust (UCC) and were formed by long-term weathering,transport and re-deposition;(2) these sandy deposits were subjected to weaker weathering or uneven weathering under cold and dry conditions,and had highly similar material sources and degrees of weathering and leaching in general;and (3) the direct OSL (Optically Stimulated Luminescence) dating ages and geochemical parameters from the palaeosol-aeolian sand dune indicated that the regional climate change experienced several typically cold and warm intervals.These intervals are 4.2,2.8 ka BP and Little Ice Age and Medieval Warm Period,which probably attributed to periodic variations of the Asian summer monsoonal strength and cold events of the northern Atlantic Ocean in low and high latitudes of the Northern Hemisphere.Our results suggest that the development of the sand dune in the Mu Us Desert provided a suitable archive for understanding the past local climatic change,which is linked to the global climatic change.  相似文献   

14.
豇豆与锈菌互作中的活性氧代谢研究   总被引:8,自引:0,他引:8  
 本文分析了不同抗性水平的豇豆(Vigna sesquipdalis Wight)品种与锈菌(Uromyces vignae Barcl)互作中活性氧(ac-tive oxygen species,AOS)的发生、防御酶活性及膜脂过氧化水平的变化规律及其与豇豆抗锈病性的关系。结果表明,在接种后,免疫品种(益农)和感病品种(揭上和金迪)的超氧物歧化酶(superoxide dismutase,SOD)比活性均升高,且升高幅度都在12 h出现高峰;抗病品种(金山和特青)开始时降低,至12h时回升,在24 h(高抗)和48 h(中抗)出现高峰;在24 h时,免疫和抗病品种的SOD比活性高于感病品种。在接种后12 h内,免疫和抗病品种的过氧化氢酶(catalase,CAT)比活性都下降;而感病品种均上升,并在12 h出现第1个高峰。受锈菌侵染后,豇豆各品种都产生超氧阴离子(superoxide anion,O2·),在多数测试时段中,免疫和抗病品种的O2·产率净变化值低于感病品种。丙二醛(malondialdehyde,MDA)含量变化幅度与品种抗性呈负相关,与O2·产率的变化趋势基本相吻合。这些结果表明AOS代谢在豇豆与锈菌互作中起重要作用。  相似文献   

15.
Cyanobacteria (blue-green algae) and eukaryote algae occur in freshwater, marine, and terrestrial (soil) habitats. In fact, these microorganisms comprise most of the world's biomass. Although the cyanobacteria are mostly photoautotrophic, some are facultative heterotrophs, capable of growing on certain substrates in darkness. Also, some are non-phototrophic and hence, are obligate heterotrophs. A number of cyanobacteria and eukaryote algae, particularly macroalgae, produce various, biologically active compounds. These include antibiotics which in laboratory tests inhibited bacteria and fungi that incite diseases of humans. In addition, the following fungi which are of interest to plant pathologists, were inhibitedin vitro by substances produced by various cyanobacteria: The saprophytesChaetomium globosum, Cunninghamella blakesleeana, andAspergillus oryzae and the plant pathogensRhizoctonia solani andSclerotinia sclerotiorum. Extracts from seaweeds (macroalgae) sprayed on plants have been reported to reduce the incidence ofBotrytis cinerea (gray mold) on strawberries,Erysiphe polygoni (powdery mildew) on turnips, and damping-off of tomato seedlings. Because many cyanobacteria and algae produce a large number of antibacterial and antifungal materials, are almost never a threat to the environment, and many can be grown in quantity in mass culture, they are suitable candidates for exploitation as biocontrol agents of plant pathogenic bacteria and fungi. Much additional work remains to be done however, to thoroughly evaluate cyanobacteria and algae and their products for this role.  相似文献   

16.
17.
Invasive species are one of the greatest economic and ecological threats to agriculture and natural areas in the US and the world. Among the available management tools, biological control provides one of the most economical and long‐term effective strategies for managing widespread and damaging invasive species populations of nearly all taxa. However, integrating biological control programs in a more complete integrated pest management approach that utilizes increased information and communication, post‐release monitoring, adaptive management practices, long‐term stewardship strategies, and new and innovative ecological and genetic technologies can greatly improve the effectiveness of biological control. In addition, expanding partnerships among relevant national, regional, and local agencies, as well as academic scientists and land managers, offers far greater opportunities for long‐term success in the suppression of established invasive species. In this paper we direct our recommendations to federal agencies that oversee, fund, conduct research, and develop classical biological control programs for invasive species. By incorporating these recommendations into adaptive management strategies, private and public land managers will have far greater opportunities for long‐term success in suppression of established invasive species. © 2016 Society of Chemical Industry  相似文献   

18.
Coprophilous fungi are a large group of saprotrophic fungi mostly found in herbivore dung. The number of these fungi undergoing investigation is continually increasing, and new species and genera continue to be described. Dung‐inhabiting fungi play an important ecological role in decomposing and recycling nutrients from animal dung. They produce a large array of bioactive secondary metabolites and have a potent enzymatic arsenal able to utilise even complex molecules. Bioactive secondary metabolites are actively involved in interaction with and defence against other organisms whose growth can be inhibited, resulting in an enhanced ecological fitness of producer strains. Currently, these antibiotics and bioactive secondary metabolites are of interest in medicine in particular, while very little information is available concerning their potential use in agriculture. This review introduces the ecology of dung‐inhabiting fungi, with particular emphasis on the production of antibiotic compounds as a means to compete with other microorganisms. Owing to the fast pace of technological progress, new approaches to predicting the biosynthesis of bioactive metabolites are proposed. Coprophilous fungi should be considered as elite candidate organisms for the discovery of novel antifungal compounds, above all in view of their exploitation for crop protection. © 2015 Society of Chemical Industry  相似文献   

19.
许瑾 《杂草科学》2014,(2):41-43
本文全面总结了光荚含羞草在我国的分布现状,列出了其在一些地区的标本记录,分析了其入侵的原因,并提出防控建议。  相似文献   

20.
In this study, we used Parthenium hysterophorus and one of its biological control agents, the winter rust (Puccinia abrupta var. partheniicola) as a model system to investigate how the weed may respond to infection under a climate change scenario involving an elevated atmospheric CO2 (550 μmol mol?1) concentration. Under such a scenario, P. hysterophorus plants grew significantly taller (52%) and produced more biomass (55%) than under the ambient atmospheric CO2 concentration (380 μmol mol?1). Following winter rust infection, biomass production was reduced by 17% under the ambient and by 30% under the elevated atmospheric CO2 concentration. The production of branches and leaf area was significantly increased by 62% and 120%, under the elevated as compared with ambient CO2 concentration, but unaffected by rust infection under either condition. The photosynthesis and water use efficiency (WUE) of P. hysterophorus plants were increased by 94% and 400%, under the elevated as compared with the ambient atmospheric CO2 concentration. However, in the rust‐infected plants, the photosynthesis and WUE decreased by 18% and 28%, respectively, under the elevated CO2 and were unaffected by the ambient atmospheric CO2 concentration. The results suggest that although P. hysterophorus will benefit from a future climate involving an elevation of the atmospheric CO2 concentration, it is also likely that the winter rust will perform more effectively as a biological control agent under these same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号