首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is proposed which follows Darrah's experimental procedure and takes advantage of a mathematical solution provided by Carslaw & Jaeger to estimate the diffusion coefficients of adsorbed and non-adsorbed solutes in soil. The method requires only the values of the concentration of the solute at the input face of a uniform column of soil, Cs, and of the total amount, Qt, that has entered the soil after a specified time during which the surface of the block is in contact with a thin porous pad containing a known initial amount of solute, Q0, at concentration C0, expressed in the same units as Cs. In the Cs/C0 vs. Qt/Q0 space there is a unique relationship between the effective diffusion coefficient, De, of the solute in the soil and the contact conductance for this solute, h, between the pad and the soil surface. The proposed procedure is firstly to determine De, and h for a non-adsorbed solute in the experimental soil using the experimental values of Cs/C0 and Q/Q for that solute. This value of De, gives the diffusion impedance factor for the solute in the soil, f, which is assumed also to apply to adsorbed solutes. A first estimate of the effective diffusion coefficient of an adsorbed solute, 1Dea, is then made using f and the diffusion coefficient of the free solute in water, DL, obtained from the literature (i.e. 1Dea= DLf). Only if the solute is weakly adsorbed will the values of Cs/C0, and Qt/Q0 lie in Cs/C0, vs. Qt/Q0, space as defined by 1Dea and the contact conductance, h. Instead a second space relating Cs/C0 and Qt/Q0, is now constructed from nominated values of h and De, where De, is defined in terms of 1Dea, the adsorption coefficient, F , and the volumetric moisture content of the soil, θ. The position of the experimental values of Cs/C0, and Qt/Q0 within this new space defines h and the actual De, and F of the solute as it diffuses and is adsorbed in the soil. The advantages and limitations of the method are discussed. In particular, the method assumes that the adsorption process is linear and reversible.  相似文献   

2.
Microbial biomass, respiratory activity, and in‐situ substrate decomposition were studied in soils from humid temperate forest ecosystems in SW Germany. The sites cover a wide range of abiotic soil and climatic properties. Microbial biomass and respiration were related to both soil dry mass in individual horizons and to the soil volume in the top 25 cm. Soil microbial properties covered the following ranges: soil microbial biomass: 20 µg C g–1–8.3 mg C g–1 and 14–249 g C m–2, respectively; microbial C–to–total organic C ratio: 0.1%–3.6%; soil respiration: 109–963 mg CO2‐C m–2 h–1; metabolic quotient (qCO2): 1.4–14.7 mg C (g Cmic)–1 h–1; daily in‐situ substrate decomposition rate: 0.17%–2.3%. The main abiotic properties affecting concentrations of microbial biomass differed between forest‐floor/organic horizons and mineral horizons. Whereas microbial biomass decreased with increasing soil moisture and altitude in the forest‐floor/organic horizons, it increased with increasing Ntot content and pH value in the mineral horizons. Quantities of microbial biomass in forest soils appear to be mainly controlled by the quality of the soil organic matter (SOM), i.e., by its C : N ratio, the quantity of Ntot, the soil pH, and also showed an optimum relationship with increasing soil moisture conditions. The ratio of Cmic to Corg was a good indicator of SOM quality. The quality of the SOM (C : N ratio) and soil pH appear to be crucial for the incorporation of C into microbial tissue. The data and functional relations between microbial and abiotic variables from this study provide the basis for a valuation scheme for the function of soils to serve as a habitat for microorganisms.  相似文献   

3.
The application of density fractionation is an established technique, but studies on short‐term dynamics of labile soil fractions are scarce. Objectives were (1) to quantify the long‐term and short‐term dynamics of soil C and N in light fraction (LFOC, LFON, ρ ≤ 2.0 g cm–3) and microbial biomass C (Cmic) in a sandy Cambisol as affected by 28 y of different fertilization and (2) to determine the incorporation of C4‐C into these labile fractions during one growing season of amaranth. The treatments were: straw incorporation plus application of mineral fertilizer (MSI) and application of farmyard manure (FYM) each at high (MSIH, FYMH, 140–150 kg N ha–1 y–1) and low (MSIL, FYML, 50–60 kg N ha–1 y–1) rates at four field replicates. For all three sampling dates in 2008 (March, May, and September), stocks of LFOC, LFON and Cmic decreased in the order FYMH > FYML > MSIH, MSIL. However, statistical significance varied markedly among the sampling dates, e.g., with LFOC being significantly different (p ≤ 0.05) in the order given above (sampling date in March), significantly different depending on the fertilizer type (May), or nonsignificant (September). The high proportion of LFOC on the stocks of soil organic C (45% to 55%) indicated the low capacity of soil‐organic‐matter stabilization on mineral surfaces in the sandy Cambisol. The incorporation of C4‐C in the LFOC during one growing season of amaranth was small in all four treatments with C4‐LFOC ranging from 2.1% to 3.0% of total LFOC in March 2009, and apparent turnover times of C3‐derived LFOC ranged from 21 to 32 y for the sandy soils studied. Overall, our study indicates that stocks of LFOC and LFON in a sandy arable soil are temporarily too variable to obtain robust significant treatment effects of fertilizer type and rate at common agricultural practices within a season, despite the use of bulked six individual cores per plot, a common number of field replicates of four, and a length of treatments (28 y) in the order of the turnover time (21–32 y) of C3‐derived LFOC.  相似文献   

4.
Maintenance of soil carbon stocks is vital for the environment at large and for maintenance of soil chemical, physical and biological fertility. Tonga represents a country in agricultural transition from subsistence to commercial production and whilst this is good for the national economy the impact on soil resources is less clear. The major cropped soils, fallow vegetation types and forest systems of Tonga were identified in each island group and samples of representative soils (0.15 m depth) from each land use unit were taken. Total carbon (CT) and δ13C were measured and labile carbon (CL) determined by oxidation with 333 mm KMnO4. These data were used to determine the carbon management index (CMI) and the proportion of carbon from C4 species in the CT pool. Relative to primary forest, the soil CT and CL generally declined with changes in vegetation and more intense mechanical tillage. The contribution of C4 plants to soil C increased with intensity of mechanical tillage and the prevalence of C4 guinea grass (Panicum maximum Jacquin) fallow. The changes in soil C were reflected in the CMI, and CL was a more sensitive indicator of change than CT. These data indicates that all land use systems have experienced a large net loss of soil C relative to the forest systems. Soil mean weight diameter (MWD) decreased significantly with increased intensity of mechanical tillage and to a lesser extent with the intensity and length of cropping. The relationship between soil MWD and soil C was similar with soil CT and CL. Grass fallow was as effective as permanent vegetation systems in improving soil MWD and lowering the micro‐aggregate (<125 μm) fraction.  相似文献   

5.
Phytochemicals such as phenolics and flavonoids, which are present in rice grains, are associated with reduced risk of developing chronic diseases such as cardiovascular disease, type 2 diabetes, and certain cancers. The phenolic and flavonoid compounds in rice grains also contribute to the antioxidant activity. Biofortification of rice grain by conventional breeding is one way to improve nutritional quality to combat nutritional deficiency. For improvement of the phenolics, flavonoids, and antioxidant capacity, we must understand the genetic bases of the related traits. In the present study, mapping of quantitative trait locus (QTL) for five color parameters, phenolics, flavonoids, and antioxidant capacity was completed using a composite interval mapping approach using a doubled haploid (DH) population. Correlation analysis showed that the five color parameters lightness (L*), redness (a*), yellowness (b*), chroma (C), and hue angle (H°) were intercorrelated. The phenolic content was positively correlated with the flavonoid content and antioxidant capacity (P < 0.001), whereas the flavonoid content had no relationship with antioxidant capacity, but it was positively correlated with color parameters L* and H° (P < 0.05). A total of 21 putative QTL were detected for the eight traits with at least one QTL and as many as four QTL for different traits. Three QTL at the same interval of GA285 and CT580 on chromosome 2 were significant for color parameters L*, b*, and C; the latter two traits also shared another QTL region on chromosome 8. Two QTL on chromosome 2, qPH‐2 and qFL‐2‐1, flanked by CT87 and G1234, were identified for phenolic and flavonoid content with large additive effects, explaining 16.91 and 12.71%, respectively, of the total phenotypic variation. Three QTL located at the same interval of G379A and CT360 on chromosome 7 were detected for color parameters a* and H°, and antioxidant capacity, which might be allelic to the Rd gene that is responsible for the production of the pigment in brown rice. The results of the present study may provide new opportunities for rice breeders with potential markers to improve nutritional quality by marker‐assisted selection approach.  相似文献   

6.
Sensory evaluation showed panelists could detect small differences in gloss and translucency in boiled white salted noodles (WSN) but sensory evaluation requires significant resources. Methods for the measurement of noodle gloss and translucency in boiled WSN were developed and the effects of hardness, protein, water addition, and vacuum mixing on these visual sensory characteristics and color (as measured by CIE L*, a*, and b*) were investigated. Noodles derived from hard wheats at low flour protein contents were more translucent than noodles from soft wheat flour at low protein. This trend changed at the highest flour protein contents observed. Translucency of the soft wheat noodles increased to levels equal to or exceeding the translucency of high protein hard wheat noodles. Translucency of all noodle varieties increased as flour protein increased. CIE L* decreased, a* increased, and b* increased when water addition to dough increased from 30 to 35%, but there was no further effect on color when water addition was increased to >35% for raw soft and hard WSN. Boiled noodle translucency was significantly increased when water addition to the dough was increased from 35 to 38% and when noodles made from soft wheat flour were mixed under vacuum. Vacuum mixing significantly increased gloss of boiled noodles made from soft wheat flours.  相似文献   

7.
The degree of similarity between rice milled in a McGill #2 laboratory mill and commercial milling processes was evaluated using eight physical, physicochemical, and end‐use properties. There was no statistical difference between the two milling systems with respect to color parameters L* and a*, final viscosity, texture, and end‐use cooking properties (α = 0.05). Overall, the kernel dimensions of length, width, and thickness were less in the McGill #2 laboratory‐milled rice than the same rice milled commercially. The incidence of bran streaks and peak viscosity values were each higher when the rice sample was milled commercially in 27, and 28, respectively, of the 29 samples by means comparison. The decrease in kernel dimensions and incidence of bran streaks were attributed to the more aggressive nature of the single‐pass, batch milling system of the McGill #2 laboratory mill as compared with multipass, continuous milling systems that are used commercially. Finally, as surface lipid content (SLC) decreased, L* increased and a*, b*, and the incidence of bran streaks decreased for both milling systems.  相似文献   

8.
Dynamic light scattering and phase analysis light scattering have been used to study organo-clay complexes and aggregate stability of Haplic Stagnosols depending on land use. The study of agricultural soils afforested for 45 years showed that the value of the effective diameter of organo-clay complexes slightly decreased compared to that in arable soil but remains still higher than that in the forest soil. Multiple linear regression statistical models were developed to predict the effective diameter of the particles. The best model (r = 0.95), where all parameters were significant (P < 0.05), included the clay content, clay carbon concentration, total iron (Fet) and soil color coordinates (L*, a*, b*). In the upper horizons, the effective diameter depends on the organic matter content, whereas iron oxides with surfaced position play the main role in the underlying horizons. Intensive tillage moves the colloidal system to coagulation and after withdrawal of arable Haplic Stagnosol from the agricultural production, the colloidal system tends to restore its peptization stability. However, it should be noted that the afforestation period (45 years) of arable Haplic Stagnosols is not enough for a full recovery of organo-clay complexes peptization stability.  相似文献   

9.
Isotopically exchangeable P (IEP) is usually considered to be completely plant‐available and the major source of P for plant uptake. The aim of the present study is to test whether plants can, besides IEP, also use non‐IEP and if part of the IEP has an equilibrium concentration in soil solution which is below the minimum concentration, CLmin, and can therefore not be taken up by plants. A pot experiment was carried out with maize for two years on two soils, an acid sandy and a neutral loamy soil, either without P fertilizer or fertilized with ten P sources of different solubility. Throughout both years of the study, pots were kept moist either without plants or planted twice with maize (Zea mays L., cv. Athletico). At the end of the experiment, plant P uptake, P concentration in the soil solution (CL), and P accessible to isotopic exchange within 5 d (E5d) were measured. Plant growth decreased the E5d which was about equal to P uptake by maize for most treatments in the acid soil. But for some treatments, i.e., five in the acid and eight in the neutral soil, P uptake was up to 50% larger than the decrease of E5d, indicating that plants had, besides IEP, also used P from non‐IEP sources. At adequate P supply, both soils had an E5d of about 100 mg P (kg soil)–1, but about 30 to 40 mg kg–1 of this IEP had an equilibrium P concentration in the soil solution below CLmin of 0.1 μmol L–1 at which P would actually not be plant‐available. This study shows that plants take up P mainly from IEP, but not the whole IEP is plant‐available. Furthermore, plants may also use P from non‐IEP sources.  相似文献   

10.
Austrian winter pea (Pisum sativum subspecies arvense (L.) Poir) is grown as a cool season annual to produce high protein seed and forage as well as for soil fertility improvement. This legume is grown on a wide range of soil types with many different cropping systems. The objective of these studies was to determine the influence of K levels, with and without P and Ca fertilization, for increased growth, yield, nodulation and nitrogenase activity. Results were from 3 years’ field and greenhouse experiments with a Psammentic Paleustalf (Eufaula series) utilizing Rhizobium leguminosarum (Frank), ATCC 10314 as inoculum. Soil fertility effects on composition and histology of field‐grown nodules are presented.

Available soil P was a limiting plant nutrient in field studies with significant response to K resulting with PK combinations for top growth, tillers, pods, seed yield, nodule mass, and nitrogenase activity levels (C2H2, red.). Multiple regression for nitrogenase (umol C2H4 h‐1) = 1.09 tiller number + 3.37 nodule weight + 2.29 pod number, R2 = 0.837, C.V. = 29.9%. Results from the greenhouse experiments indicated significant responses with increased K application levels when combined with P and Ca fertilization for top growth, nodule weight, number of nodules and nitro‐genase activity. Highly significant correlations resulted with nitrogenase x nodule weight (r=0.538) and nitrogenase x top growth (r=0.359) with multiple regression of treatment effects for nitrogenase (μmol C2H4 h‐1) = 2.73 P + 1.04 K + 4.92 Ca, R2 = 0.797 and C.V. = 48.8%. Soil addition of plant nutrients resulted in significantly increased concentrations of those elements within nodules. Magnesium content was not consistently influenced by P, Ca, and K amendments. Sodium decreased with increased K fertilization. Multiple regression of elemental composition (mg g‐1 nodule) for nitrogenase (pmol C2H4 h‐1) = 0.21 P + 0.86 K + 2.35 Ca ‐ 2.01 Na, R2 = 0.772, C.V. = 55.6%. The proportion of plant nutrients in nodules contained within the nodule cytosol was highest for K (56.2%) and lowest for Ca (21.4%) with intermediate levels of Mg (50.2%), P (45.4%), and Na (37.2%).

Practical application from these data include the requirement of adequate available soil K for increased yield and nitrogen fixation with favorable P and Ca soil levels in Austrian winter pea production.  相似文献   


11.
Introduction

Springer1) used in his earlier work acetyl bromide for separating true humic substance from soil organic matter, and proposed to designate the degree of decomposition (Zersetzungsgrad) by such a numeral Ch Ct x 100, of which Ct, was total carbon, and Ch was carbon insoluble in acetyl bromide. In Germany this numeral, abbreviated as Z. G., has been widely applied.  相似文献   

12.
The fate of photosynthetically‐fixed carbon (C) in the plant–soil–microbe continuum has received much interest because of its relevance to soil C and the global C cycle. However, information on the flow of this plant C below ground and its contribution to soil C sequestration in soils with contrasting organic C (Corg) is limited. In this study, soyabean (Glycine max L. Merr.) was grown in three Mollisols with low (1.04%), medium (2.90%) and high (5.05%) Corg, respectively. Plants were labelled with 13CO2 to trace the photosynthetic C dynamics in the plant–soil system for up to 288 hours. The total amount of net fixed 13C by plants ranged from 66 to 78 mg pot?1, and there was no difference between soils. The amount of 13C in soil organic matter (SOM) increased from 1.9 to 6.1 mg pot?1 over time in the high‐Corg soil, while it showed a non‐significant change with 2.2 mg pot?1 (on average) in the medium‐Corg soil, and decreased from 2.9 to 0.1 mg pot?1 in the low‐Corg soil. In the low‐Corg soil, the amount of 13C in soil microbes decreased markedly over time, showing a fast turnover, and had a significant correlation (P ≤ 0.01) with 13C in the SOM pool. However, such a relationship was not significant in the soil with high or medium Corg. These results indicate that most of the root‐derived C in the low‐Corg soil is degraded quickly by microbial activity, while the greater input of the photosynthetic C to SOM in the high‐ and/or medium‐Corg soil can probably be attributed to physical sorption of root‐derived C by SOM and minerals, thus protecting it against microbial decomposition.  相似文献   

13.
We studied the influence of different soil tillage and fertilization on chemical parameters, soil structure stability and carbon distribution in water-stable macro-aggregates (WSAma) of loamy Orthic Luvisol. In 1994, the Department of Plant Production of the Slovak Agricultural University in Nitra established a long-term field experiment in locality Dolná Malanta. In 1994–2007, the soil samples were collected from the depth 0–0.3 m. The field experiment included two types of soil tillage (conventional tillage—CT and reduced tillage—RT) and three variants of fertilization (1. Co—without fertilization, 2. PR + NPK—crop residues together with added NPK fertilizers, 3. NPK—with added NPK fertilizers). Different tillage and fertilization had statistically significant influence on changes of the soil pH and soil sorptive complex. The values of pH were more favourable in RT than in CT. In NPK (by 26%) and in PR + NPK (by 21%) decreased values of hydrolytic acidity. On the other hand it increased the sum of basic cations. This led to the increase of cation exchangeable capacity. In comparison to CT, a higher total carbon concentration (Ct) was determined in RT. According to vulnerability coefficient (Kv), the soil structure stability was better in RT (4.64 ± 1.54) than in CT (5.15 ± 1.75). Average value of WSAma was higher by 9% in RT and it led to increasing of the sum of mean weight diameters of water-stable aggregates (MWD-WSA) by 11% and increasing of index stability (Sw) by 12%. We determined linear dependences between Ct and critic level of soil organic matter concentration (St) in CT and RT as well as in PR + NPK and NPK. The negative correlation between Ca2+ and St (−0.507**) and positive correlation between Ca2+ and crusting index (0.525**) were detected in CT. The values of Ca2+ were in positive correlation with crusting index (0.363*) in RT. We observed higher concentrations of Ct and labile carbon content (CL) in water-stable micro-aggregates (WSAmi) and WSAma in the size fractions from 25 × 10−4 to 3 × 10−3 m in RT. There were also higher concentrations of Ct and CL in WSAma in the size fractions >3 × 10−3 m in CT. The application of crop residues together with NPK fertilizers increased the concentration of Ct in all fractions of WSAma. On the other hand, Ct concentration decreased by 7% in WSAmi. In PR + NPK, the highest concentration of CL was observed in WSAma in the size fraction 2 × 10−3 to 3 × 10−3 m.  相似文献   

14.
Interactions between microbial communities and organic matter were analyzed for soils from the project regions ’︁Ecosystem Research in the Agricultural Landscape/FAM, Munich’ in southern Germany and ’︁Ecosystem Research in the Bornhöved Lake district’ from northern Germany using ratios between microbial biomass content (Cmic), microbial metabolic quotient (qCO2) and organic carbon content (Corg). In the agricultural soils in southern Germany, the qCO2/Corg ratio differed significantly with respect to agricultural management in contrast to ecophysiological Cmic/Corg ratio. In addition, Cmic/Corg ratio decreased from 39 to 21 mg Cmic g—1 Corg and qCO2/Corg ratio increased from 72 to 180 mg CO2‐C g—1 Cmic h—1 (g Corg g—1 soil)—1 with increasing soil depth. For the upper soil horizons from the landscape in northern Germany the two quotients differed significantly with reference to land use showing highest microbial colonization under grassland and lowest under beech forest. In contrast, C use efficiency was lowest in arable field under maize monoculture and highest in a wet grassland having a high organic C content.  相似文献   

15.
Stabilization of oily waste organics (OWO) in soils of land treatment farms (LTF) can limit the availability of the OWO for biodegradation. The effect of physical dispersion on bioavailability and biodegradation of OWO in a soil from a LTF was investigated. Soil samples from the LTF were ultrasonically dispersed at increasing energy levels (EL), ranging from 0 to 30 kJ kg?1 at 5 kJ kg?1 increments, and incubated in glass jars for 12 weeks. The headspace CO2 concentration in the jars was monitored weekly by gas chromatography and expressed as C mineralization rates (CMR). The CMR and the cumulative C mineralized (CCM) increased with increasing EL. The CCM from the oily waste treated soil dispersed at 30 kJ kg?1 was 710% higher compared to that from the untreated soil dispersed at the same EL. Compared to the treated soil dispersed at zero EL, 48% more C mineralized from that dispersed at 30 kJ kg?1. The size of the potentially mineralizable C (C0) increased with increasing EL. The C0 for the treated soil dispersed at 30 kJ kg?1 was 66% larger compared to that at zero EL. The C0's for the treated soil dispersed at different EL were similar, suggesting the chemistry of the C0 exposed by dispersion were similar. The results show that substantial amounts of potentially biodegradable OWO were physically protected in soil aggregates.  相似文献   

16.
Abstract

We evaluated the validity of Tessier’s method as applied to the extraction of manganese (Mn) and iron (Fe) oxides in Japanese Andisols and other soil types in Japan. Using the original Tessier’s extractant mixture, 0.04 mol L?1 hydroxylamine hydrochloride in 25% acetic acid (0.04 mol L–1 NH2OH-HCl in 25% HOAc), we found that substantial amounts of short-range-ordered Fe oxides were not extracted from allophanic Andisol samples and that considerable amounts of total Fe oxides were not extracted from all soil types. Relatively high extraction pH and large amounts of short-range-ordered Fe oxides in the Andisol samples might be responsible for incomplete extraction. Stoichiometric calculation indicated that the concentration of NH2OH-HCl might be insufficient for complete extraction of Fe oxides. The extracted amounts of Mn and Fe increased with increasing concentration of NH2OH-HCl in the extractant, and most of the Mn and Fe oxides in the soil samples, including samples with as much as 5.6% Fe, were extracted with 0.6 mol L–1 NH2OH–HCl in 25% HOAc. As judged from the simultaneous dissolution of aluminum (Al) and silicon (Si) minerals, extraction selectivity of Fe oxides with 0.6 mol L–1 NH2OH-HCl in 25% HOAc was comparable to that of the original Tessier’s method and better than that of a modified Community Bureau of Reference (BCR) sequential extraction procedure or a method using an extractant consisting of a mixture of oxalate and ascorbate, especially for Andisol samples.  相似文献   

17.
Manganese efficiency is a term used to describe the ability of plants to obtain higher relative yields at low Mn supply compared to other species. To evaluate Mn efficiency of wheat (Triticum aestivum L.) and raya (Brassica juncea L.), a greenhouse pot experiment was conducted using Mn deficient Typic Ustochrept loamy sand soil, treated with 0, 50, and 100 mg Mn (kg soil)–1. In the no‐Mn treatment, wheat had produced only 30 % of its maximum dry matter yield (DMY) with a shoot concentration of 10.8 mg Mn (kg DM)–1 after 51 days of growth, while raya had produced 65 % of its maximum DMY with 13.0 mg Mn (kg DM)–1. Taking relative shoot yield as a measure of Mn efficiency, raya was more efficient than wheat. Both crops produced the maximum DMY with 50 mg Mn (kg soil)–1. Even though raya had a lower root length : DMY ratio and a higher shoot growth rate, it acquired higher Mn concentrations in the shoot than wheat under similar soil conditions, because of a 2.5 times higher Mn influx. Model calculations were used to calculate the difference of Mn solution concentration (ΔCL) between the bulk soil (CLi) and the root surface (CL0) that is needed to drive the flux by diffusion equal to the measured influx. The results showed that ΔCL was smaller than CLi, which indicates that chemical mobilization of Mn was not needed to explain the observed Mn uptake even for raya. According to these calculations, the higher Mn influx of raya was caused by more efficient uptake kinetics, allowing for a 4.5 times higher Mn influx at the same Mn concentration at the root surface.  相似文献   

18.
Within different land‐use systems such as agriculture, forestry, and fallow, the different morphology and physiology of the plants, together with their specific management, lead to a system‐typical set of ecological conditions in the soil. The response of total, mobile, and easily available C and N fractions, microbial biomass, and enzyme activities involved in C and N cycling to different soil management was investigated in a sandy soil at a field study at Riesa, Northeastern Germany. The management systems included agricultural management (AM), succession fallow (SF), and forest management (FM). Samples of the mineral soil (0—5, 5—10, and 10—30 cm) were taken in spring 1999 and analyzed for their contents on organic C, total N, NH4+‐N and NO3‐N, KCl‐extractable organic C and N fractions (Corg(KCl) and Norg(KCl)), microbial biomass C and N, and activities of β‐glucosidase and L‐asparaginase. With the exception of Norg(KCl), all investigated C and N pools showed a clear relationship to the land‐use system that was most pronounced in the 0—5 cm profile increment. SF resulted in greater contents of readily available C (Corg(KCl)), NH4+‐N, microbial biomass C and N, and enzyme activities in the uppermost 5 cm of the soil compared to all other systems studied. These differences were significant at P ≤ 0.05 to P ≤ 0.001. Comparably high Cmic:Corg ratios of 2.4 to 3.9 % in the SF plot imply a faster C and N turnover than in AM and FM plots. Forest management led to 1.5‐ to 2‐fold larger organic C contents compared to SF and AM plots, respectively. High organic C contents were coupled with low microbial biomass C (78 μg g—1) and N contents (10.7 μg g—1), extremely low Cmic : Corg ratios (0.2—0.6 %) and low β‐glucosidase (81 μg PN g—1 h—1) and L‐asparaginase (7.3 μg NH4‐N g—1 2 h—1) activities. These results indicate a severe inhibition of mineralization processes in soils under locust stands. Under agricultural management, chemical and biological parameters expressed medium values with exception for NO3‐N contents which were significantly higher than in SF and FM plots (P ≤ 0.005) and increased with increasing soil depth. Nevertheless, the depth gradient found for all studied parameters was most pronounced in soils under SF. Microbial biomass C and N were correlated to β‐glucosidase and L‐asparaginase activity (r ≥ 0.63; P ≤ 0.001). Furthermore, microbial biomass and enzyme activities were related to the amounts of readily mineralizable organic C (i.e. Corg(KCl)) with r ≥ 0.41 (P ≤ 0.01), suggesting that (1) KCl‐extractable organic C compounds from field‐fresh prepared soils represent an important C source for soil microbial populations, and (2) that microbial biomass is an important source for enzymes in soil. The Norg(KCl) pool is not necessarily related to the size of microbial biomass C and N and enzyme activities in soil.<?show $6#>  相似文献   

19.
The δ13C of soil-respired CO2 (δr) is frequently determined using static closed chamber methods. δr is obtained as the intercept of the least squares linear regression of δ vs 1/C*, where measured δ13C-CO2 (δ) and volume fraction of CO2 (C*) values of chamber headspace samples are used. Theoretically, we show that the variance of the estimate of δr can be reduced by extending the 1/C* interval of the regression towards (i) higher or (ii) lower values, or (iii) distributing the 1/C* values optimally within the pre-selected headspace CO2 sampling time period. Experimental applications of these approaches indicated that: (1) lowering the initial CO2 level, thereby increasing 1/C*, yielded a positive bias to the δr result. (2) It was feasible to obtain lower variance in the δr estimate by lowering 1/C* values through extended CO2 sampling time. We also recommend that each chamber is sampled only once, mainly because this allows freedom to select the sampling times, in order to optimize the distribution of 1/C* values.  相似文献   

20.
格氏栲天然林与人工林土壤异养呼吸特性及动态   总被引:18,自引:0,他引:18       下载免费PDF全文
通过用静态碱吸收法对中亚热带福建三明格氏栲自然保护区内的格氏栲天然林和33年生的格氏栲人工林及杉木人工林的土壤异养呼吸进行为期2年的定位研究。结果表明,三种森林枯枝落叶层呼吸和无根土壤呼吸速率季节变化均呈单峰曲线,最大峰值出现在5月至6月,最小值出现在12月至1月。格氏栲天然林、格氏栲人工林和杉木人工林枯枝落叶层呼吸速率平均值分别为CO2 79.88、44.37和21.02mgm^-2h^-1,无根土壤呼吸速率平均值分别为CO2 217.4、85.85和94.04mg m^-2h^-1。2002年枯枝落叶层呼吸速率和无根土壤呼吸速率主要受土壤温度影响,但在极端干旱的2003年则主要受土壤湿度的影响。双因素关系模型(R=ae^bTW^c)拟合结果优于仅考虑土壤温度或土壤湿度的单因素关系模型,土壤温度和土壤湿度共同解释不同年份枯枝落叶层呼吸和无根土壤呼吸速率季节变化的82%~85%和85%~92%。不同森林枯枝落叶层呼吸对土壤温度和湿度的敏感性均高于无根土壤呼吸的。格氏栲天然林、格氏栲人工林和杉木人工林枯枝落叶层呼吸年通量分别为C3.76、2.63和1.23t hm^-2a^-1,无根土壤呼吸年通量则分别为C3.44、2.79和1.49t hm^-2a^-1。不同森林土壤异养呼吸通量的差异主要与枯落物数量和质量、土壤有机质数量和质量的差异有关。杉木林枯枝落叶层呼吸对干旱敏感性高于格氏栲(天然林和人工林)的,而人工林(杉木和格氏栲)的土壤有机C对干旱敏感性则要高于格氏栲天然林。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号