首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
定量分析秸秆和猪粪生物炭对镉的吸附作用   总被引:3,自引:3,他引:0  
为定量研究生物炭对镉(Cd)的吸附作用,以灰分含量不同的小麦秸秆(W)和猪粪(P)为原材料,分别在300℃和700℃下热解制备4种生物炭(WBC300、WBC700、PBC300和PBC700),定量分析了生物炭对Cd的吸附作用。结果表明:除灰后生物炭对Cd的吸附能力显著下降38.5%~83.0%,且除灰处理对BC700影响较BC300大。生物炭无机组分主要通过沉淀作用和离子交换作用吸附溶液中的Cd,有机组分主要通过含氧官能团的络合作用吸附Cd。在pH 5.0、Cd初始浓度为200 mg·L-1条件下,沉淀作用、离子交换作用和络合作用在PBC300吸附Cd的过程中贡献率分别为52.1%、32.2%和15.5%,PBC700分别为91.9%、5.10%和2.96%,WBC300分别为23.9%、36.2%和39.9%,WBC700分别为63.5%、21.8%和14.7%。研究表明,随着生物炭热解温度的升高,沉淀作用在生物炭吸附Cd的过程中贡献率升高,而离子交换作用和络合作用贡献率下降;无机沉淀作用和离子交换作用为灰分含量较高的生物炭吸附Cd的主要机理。  相似文献   

2.
甘蔗渣基生物质炭对溶液中Cd(Ⅱ)的吸附解吸作用   总被引:1,自引:0,他引:1  
以典型南方农业废弃物甘蔗渣为前驱物,于350、450、550℃限氧条件下制备3种生物质炭,分别标记为BC350、BC450、BC550,研究其对溶液中Cd(Ⅱ)的吸附解吸特性,并探讨了p H值对吸附过程的影响。结果表明:伪二级动力学模型能较好地描述生物质炭对Cd(Ⅱ)的吸附动力学过程,其理论平衡吸附量(qe)大小顺序为BC550BC450BC350;生物质炭对Cd(Ⅱ)的吸附过程可采用Freundlich模型(平均R2为0.997 9)和Langmuir模型(平均R2为0.997 8)进行拟合,Langmuir模型可更好地描述Cd(Ⅱ)在3种生物质炭上的解吸过程(平均R2为0.924 0);生物质炭对Cd(Ⅱ)的吸附与解吸过程是不可逆的,存在着明显的迟滞效应(HI为1.347~1.944),并表现为负滞后效应;生物质炭对Cd(Ⅱ)的吸附量随溶液初始p H值的增大呈现先增加后减少的趋势,p H值为6时吸附量最大。因此,甘蔗渣基生物质炭能够强烈吸持溶液中的Cd(Ⅱ)且具明显的解吸迟滞效应,可作为外源Cd(Ⅱ)去除的良好环境功能材料。  相似文献   

3.
不同温度制备香根草生物炭对Cd2+的吸附特性与机制   总被引:1,自引:4,他引:1  
为探讨香根草生物炭对水溶液中Cd2+的吸附特性及机制,通过元素分析、BET-N2、Zeta电位、SEM-EDS、FTIR等分析手段对不同热解温度(300、500℃和700℃)下制备的香根草生物炭特性进行表征,并研究三种生物炭(BC300、BC500和BC700)在不同初始Cd2+浓度和吸附时间下的吸附行为。结果表明,随着温度升高,生物炭产率下降,灰分、pH和Zeta负电荷量上升;比表面积和孔体积增大,其中BC700的比表面积为227.04 m2·g~(-1),比原材料增大67.8倍。三种生物炭的吸附过程均符合Langmuir和Freundlich模型,而Freundlich拟合度相对较高(R2均大于0.98),最大吸附量顺序依次为BC700(92.65 mg·g~(-1))BC500(80.17 mg·g~(-1))BC300(76.29 mg·g~(-1))。当初始Cd2+浓度为20 mg·L~(-1)时,吸附平衡时间顺序为BC700(80 min)BC500(180 min)BC300(240 min),均符合准二级动力学模型(R2均大于0.98),以化学吸附为主。对比吸附前后的FTIR谱图,主要有-OH、C=O、C=C、C-O等官能团参与生物炭的吸附过程。结合SEM-EDS的结果分析,生物炭主要是通过表面静电吸附和络合作用去除溶液中Cd2+。三种生物炭中,BC700吸附性能最佳,原因可能是其具有较大的比表面积、较多的负电荷量和较多的官能团。  相似文献   

4.
牛粪和核桃壳生物炭对水溶液中Cd2+和Zn2+的吸附研究   总被引:4,自引:4,他引:0  
为有效去除水溶液中Cd~(2+)和Zn~(2+),以牛粪和核桃壳为原料,在不同热解温度下制取生物炭,采用等温吸附法和动力吸附法研究生物炭对水溶液中Cd~(2+)和Zn~(2+)的吸附效果和动力学特性,通过生物炭吸附前后的XRD和FTIR表征对比,探究其吸附机理。结果表明:生物质原材料的种类和热裂解温度是影响生物炭吸附效果的两大因素,牛粪生物炭比核桃壳生物炭吸附效果好,700℃制备的生物炭比300℃制备的生物炭吸附效果好;生物炭对Cd~(2+)和Zn~(2+)的吸附符合Langmuir方程;700℃制备的牛粪生物炭(DM700)对Cd~(2+)和Zn~(2+)的吸附性能最佳,饱和吸附量分别为117.5 mg·g~(-1)和59.4 mg·g~(-1),其吸附过程由快速吸附和慢速吸附两个阶段组成,符合准二级动力学方程;吸附机理主要是生物炭中的羟基和羧基与Cd~(2+)、Zn~(2+)间发生离子交换和络合反应,Cd~(2+)、Zn~(2+)被吸附后进一步生成CdCO_3和Zn_3(PO_4)_2沉淀。这说明,DM700具备作为水溶液中Cd~(2+)、Zn~(2+)吸附剂的潜力,本研究为生物炭去除水中重金属和土壤重金属污染的修复提供了理论依据与应用参考。  相似文献   

5.
生物炭对Cu2+的吸附特性及其影响因素   总被引:2,自引:0,他引:2  
[目的]研究生物炭对溶液中Cu2+的吸附特性及其影响因素。[方法]采用玉米秸在不同温度(200、350、700℃)下制备的生物炭(BC200、BC350、BC700)吸附Cu2+,探讨在不同初始浓度、吸附时间、pH、Zn2+强度条件下对Cu2+的吸附特性。[结果]随着热解温度的升高,生物炭的pH和灰分含量增加。BC350具有最大的CEC和有机碳含量。3种生物炭对Cu2+的吸附能力大小为:BC350〉BC700〉BC200;拟合得到的BC200、BC350、BC700的最大吸附量分别为17.1、30.6、27.2mg/g。可以用准一级动力学模型较好地描述吸附动力学结果,BC200、BC350、BC700拟合得到的平衡吸附量与实测值接近。生物炭的铜吸附量随着溶液初始pH的增加而增大;较高的陪伴Zn2+浓度可以显著降低生物炭对Cu2+的吸附。[结论]该研究可为生物炭在环境科学中合理应用提供科学依据。  相似文献   

6.
为研究氧化老化过程对生物炭性质及其对镉(Cd~(2+))吸附能力的影响及机制,以过氧化氢(H_2O_2)化学氧化方法模拟稻壳生物炭在自然环境中的氧化老化过程,通过等温吸附试验研究氧化老化过程对生物炭吸附Cd~(2+)能力的影响,运用扫描电镜和能谱分析(SEM-EDS)、傅里叶变换红外光谱(FT-IR)和~(13)C核磁共振技术探究氧化老化过程中生物炭对Cd~(2+)的吸附机制。结果表明:氧化老化过程中生物炭的元素组成和比表面积变化不明显,但含氧基团增多,芳香性增强。老化前后生物炭对Cd~(2+)的吸附均符合准二级动力学模型,但氧化老化过程抑制了稻壳生物炭对Cd~(2+)的吸附能力,在298 K时,Langmuir预测Cd~(2+)在生物炭上的最大吸附量分别为未老化生物炭(BC,21.48 mg·g~(-1))氧化老化1次生物炭(OBC1,15.07 mg·g~(-1))氧化老化2次生物炭(OBC2,7.56 mg·g~(-1))氧化老化3次生物炭(OBC3,7.51 mg·g~(-1))。生物炭吸附Cd~(2+)的机理主要有表面络合作用、阳离子-π作用和离子交换作用,氧化老化后碱金属元素的变化抑制了表面吸附作用。  相似文献   

7.
分别在300、500℃和700℃下制备水稻、小麦和玉米秸秆生物炭,对比以不同类型生物炭为载体制备的炭基硫酸盐还原菌(SRB)对Cr(Ⅵ)的吸附效应,筛选出吸附效果最佳的炭基菌剂。采用扫描电镜、傅里叶红外光谱和比表面积测试仪对生物炭进行表征分析,研究了溶液pH、吸附时间、生物炭添加量和Cr(Ⅵ)初始浓度对炭基SRB吸附Cr(Ⅵ)的影响,并结合吸附动力学和等温吸附模型探讨其对Cr(Ⅵ)的吸附过程及作用机制。结果表明:以700℃限氧热解小麦秸秆(XM700)为载体制备的炭基SRB(IBXM700)对Cr(Ⅵ)的吸附效果最佳,其最佳吸附条件为pH=5、生物炭添加量0.6 g·100 mL~(-1)、吸附时间24 h、Cr(Ⅵ)的初始浓度100 mg·L~(-1);IBXM700对Cr(Ⅵ)的吸附更符合拟一级动力学,以离子交换和表面物理吸附为主,以化学吸附作用为辅,其等温吸附符合Langmuir模型,属于单分子层吸附;SRB能还原SO_4~(2-)为S~(2-),或分泌还原酶将Cr(Ⅵ)还原为Cr(Ⅲ),从而达到去除目的。研究表明,IBXM700去除Cr(Ⅵ)的主要机制为吸附作用与还原作用。  相似文献   

8.
高铁酸钾/高锰酸钾改性生物炭对Cd2+的吸附研究   总被引:1,自引:1,他引:0  
为增强生物炭对Cd的吸附性能,以600℃制备的酒糟生物炭(BC)为原料,采用K_2FeO_4和KMnO_4氧化活化的方式制备改性生物炭,分别标记为BCFE和BCMN,采用全自动比表面积和孔隙度分析仪(BET)、电子显微镜-能谱仪(SEM-EDS)对改性前后酒糟生物炭的性质进行分析,并探究改性生物炭对Cd~(2+)的吸附效果。结果表明,添加K_2FeO_4和KMnO_4可有效地将Fe和Mn负载到生物炭上,分别在生物炭表面生成铁氧化物与锰氧化物。BCFE的总官能团含量分别是BC和BCMN的1.8倍和1.5倍,BCFE的含氧官能团与芳香性结构更为丰富。K_2FeO_4和KMnO_4改性显著提高了生物炭的比表面积,3种材料比表面积表现为:BCFE(2 302.0m~2·g-1)BCMN(521.3 m2·g-1)BC(245.9 m2·g-1)(P0.05),BCFE的比表面积分别是BC和BCMN的9.4倍和4.4倍。吸附试验结果显示,当达到吸附平衡时,3种材料对Cd~(2+)的吸附量大小表现为BCFE(7.46 mg·g-1)BCMN(5.61 m2·g-1)BC(1.46 m2·g-1)(P0.05)。3种生物炭对Cd~(2+)的吸附动力学模型均符合准二级动力学模型,吸附速率由快至慢排序为:BCFEBCMNBC;吸附等温模型均符合Langmuir模型,吸附过程为单分子层吸附,最大吸附量(Qm)表现为:BCFEBCMNBC。因此,K_2FeO_4和KMnO_4改性处理显著改善了生物炭的结构,提高了对Cd的吸附能力,且K_2FeO_4改性效果明显优于KMnO_4。可见,经K_2FeO_4改性的生物炭具有较好的吸附潜力,可作为Cd废水处理的有效材料。  相似文献   

9.
双孢菇菌糠生物炭吸附Pb2+机制及其环境应用潜力   总被引:1,自引:0,他引:1  
为了有效去除水体中的重金属Pb~(2+),开发利用菌糠生物炭吸附剂,以双孢菇菌糠(MS)为原料,在350、550、750℃下限氧热解制备生物炭(MS350、MS550、MS750),并利用FTIR、XRD等技术对吸附前后的生物炭样品进行表征;通过批量吸附、定性和定量分析以及萃取实验,研究菌糠生物炭对Pb~(2+)的吸附特性、机理及吸附后样品的稳定性能。结果表明:随着热解温度的升高,样品的产率降低,pH值升高,芳香性增强。准二级动力学方程和Freundlich模型能够较好地符合MS350、MS550的吸附过程,而MS750以准二级动力学和Langmuir模型较好符合。相较于MS350和MS550,MS750吸附性能最好,经Langmuir模型拟合,MS750的最大吸附量为266.23 mg·g-1。溶液pH值影响生物炭的吸附性能,在pH值2.0~7.0的范围内,吸附量随溶液pH值升高而增加。机理分析表明:吸附机理包括矿物沉淀、阳离子交换、含氧官能团络合以及π电子配位;其中,矿物沉淀(CO_3~(2-), SO_4~(2-))是主要的吸附机制,其贡献率随热解温度升高而增加。萃取实验表明:经吸附后,3种生物炭上的Pb~(2+)均以酸溶态铅和非生物利用态铅为主,说明吸附后的铅具有较好稳定性能,两种形态的铅占总吸附量的大小顺序为:MS750(98.65%)MS550(95.91%)MS350(86.51%)。综合分析表明,MS750较其他温度生物炭不仅吸附性能更好,而且吸附后稳定性更强,故在环境应用上具有更大的潜力。  相似文献   

10.
不同生物质来源生物炭对Pb(Ⅱ)的吸附特性   总被引:10,自引:5,他引:5  
以水稻秸秆、小麦秸秆、荔枝树枝为原料,在300、400、500、600℃下制备生物炭,并表征其理化性质,考察热解温度、初始p H、矿物组分等因素对生物炭吸附Pb(Ⅱ)的影响。结果表明,不同热解温度对水稻和小麦秸秆炭吸附Pb(Ⅱ)的影响很小,而荔枝树枝生物炭对Pb(Ⅱ)的吸附量随热解温度升高而显著增大。在p H3.0~6.0的范围内,三种生物炭对溶液中Pb(Ⅱ)的吸附量呈上升趋势;在25℃时,三种生物炭的等温吸附曲线符合Freundlich吸附模型,荔枝树枝生物炭对Pb(Ⅱ)的吸附效果最佳。三种生物炭吸附Pb(Ⅱ)的主导机制可能是其与矿物组分的共沉淀作用,而荔枝树枝生物炭还可能存在Pb(Ⅱ)与-OH、-COOH之间的离子交换作用,C=C键中的π电子在吸附过程中也有一定的贡献。  相似文献   

11.
以大豆秸秆、高粱秸秆为原料,在350、500、650℃条件下,限氧控温制备生物炭,探讨不同类型生物炭性质及其对溶液中重金属Pb2+的吸附特性;利用2种等温吸附模型(Langmuir、Freundlich模型)研究了不同类型生物炭对Pb2+的吸附行为。结果表明:不同热解温度下的大豆、高粱生物炭,其灰分、挥发分及固定碳存在一定的差异性;随着热解温度的升高,生物炭对Pb2+的吸附性能增强。大豆生物炭对Pb2+的吸附量明显大于高粱生物炭;采用Langmuir和Freundlich分别对吸附数据进行拟合,两种生物炭的吸附行为更符合Freundlich模型,且属于线性等温吸附。  相似文献   

12.
本研究以园林绿化废弃物刺桐为原料,在不同的热解温度下(300、500、700 ℃)制备生物炭,用动力学方程和等温吸附方程分别拟合生物炭对氨氮和磷的吸附性能。等温吸附方程拟合结果表明:生物炭对水中氨氮和磷的吸附量均随着氨氮和磷的初始浓度的增加而增大,且均能较好地拟合Langmuir吸附方程,且BC500吸附效果最好;动力学方程拟合结果表明:不同热解温度下得到的生物炭对氨氮和磷的吸附速率较快的过程分别发生在最初的300 min和60 min内,且均能较好地拟合准二级动力学方程;此外,生物炭对不同初始pH下对氨氮和磷溶液的吸附效果分别为pH7 > pH11 > pH3和pH11 > pH7 > pH3。  相似文献   

13.
不同改性生物炭对溶液中Cd的吸附研究   总被引:2,自引:0,他引:2  
为研究生物炭对溶液中重金属Cd的吸附去除效果,进一步提升生物炭对Cd的吸附性能,以玉米芯、玉米秸秆、木屑为原料,分别在400℃、500℃、600℃和700℃密闭缺氧条件下热解制备生物炭,通过微波改性、Na OH改性方法对生物炭进行改性处理,研究初始浓度、溶液p H、吸附时间等因素对生物炭吸附Cd效果的影响,筛选出适合用于处理镉污染水体的生物炭品种。结果表明:当Cd浓度为100 mg/L时,玉米秸秆-600℃-Na生物炭(B-6-Na)对Cd的吸附可用Langmuir方程拟合,吸附量可达78.7 mg/g,去除率为78.7%,基本达到吸附平衡的时间为60~120 min;当溶液p H达到7时,三种生物炭对Cd吸附率均超过80%以上;600℃条件下经Na OH溶液改性制备的玉米秸秆生物炭能够更好地吸附溶液中的Cd。该研究结果为制备对污染物具有高效、深度净化功能的生物炭方法提供参考,在深入研究生物炭在重金属Cd污染修复的可行性方面提供理论支撑。  相似文献   

14.
在700℃热解条件下制得牛粪源生物炭(DMBC)和木源生物炭(WC)。研究了二者对水体中Pb(Ⅱ)和Cd(Ⅱ)的吸附去除能力,分析了相关污染物去除机理。结果表明:DMBC的比表面积和碳元素含量均远小于WC,但去除效率却远高于后者。FTIR光谱分析和XRD分析表明,DMBC中含有大量矿物组分(如磷等),易与重金属离子生成沉淀。因此在吸附去除过程中发挥主导作用的是沉淀机制。Pb(Ⅱ)和Cd(Ⅱ)在DMBC上的竞争吸附和单组分吸附结果类似,验证了该结论的正确性。而Pb(Ⅱ)和Cd(Ⅱ)在WC上的单组分和双组分吸附结果相差较大,这说明重金属离子在WC上的吸附是以表面吸附为主。以上研究证实,牛粪源生物炭比木源生物炭更适合用于水体中各类重金属污染的去除。  相似文献   

15.
水中镉和芘在核桃壳生物炭上的吸附行为及其交互作用   总被引:4,自引:3,他引:1  
以核桃壳在600℃热解所得生物炭(WSBC)为吸附剂,通过扫描电子显微镜(SEM)和傅立叶变换红外光谱仪(FTIR)对WSBC进行表征,用批平衡吸附实验研究了WSBC对水体中两种典型污染物Cd(Ⅱ)和芘的吸附特性,考察了吸附时间、Cd(Ⅱ)和芘初始浓度、pH值、WSBC粒径等对吸附的影响,以及Cd(Ⅱ)和芘在WSBC上吸附的交互作用。结果表明:WSBC表面粗糙,孔隙结构明显,富含羟基、羧基、羰基等含氧官能团,具有高度芳香和杂环结构;在25℃时,WSBC对Cd(Ⅱ)和芘的吸附分别在20 h和16h时达到平衡,饱和吸附量分别为23.79、0.17 mg·g-1;pH=5时,WSBC对Cd(Ⅱ)的吸附量最大,而pH在3~11范围内,WSBC对芘的吸附量随着pH的减小而增加。通过对吸附实验数据进行动力学、等温吸附特性分析,发现WSBC对Cd(Ⅱ)和芘的吸附动力学规律均符合准二级动力学方程,等温吸附可以用Langmuir方程很好地描述;Cd(Ⅱ)和芘在WSBC上吸附时存在明显的竞争吸附。  相似文献   

16.
以甘蔗渣为前驱材料,在3种温度(350、450、550℃)下制备不同碳化度的生物炭(分别记为BC350、BC450、BC550),研究其对诺氟沙星在砖红壤中吸附行为的影响。结果表明,诺氟沙星在砖红壤和生物炭土壤上(W/W,1.0%)的吸附动力学过程包括快速和缓慢两个阶段,伪二级动力学模型能较好地拟合砖红壤和生物炭土壤吸附诺氟沙星的动力学过程(r≥0.963,P0.01);添加质量浓度分别为0.1%、0.2%、0.5%、0.8%、1.0%的3种生物炭提高了砖红壤对诺氟沙星的吸附量,且随着生物炭添加量的增加,吸附量逐渐增加,添加生物炭后砖红壤对诺氟沙星的单点吸附值是砖红壤的1.04~2.34倍。诺氟沙星在生物炭土壤中的吸附过程能够采用Freundlich模型、Langmuir模型和Tekmin模型进行较好的拟合(r≥0.910,P0.05);生物炭土壤对诺氟沙星的非线性吸附过程主要受到表面吸附作用、分配作用和其他微弱作用力共同影响。生物炭的施入可以提高土壤对有机污染物的吸附能力,从而降低有机污染物的生态环境风险。  相似文献   

17.
[目的]寻找高效低成本的吸附重金属污染物的材料。[方法]以农业剩余物芹菜为原料,研究芹菜源生物炭对一些典型重金属离子[Cu2+、Cd2+、Cr(VI)]的吸附性能。[结果]中温(350、500℃)限氧热解制备的芹菜源生物炭对Cu2+的吸附量可超过50 mg/g,对Cd2+、Cr(VI)等重金属离子也表现出良好的吸附性能。Freundlich和Langmuir吸附方程能较好地描述吸附过程。结合红外光谱、扫描电镜与能谱等表征手段,证明芹菜源生物炭对重金属离子的高吸附性能与其表面沉淀作用、表面络合和离子交换反应有关。[结论]芹菜源生物炭对重金属离子有较强的吸附性能,应用前景广阔。  相似文献   

18.
为研究纳米零价铁改性生物炭(nZVI-BC)对土壤镉(Cd)的长效稳定机制,特别是生物炭(BC)老化过程中nZVI-BC与Cd的界面相互作用,本研究以玉米秸秆为原料制备了nZVI-BC,采用批吸附与养护试验相结合的方法并利用现代光谱分析手段探究了nZVI-BC对液相Cd (Ⅱ)的吸附和对土壤中Cd的稳定化效果与作用机制。结果表明: nZVI负载显著提高了生物炭对Cd (Ⅱ)的吸附能力,nZVI-BC对Cd (Ⅱ)的饱和吸附量是BC的4.3倍(125.5 mg·g-1 vs 23.61 mg·g-1)。nZVI-BC对Cd (Ⅱ)的吸附更符合伪二级动力学方程,吸附过程以化学吸附为主;其等温吸附更符合Langmuir模型,属于单层吸附。随着养护时间的增加,生物炭表面的Cd负载量逐渐增加,老化后BC表面形成的含氧官能团是Cd饱和吸附力增加的主要原因。相比而言,nZVI-BC上Cd的负载量呈先增加后逐渐降低的趋势。沉淀与表面络合是nZVI-BC固定土壤中Cd的主要机制,而Fe含量的降低和Fe的氧化则是导致其Cd固定量降低的主要原因。尽管如此,nZVI-BC对Cd的吸附仍保持在较高水平且远高于BC。综上所述,nZVI-BC可以作为一种能够适用于中度污染农田中Cd修复的高效稳定化材料。  相似文献   

19.
本文研究了不同热解温度条件下牛骨生物炭理化性质及对 Cd2+的吸附特性,采用限氧控温慢速热裂解的方式,在 300、350、400、500、700 ℃和900 ℃条件下制备牛骨生物炭。分别采用热重分析仪、傅里叶变换红外光谱以及扫描电镜能谱仪等设备对牛骨生物炭进行表征,并通过批量吸附实验分析其对Cd2+的吸附特性。结果表明:牛骨生物炭pH值、灰分含量随热解温度提高而增加,芳构度逐渐增强,孔径与比表面积增大,而挥发分、有机碳含量与全氮含量减少;准二级动力学模型可以准确拟合5种牛骨生物炭对Cd2+的吸附动力学过程(R2>0.999),在接近吸附平衡时,吸附速率由颗粒内扩散主导;牛骨生物炭对Cd2+等温吸附过程更符合Langmuir模型,700 ℃条件下制备的牛骨生物炭对Cd2+的吸附效果最好,最大平衡吸附量为44.32 mg·g-1;随着热解温度增加,牛骨生物炭对Cd2+吸附机制中官能团络合作用减弱,表面吸附、阳离子交换以及π电子配位作用增大。在实际规模化制备牛骨生物炭过程中应充分考虑能耗成本以及尾气收集问题。  相似文献   

20.
MnOx负载生物质炭对Cu2+、Zn2+的吸附机理研究   总被引:1,自引:0,他引:1  
为研究MnO_x负载稻秆生物炭对水溶液中Cu~(2+)、Zn~(2+)的吸附机理,以水稻秸秆为原料制备生物炭(RBC),并用不同浓度KMnO_4溶液改性RBC制备MnO_x负载生物炭(MRBC),在此基础上研究50%MRBC对Cu~(2+)、Zn~(2+)吸附动力学、等温吸附-解吸、pH和投加量对其吸附的影响,结合扫描电镜、红外光谱表征分析吸附机理。结果表明:改性稻秆生物炭表面负载MnO_x,增大了吸附剂表面吸附位点,随KMnO4浓度升高能显著提高Cu~(2+)、Zn~(2+)吸附效果,50%MRBC对其吸附效果最佳;吸附动力学遵循准二级动力学模型,240 min基本达到吸附平衡;吸附等温线符合Langumir模型方程。50%MRBC吸附重金属的机理可能为:含氧官能团与重金属离子络合作用;金属离子与π电子发生阳离子-π作用;无机矿质元素(K、Ca、Mg等)与金属离子交换形成矿物晶体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号