首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
气吸式排种器排种性能影响因素的分析与试验研究   总被引:2,自引:0,他引:2  
为了研究气吸式排种器主要部件结构参数和工作参数变化对播种机排种性能的影响,分析了排种盘吸种孔型式、吸种孔直径、气吸式真空度和排种盘转速等参数对排种器排种性能的影响,并进行了结构优化设计和试验分析。研究结果表明:排种盘吸种孔型式、吸种孔直径、气吸式真空度和排种盘转速都对排种效果产生影响,排种盘转速和气吸室真空度对排种效果的影响最显著;对吸种孔直径进行单因素试验显示吸种孔直径在5.5mm时,排种器的排种效果最佳。室内试验台试验得出,排种盘转速和气吸室真空度对排种质量都有影响:在排种盘转速一定时,气吸室真空度越大,对种子的吸附力越大,一次性吸附多粒种子的可能性就增加,就会产生重播现象;当气吸室真空度一定时,排种盘转速越大,排种盘吸附种子的时间就越少,种子越不容易被吸附,就会产生漏播现象。通过方差分析得出:当排种盘转速为35r/min、气吸室真空度为4k Pa时,排种器的排种效果最佳。  相似文献   

2.
采用正交试验方法分别就吸种孔直径、气吸室真空度、排种盘转速3个因素对气吸式排种器排玉米种子时的影响进行了试验.通过试验结果分析得出3个因素的最优组合为:吸种孔直径为6mm、气吸室真空度为3.5kPa、排种盘转速为54r/min,此时合格率为92.30%;吸种孔直径对排种性能影响显著,是影响排种性能的主要因素;气吸室真空度在满足吸种要求的前提下,改变真空压力对排种质量影响不大,应保证气吸室压力的稳定性.  相似文献   

3.
对气吸式排种器工作性能影响参数进行了理论分析,应用正交试验的方法研究排种盘转速、真空室气压变化和种子形状对排种性能的影响。试验表明:影响排种性能的主要因素是排种器孔型、排种盘转速和吸盘两侧气压差。  相似文献   

4.
针对2BQM-2型播种机气吸式排种器真空度、吸孔数和排种盘转速3个因素不同水平下的气流场进行分析,并对排种器进行性能试验。气吸室及管道气流场有限元分析显示:不同真空度及负压区孔数形成不同的气流速度场。真空度越大,入口平均速度越大;负压区孔数越多,入口平均速度越小;弯管接头采用90°光滑圆形弯管对管道气流场影响最小。单因素试验结果表明:排种器真空室适宜真空度范围为-3~-5k Pa。当真空度为-3k Pa时,排种盘转速在30~45r/min范围内,排种质量比较好;气吸室负压区孔数对排种器排种质量影响不是很明显。三因数三水平正交试验结果表明:影响排种性能的主要因素是真空度,其次是排种盘转速,负压区孔数对排种性能的影响最小。当真空度为-4k Pa、排种盘转速为35m/s和负压区孔数为15时,排种质量最好,是排种器正常工作时的最优组合。  相似文献   

5.
为满足水稻大田精量直播机械化需求,设计了一种气吸式垂直圆盘排种器。阐述了该排种器的工作原理,根据农艺要求和实际试验确定了其吸种孔的布置方式,通过理论计算确定了其主要结构及工作参数。开展了吸孔直径、排种盘转速和吸种负压对排种性能影响的试验研究,结果表明:影响排种性能的主次因素依次为气室真空度、排种盘转速、气室真空度与排种盘转速的交互项;最优工作参数组合为吸种孔直径1.4 mm、转速40 r/min、气室真空度1.8 kPa,在此条件下排种合格指数为82.91、重播指数为11.56、漏播指数为5.53,满足水稻的精密播种要求。   相似文献   

6.
排种器的制造精度、排量控制和调节机构的设计是反映排种器性能的主要指标,而这些性能指标的合理与否又体现在排种器的转速和真空度等参数上。为此,对2QXP型高速气吸式排种器在不同排种盘转速及真空室真空度条件下进行了大豆排种性能试验,分析了排种器排种盘转速及真空室真空度对大豆排种性能的影响规律。  相似文献   

7.
弹性气吸嘴式玉米滚轮排种器排种性能参数优化与试验   总被引:2,自引:0,他引:2  
针对西北旱区玉米铺膜种植特点,为提高气吸式玉米滚轮播种器的排种性能,利用弹性橡胶对气吸式排种器的吸种盘进行了结构改进。对吸种盘吸种过程进行受力分析,得到影响吸种能力的3个因素:吸种盘转速、气吸室负压、吸种盘上吸种垫吸孔直径。基于自制的弹性气吸嘴式玉米滚轮排种器试验台,根据响应曲面法的Central Composite Design试验设计原理,以播种机吸种盘转速、气吸室负压、吸种盘上吸种垫吸孔直径为因素,以单粒合格指数为主要评价指标,兼顾重播指数和漏播指数,对台架试验结果进行多元回归拟合和方差分析。结果表明,单粒合格指数、重播指数的2个回归模型可靠;气吸室负压对单粒合格指数影响极显著,气吸室负压和吸种盘上的吸种垫吸孔直径对重播指数影响极显著。由参数优化结果可知:当播种机吸种盘转速20 r/min、气吸室负压5 k Pa、吸种盘上的吸种垫吸孔直径4 mm时,单粒合格指数为95. 54%,漏播指数为0. 50%,重播指数为3. 96%。在同等条件下田间试验得到的单粒合格指数为96. 3%、漏播指数为1. 3%、重播指数为2. 4%,优化达到预期的效果。  相似文献   

8.
精密排种器是精密播种机的核心工作部件,排种器的排种性能决定了播种机的播种质量。为此,以气吸式排种器为研究对象进行了台架性能试验测试。试验结果表明:对于气吸式排种器,影响其排种性能的主要因素是排种盘转速,当排种盘转速为39r/min、气吸室真空度为4.5kPa时,粒距合格指数为91%,排种器的排种性能最佳。  相似文献   

9.
对气吸式排种器不同型孔直径的排种盘进行了花生排种试验,找出了型孔直径对花生排种性能的影响规律,并求得最佳型孔直径。  相似文献   

10.
概述目前,国内生产的气吸式播种机工作时都是由高速风机产生负压,传给排种器的真空室。排种盘回转时,在真空室负压作用下吸附种子,并随排种盘一起转动,当排种盘转出真空室后,种子不再承受负压,就靠自重落在排种沟内。气吸式播种器主要影响因素有真空度、吸孔形状和种子尺寸等。尤其是真空度,当拖拉机到地头或地尾进行转弯作业时,由于机手需  相似文献   

11.
电动机驱动玉米气吸排种器总线控制系统设计与试验   总被引:7,自引:0,他引:7  
车速对电动机驱动玉米气吸式排种器排种性能具有重要影响,为此设计了一种电动机驱动排种器CAN总线控制系统,采用CAN总线通讯的方法探究系统驱动排种器随车速的变化特性。该系统主要由人机交互设备、排种监测ECU、排种驱动ECU组成,参照ISO 11783协议,对播种机具总线系统进行了设计。以4行气吸式玉米排种器为对象,搭建试验台,对总线控制排种盘转速精度进行了试验。通过总线提取的排种盘转速闭环调控结果得出,排种盘转速位置PID控制调整过程中存在低速调节时间长、超调量大的问题。采用分段PID参数控制的方法,由试验结果将排种盘转速设定值分为低速(15~20 r/min)、中速(20~40 r/min)、高速(40~55 r/min) 3个阶段,分阶段赋予对应闭环调节参数,得出排种盘目标转速在低速阶段时平均响应时间、平均超调量分别为1. 84 s、38. 51%,与位置PID控制相比较,分别降低1. 63 s、34. 41%; 15~55 r/min时平均稳态误差绝对值为0. 97 r/min,标准差为0. 76 r/min,平均稳态误差绝对值减小0. 13 r/min。进行了总线系统落种监测精度试验,设定粒距20 cm,排种盘孔数为26个,车速4~12 km/h时,系统排种监测平均准确率为97. 53%,标准差为0. 48%。采用排种总线系统对车速影响排种器性能进行了试验,风机驱动轴转速为540 r/min,车速范围为4~8 km/h,测得风压范围为-6. 0~-5. 9 k Pa,播种合格指数平均为95. 68%,标准差为2. 29%;车速达到9 km/h时,合格指数降到90%以下,排种器漏播较严重。通过对播种总线系统车速和4行排种驱动电动机实时转速的监测,进行了车速阶跃变化播种系统响应试验,结果表明在车速4~12 km/h、2 km/h间隔递增过程中,系统对排种盘目标转速平均响应时间为2. 00 s,标准差为0. 34 s; 2 km/h间隔递减过程中,系统对排种盘目标转速平均响应时间为1. 83 s,标准差为1. 07 s,表明按照车速阶跃变化,该总线控制系统具有较好的响应性能。  相似文献   

12.
针对现有玉米精密电驱排种控制系统无法快速适应多类型排种器排种控制的问题,在玉米CAN总线电动排种的基础上,设计了一种对玉米排种器排种驱动进行现场标定的电驱控制系统。系统在排种驱动电动机控制信号与排种盘转速之间的对应关系中,采用分段线性插值的方法现场获取排种器驱动曲线,实现排种盘转速标定与控制。以国产气吸式玉米精密排种器和指夹式玉米精密排种器为试验对象,在模拟车速下,对系统排种盘转速现场标定的控制准确性进行试验。电驱气吸式排种器排种盘转速控制性能试验中,株距设定为25 cm,车速设定为3~12 km/h(间隔3 km/h),结果表明,系统调节时间最长为0.80 s,稳态误差最大为0.81 r/min,控制精度最低为97.42%。电驱指夹式排种器排种盘转速控制性能试验中,株距分别设定为20、25、32 cm,车速设定为4~9 km/h(间隔1 km/h),结果表明,总体排种盘转速平均调节时间为1.09 s,标准差为0.26 s;总体平均稳态误差为0.38 r/min,标准差为0.23 r/min;总体平均控制精度为98.30%,标准差为1.01%。与分段PID排种转速控制系统控制性能进行对比得出,支持转速现场标定的系统具有更好的适应性,平均调节时间减少0.51 s,平均稳态误差增大0.16 r/min,平均控制精度降低0.63个百分点。选用指夹式排种器,进行了播种均匀性田间试验,株距为20 cm,车速范围为4~7 km/h(间隔1 km/h),结果表明,播种合格指数大于等于84.26%,变异系数小于等于18.29%,说明系统能够完成对玉米精密排种器排种转速控制曲线的高控制精度现场标定,能够精准控制电驱排种转速。  相似文献   

13.
通过L8(23)正交试验,对筛选的两种泥脚深度的冬水田—田A(21.9cm泥脚深度)和田B(31.6cm泥脚深度)进行水稻品种内香8518的机插秧栽插试验。结合冬水田性状特点,设置插秧机、秧苗和田块这三大试验主体的插秧机浮板类型、秧苗栽插密度和田块泥脚深度为三因素,每个因素设两个水平,在此条件下进行三因素对插秧机行走速度、秧苗栽插质量及水稻实收产量的影响及程度研究。结果显示,在冬水田机插秧作业时:1对插秧机行走速度影响最大的是泥脚深度,影响显著;其次是浮板类型,影响显著;栽插密度看不出影响。2对秧苗漏插率影响最大的是浮板类型,影响特别显著;其次是栽插密度,影响显著;影响最小的是泥脚深度。3三因素对水稻实收产量的影响均特别显著,影响最大的是浮板类型,其次是栽插密度,再是泥脚深度。4最优整体方案是泥脚深度21.9cm、采用改进浮板类型、栽插密度13.95万/hm2。  相似文献   

14.
吊篮式自动移栽机在移栽过程中遇到移栽地面不平整或车速波动,易造成吊篮式自动移栽机平抛喂苗准确率降低。为此,通过对吊篮式自动移栽机平抛喂苗运动进行分析,提出了改变苗筒喂苗位置来解决此问题的方法。通过分析得出:当栽植器机架倾角逐渐大于-arctan(0.073vm)时,苗筒喂苗位置沿车速方向移动。当栽植器机架倾角逐渐小于-arctan(0.073vm)时,苗筒喂苗位置沿车速方向移动。当栽植器机架倾角恒定时,车速增大,苗筒喂苗位置需要沿车速的相反方向移动;车速度减小时,苗筒喂苗位置需要沿车速方向移动;最佳吊篮接苗位置不随车速的波动而发生改变。本研究结论为提高吊篮式自动移栽机喂苗准确性奠定理论基础。  相似文献   

15.
预切种式甘蔗横向排种器设计与试验   总被引:1,自引:0,他引:1  
为实现蔗种精准横向播种,设计了一种预切种式甘蔗横向排种器。通过对蔗种在排种器中的运动分析和基于Recurdyn软件的排种器运动仿真,探究排种器传送链轴转速、提升传送链倾角和集蔗箱倾角对排种性能的影响。利用自制的简易链式甘蔗排种器试验平台,对排种器的一级链轴转速、传送链倾角和集蔗箱倾角等参数进行试验研究,结果表明:传送链倾角和一级链轴转速对排种性能具有极显著的影响,集蔗箱倾角对排种性能的影响不显著;排种性能的最优参数组合为传送链倾角55°、链轴转速9.16 r/min、集蔗箱倾角45°。室内验证试验表明,排种器的合格率为92.6%、漏植率为5%、重植率为3.2%,说明排种器能有效避免排种过程的重植和漏植现象,减少播种过程的耗种量。田间验证试验表明,排种方向合格率93.37%,排种株距合格率90.33%,排种株距在33~49.5cm的合理株距范围内,实现了双蔗芽蔗种的精准横向播种。  相似文献   

16.
针对玉米大豆带状复合种植条件下传统机械式排种器不易实现二者兼用精量排种要求、现有气力式排种器排种速度提高因型孔漏充存在漏播断条等问题,设计了一种具有腔盘组合孔结构的排种盘,分析确定了排种盘关键结构参数,构建了吸附过程和吸运过程力学模型。应用EDEM离散元仿真与台架试验相结合的方法进行了排种盘型式优选试验,结果得出:腔盘组合孔式排种盘具有提高充种室种群定向运移平均速度和增大拖拽充种角的作用,有效抑制了型孔漏充率。以安装优选种盘的玉豆兼用排种器为对象,以机组前进速度和工作负压为试验因素,以漏充率和充种合格率为试验指标,采用二因素全因子试验设计开展了充种性能试验,结果表明:当机组前进速度为4.0~7.0 km/h、工作负压在3.0~4.0 kPa时,玉米和大豆种子漏充率均小于3.6%、充种合格率均不小于96%。田间验证试验表明,在机组前进速度为4.0~7.0 km/h、工作负压为3.0~4.0 kPa条件下,腔盘组合孔式排种盘的排种器播种玉米和大豆漏充率分别不大于3.8%、4.2%;当工作负压为3.0 kPa、机组前进速度为7.0 km/h时,自扰动腔盘组合孔式排种盘相比无扰动平面排种盘,播...  相似文献   

17.
动定指勺夹持式玉米精量排种器优化设计与试验   总被引:2,自引:0,他引:2  
为提高机械式玉米排种器作业质量与适播范围,设计了一种基于限位导引的动定指勺夹持式玉米精量排种器,阐述了排种器总体结构及工作原理,优化了关键部件指勺种盘和限位导引总成结构参数。以排种器工作转速和调控摆臂调节尺寸为试验因素,株间合格指数和变异系数为试验指标,进行了单因素试验分析各因素对性能指标的影响规律。试验结果表明,排种器对各等级尺寸玉米种子均具有良好的适应性。为研究排种器最佳工作参数,采用多因素二次正交旋转组合设计试验,建立了性能指标与试验参数间数学模型,运用Design-Expert 6.0.10软件对试验结果进行处理分析,对回归模型进行优化验证。试验结果表明,当工作转速为30.5 r/min,调节尺寸为12.0 mm时,对圆形大粒玉米种子作业性能最优,其合格指数为88.41%,变异系数为12.32%,满足精量播种作业要求。  相似文献   

18.
针对胡麻播种机用种量大、播量变异系数大、播种不均匀的问题,基于胡麻种子物理特性和种植农艺要求,设计一种舀种勺舌式胡麻精量穴播器。通过分析穴播器工作原理确定穴播器组成、舀种勺结构参数范围及安装数量;对舀种勺舀种过程和清种过程进行力学分析,确定穴播器角速度范围;通过EDEM仿真过程得知,花纹内壁聚种斜槽在不影响舀种勺填充效果的同时,不仅可以提高仿真效率,还可以增大种子流动性,便于舀种勺充种。以穴播器角速度、舀种勺顶端过渡圆角半径、种室隔离板高度为试验因素,穴播器排种合格率、漏播率和重播率为试验指标,利用EDEM离散元仿真软件开展二次旋转正交组合试验,得到最优参数组合为:穴播器角速度2.9 rad/s、舀种勺顶端过渡圆角半径2.5 mm、种室隔离板高6.8 mm;将该舀种勺3D打印制作进行排种性能试验验证,台架试验得到该舀种勺排种合格率、漏播率和重播率平均值分别为87.00%、6.33%、6.67%;田间试验得到该舀种勺排种合格率为88.33%,漏播率为6.67%,重播率为5.00%;胡麻平均种植密度为50株/m2,其台架试验与田间试验结果基本一致,性能满足胡麻精量播种...  相似文献   

19.
我国是一个蔬菜种植大国,蔬菜规模化种植多采用工厂化育苗,达到成苗要求后的蔬菜钵苗需用移栽机进行大田栽植.为了提高移栽机的工作效率和蔬菜移栽的自动化程度、降低劳动力成本,针对移栽后空穴盘的自动回收设计出了一种全自动移栽机收盘装置.装置由输送装置、托举装置及回收框架等部分组成,穴盘下落后由输送带传送到回收框,托举装置将其叠...  相似文献   

20.
针对设施蔬菜种植过程存在漏播、重播问题,设计基于卡尔曼滤波PID控制技术的精量排种器。分别对排种器关键组件和监测装置进行结构设计,建立传感器实时监测车速信号的控制系统,同时以不同作物株距值共同作为控制依据,补偿融合卡尔曼滤波的PID控制方法,通过调控电机保持转速的稳定性,从而实现精量播种。仿真结果表明:卡尔曼滤波的引入,对噪声干扰起到良好抑制作用,可提高系统稳定性。以排种盘转速和行走速度为变量,以株距合格率、重播率、漏播率和株距变异系数为指标,进行两因素五水平的二次回归正交旋转组合试验。台架试验表明:在不同车速下,株距变异系数均在规定的≤35%指标范围内,排种盘转速为10 r/min,行走速度为1.6 km/h时,株距合格率为95.9%,重播率为2.9%,漏播率为1.9%,株距变异系数为12.1%,满足设施蔬菜的精量播种要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号