首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of chitosan, a polymer of glucosamine obtained by the deacetylation of chitin, on growth, survival and stress tolerance was studied in postlarval Litopenaeus vannamei. An experiment was performed with postlarval shrimp (mean initial wet weight 1.2 mg) fed five isoenergic and isonitrogenous diets containing five supplemented levels of chitosan (0, 0.5, 1, 2 and 4 g kg?1 diet, respectively). The five compound diets (C0, C0.5, C1, C2 and C4) sustained shrimp growth throughout the experiment. Growth performance (final body weights; weight gain; SGR: specific growth rate) in shrimp fed diet C2 was significantly higher than that in shrimp fed diets C0, C0.5 and C1 (P < 0.05), diet C4 treatment provided intermediate growth result. The survival in shrimp fed diet C1 was significantly higher than that in shrimp fed C0 diet (P < 0.05), other diets treatments gave the intermediate survival results. No significant differences were found in growth and survival between diet C2 and C4 treatments. After 9 days of a stress tolerance test, survival in shrimp fed diets C1, C2 and C4 was significantly higher than that in shrimp fed diets C0 and C0.5. We concluded from this experiment that the incorporation of a moderate dietary chitosan was beneficial to the development of postlarval L. vannamei. Considering the effect of chitosan on both growth and survival of postlarval L. vannamei, second‐degree polynomial regression of SGR and survival indicated optimum supplement of dietary chitosan at 2.67 and 2.13 g kg?1, respectively, so the level of chitosan supplemented in the diet should be between 2.13 and 2.67 g kg?1.  相似文献   

2.
This experiment was conducted to evaluate the effects of dietary lipid sources on the growth performance and fatty acid (FA) composition of juvenile shrimp, Litopenaeus vannamei. Six isoenergetic and isonitrogenous semi‐purified diets containing casein, solvent‐extracted soybean meal and gelatin as protein sources, were supplemented with 60 g kg−1 of lipid sources. The lipid sources included: pollack fish oil (PO), pork lard (PL), soy oil (SO), peanut oil (PN), rapeseed oil (RO) and a mixture of pollack fish oil and soy oil (POSO 1 : 1 w/w). Each diet was fed to juvenile shrimp (0.10 g average weight) four times daily in triplicate tanks to apparent satiation (feeding ratio was about 8%) for 8 weeks. At the end of the experiment, weight gain, specific growth rate and protein efficiency ratio were significantly higher for shrimp fed the diet containing PO and the POSO mixture oil than the other lipid sources. The nutritional values of SO, RO, PN and PL were similar. Shrimp fed on PO, mixture oil of POSO and SO had better survival rates than the other lipid sources, and shrimp fed the PL had the lowest survival rate. There were significant differences in lipid contents of whole body and hepatopancreas amongst the dietary treatments; however, lipid contents of tail muscle were not significantly affected by the dietary lipid sources. Shrimps fed POSO diet had higher protein content in whole body than those fed the other lipid sources, and shrimp fed PO diet had highest crude protein content of the tail muscle. A high correlation was found between dietary FA composition and FA composition of whole shrimp. FA composition of the whole body was generally affected by dietary lipid sources, especially dietary unsaturated FA.  相似文献   

3.
Two experiments were conducted for 30 days each to investigate the effective phosphorus source and supplemental phosphorus levels for postlarval Litopenaeus vannamei. The first experiment was performed in postlarval shrimp (mean initial wet weight 2 mg) fed four isoenergic and isonitrogenous diets containing three supplemented inorganic phosphorus sources [D1: no supplemental phosphorus, D2: NaH2PO4·2H2O, D3: KH2PO4·2H2O, D4: Ca(H2PO4)2·2H2O]. The quantities of the three supplemental NaH2PO4·2H2O, KH2PO4·2H2O and Ca(H2PO4)2·2H2O were 11.6, 12.8 and 10 g kg?1 of the diet, respectively in order to make the three diets have the same total phosphorus. Growth performance (final mean body weight, FBW; weight gain, WG; specific growth ratio, SGR) of shrimp in D3 treatment was the highest and had significant difference with the D1 treatment. The survival of shrimp in D3 treatment was the highest and had significant difference with the other treatments. The mineral concentration and body composition of shrimp were not significantly different among treatments. We could conclude that KH2PO4·2H2O was the optimal phosphorus source for postlarval L. vannamei from the growth performance and survival. The second experiment was performed in postlarval shrimp (mean initial wet weight 0.88 mg) fed four isoenergic and isonitrogenous diets containing four supplemental KH2PO4·2H2O levels (d1, d2, d3 and d4 with 0, 5, 10 and 20 g kg?1, respectively). Shrimp in d2 treatment showed the highest growth performance and survival and also showed significant difference with other diet treatments. The whole body content of zinc (Zn) increased with the increase of dietary KH2PO4·2H2O and significant differences were observed when dietary KH2PO4·2H2O reached 5 g kg?1, excess KH2PO4·2H2O supplementation (10 and 20 g kg?1) had a negative effect on Zn content, the Zn content significantly decreased when KH2PO4·2H2O was 20 g kg?1. We can conclude that the amount of total phosphorus in the diet should be maintained between 20.9 and 22.0 g kg?1, the amount of supplemental KH2PO4·2H2O in the diet is less than 10 g kg?1.  相似文献   

4.
In this study, we tested the lower salinity tolerance of juvenile shrimps (Litopenaeus vannamei) at a relatively low temperature (20 °C). In the first of two laboratory experiments, we first abruptly transferred shrimps (6.91 ± 0.05 g wet weight, mean ± SE) from the rearing salinity (35 000 mg L?1) to salinities of 5000, 15 000, 25 000, 35 000 (control) and 40 000 mg L?1 at 20 °C. The survival of L. vannamei juvenile was not affected by salinities from 15 000 to 40 000 mg L?1 during the 96‐h exposure periods. Shrimps exposed to 5000 mg L?1 were significantly affected by salinity, with a survival of 12.5% after 96 h. The 24‐, 48‐ and 96‐h lethal salinity for 50% (LS50) were 7020, 8510 and 9540 mg L?1 respectively. In the second experiment, shrimps (5.47 ± 0.09 g wet weight, mean ± SE) were acclimatized to the different salinity levels (5000, 15 000, 25 000, 35 000 and 40 000 mg L?1) and then maintained for 30 days at 20 °C. Results showed that the survival was significantly lower at 5000 mg L?1 than at other salinity levels, but the final wet weight under 5000 mg L?1 treatment was significantly higher than those under other treatments (P<0.05). Feed intake (FI) of shrimp under 5000 mg L?1 was significantly lower than those of shrimp under 150 00–40 000 mg L?1; food conversion efficiency (FCE), however, showed a contrasting change (P<0.05). Furthermore, salinity significantly influenced the oxygen consumption rates, ammonia‐N excretion rates and the O/N ratio of test shrimps (P<0.05). The results obtained in our work provide evidence that L. vannamei juveniles have limited capacity to tolerate salinities <10 000 mg L?1 at a relatively low temperature (20 °C). Results also show that L. vannamei juvenile can recover from the abrupt salinity change between 15 000 and 40 000 mg L?1 within 24 h.  相似文献   

5.
海水和淡水养殖凡纳滨对虾呈味物质的比较分析   总被引:5,自引:0,他引:5  
对使用同种饲料喂养的海水和淡水养殖凡纳滨对虾(Litopenaeusvannamei)进行了感官评价、一般成分和呈味物质分析。海水养殖对虾感官评价总体得分高于淡水养殖对虾,海水养殖对虾在鲜味、甜味上优于淡水养殖对虾,而淡水养殖对虾带有明显的土腥味(P<0.01)。海水养殖对虾的灰分高于淡水养殖对虾,粗蛋白、水分及有机酸含量两类对虾差异不大。通过分析氨基酸、核苷酸、甜菜碱和有机酸等呈味物质,发现主要是谷氨酸、AMP、IMP、甜菜碱这几种物质对两类对虾的口味差异起着重要作用,其他成分作用不明显。  相似文献   

6.
采取L49(78)安排7水平Ca2+、Mg2+、盐度正交试验,开展60d凡纳滨对虾养殖试验,通过比较凡纳滨对虾成活率、日均增长值、日均增重量及鲜味氨基酸含量,分析养殖水体中Ca2+、Mg2+、盐度三因子对凡纳滨对虾存活、生长及虾体风味的影响;采取L8(27)安排2水平Ca2+、Mg2+、盐度正交试验,分析养殖水体中Ca2+、Mg2+、盐度三因子间交互作用对凡纳滨对虾存活、生长及虾体风味的影响。结果表明:水体中Ca2+、Mg2+、盐度对成活率和虾体鲜味氨基酸都有显著影响(P<0.05),Ca2+、Mg2+对凡纳滨对虾生长具有显著影响(P<0.05),其中Mg2+对成活率影响最大,Ca2+对生长影响最大,而鲜味氨基酸受盐度影响最大。Ca2+浓度为100mg/L和400mg/L,Mg2+为1200mg/L,盐度为10时,成活率最高;Ca2+≥200mg/L与Mg2+≥300mg/L时,生长速度无明显变化,Ca2+浓度为100mg/L,Mg2+浓度为150mg/L,盐度为10~20时,体长和体质量增加最快;Ca2+、Mg2+含量与盐度越高,鲜味氨基酸含量越高,Ca2+浓度为400mg/L,Mg2+浓度为750mg/L,盐度为35和20时,风味氨基酸含量最高;低盐、低钙、低镁水体显著降低了凡纳滨对虾的生长存活;Ca2+与Mg2+对成活率及体质量日均增长具有显著的交互作用影响,Ca2+与盐度对成活率具有显著的交互作用影响,Mg2+与盐度对各试验指标均没有显著影响。  相似文献   

7.
An 8‐week study was conducted to explore the results of Macsumsuk® as a feed additive on the stress tolerance and growth of Litopenaeus vannamei in 15 culture tanks of 36 L each. Three hundred shrimp averaging 0.1 ± 0.01 g were fed with five isonitrogenous (48.38 ± 0.38% CP) diets (in triplicate groups) containing kaolinite (Macsumsuk®) at 0%, 0.3%, 0.6%, 1.2% and 2.4%, namely Mk0, Mk0.3, Mk0.6, Mk1.2 and Mk2.4. Specific growth rate (SGR) and weight gain (WG) of shrimp fed diets Mk1.2 and Mk2.4 were significantly better than those of shrimp fed diet Mk0 (p < .05). However, SGR and WG of shrimp fed diets Mk0.6, Mk1.2 and Mk2.4 were not significantly different. Protein efficiency ratio (PER) and feed efficiency (FE) of shrimp fed diets Mk1.2 and Mk2.4 were significantly better than those of shrimp fed diets Mk0, Mk0.3 and Mk0.6. Furthermore, the survival of shrimp fed diet Mk2.4 was significantly lower than that of shrimp fed diet Mk0.6 (p < .05). Cumulative mortality of shrimp fed diet Mk1.2 was significantly lower than that of shrimp fed diet Mk0 at 1–1.5 hr post‐stress to low dissolved oxygen (from 6.1 mg/L to 2.9 mg/L) and 4–5 hr post‐stress to low salinity (from 32‰ to 1‰) (p < .05). The optimum dietary Macsumsuk® level for juvenile L. vannamei was determined as 1.97% by the polynomial regression analysis of weight gain.  相似文献   

8.
The tolerance of Litopenaeus vannamei larvae to increasing concentrations of total ammonia nitrogen (TAN) using a short‐term static renewal method at 26°C, 34 g L?1 salinity and pH 8.5 was assessed. The median lethal concentration (24 h LC50) for TAN in zoea (1‐2‐3), mysis (1‐2‐3) and postlarvae 1 were, respectively, 4.2‐9.9‐16.0; 19.0‐17.3‐17.5 and 13.2 mg L?1TAN (0.6‐1.5‐2.4; 2.8‐2.5‐2.6 and 1.9 mg L?1 NH3‐N). The LC50 values obtained in this study suggest that zoeal and post‐larval stages are more sensitive to 24 h ammonia exposure than the mysis stage of L. vannamei larvae. On the basis of the ammonia toxicity level (24 h LC50) at zoea 1, we recommend that this level does not exceed 0.42 mg L?1 TAN – equivalent to 0.06 mg L?1 NH3‐N – to reduce ammonia toxicity during the rearing of L. vannamei larvae.  相似文献   

9.
A 6‐week feeding trial was conducted to evaluate the nutritional value of dietary linoleic (18:2n‐6, LOA) and linolenic (18:3n‐3, LNA) acids for juvenile Litopenaeus vannamei by determining their effects on growth, survival and fatty acid composition of hepatopancreas and muscle tissue. Diets were formulated to contain 5% total lipid. A basal diet contained only palmitic and stearic acids, each at 2.5% of diet. Six diets contained one of three levels (0.25, 0.5 and 1%) of either LOA or LNA, and three diets had different ratios of LNA/LOA (1, 3, 9) at a combined inclusion level of 0.5% of diet. An additional diet contained 0.5% of a mixture of n‐3 highly unsaturated fatty acids (HUFA). The fatty acid profile of hepatopancreas and muscle of shrimp reflected the profile of the diets. HUFA of the n‐3 family showed higher nutritional value than LOA or LNA for juvenile L. vannamei by producing significantly (P < 0.05) higher final weight and weight gain. Neither LOA nor LNA, alone or in combination, improved growth significantly compared with shrimp fed the basal diet.Thus, dietary requirements for LOA and LNA were not demonstrated under these experimental conditions.  相似文献   

10.
韦嵩  宋晓玲  李海兵  李赟 《水产学报》2009,33(1):112-118
摘要:免疫活性物质可以调动或激活虾类自身的免疫系统,提高动物的免疫机能,增强动物的抗病毒能力。有关卵黄抗体对对虾体内酶活力及抗病毒能力的影响,国内外尚未见报道。本实验通过连续投喂的方法,用3个水平(1%、0.5%、0.1%)的Ig-Guard(shrimp)制成的试验饲料,同时以基础饲料为空白对照饲喂凡纳滨对虾(Litopenaeus vannamei) 20 d,分别测定了第5,10,15,20 d血淋巴的酚氧化酶(PO)、溶菌酶(UL)、酸性磷酸酶(ACP)及肌肉匀浆液的超氧化物歧化酶(SOD)等非特异性免疫因子活性,并对血清及肌肉匀浆液中蛋白进行定量。结果表明,免疫组的PO、UL、ACP、SOD活力均显著高于对照组(P<0.05)。免疫20 d后,用白斑综合征病毒(WSSV)投喂感染。攻毒后第7 d各免疫组的相对免疫保护率分别为17.95%、23.08%、35.90%。实验结果说明,Ig-Guard(shrimp)能有效提高对虾免疫因子的活性,对于提高抗WSSV感染能力也有一定作用。将对虾免疫因子活性和累计死亡率协同分析,摄食低浓度Ig-Guard(shrimp)组较之高浓度组的酶活力高,其累计死亡率低,故笔者建议适当地投喂低浓度Ig-Guard(shrimp)更为合理。  相似文献   

11.
The effect of dietary protein level and natural food management on the production parameters of blue and white shrimp, as well as on water quality, was evaluated in a microcosms system (plastic pools simulating aquaculture ponds). Two experimental trials were carried out in the facilities of DICTUS, University of Sonora, Northwest México. Treatment with low protein diet (LP) consisted of a low protein input (diet with 250 g kg?1 crude protein) through the culture period; treatment with high protein diet (HP) consisted of a high protein input (diet with 400 g kg?1 crude protein) through the trial, and finally treatment VP consisted of an adjustment of protein input (diets with 250, 350 or 400 g kg?1 crude protein), depending on the abundance of biota (zooplankton and benthos) in the system. Each species responded differently to the treatments. For blue shrimp, low protein input resulted in the lowest final body weight (12.9 ± 0.6 g) and biomass (696.0 g pool?1). Survival and feed conversion ratio were similar in the three treatments. For white shrimp, the best growth, biomass and food conversion ratio were obtained in the low protein input treatment. Water quality parameters such as nitrate, ammonia and organic matter during the two trials, were better for LP and VP treatments. White shrimp seems to have lower protein requirements than blue shrimp. For the blue shrimp culture, adjusting protein input according to natural food abundance (zooplankton and benthos) in the system, seems to be advantageous because of the possibility of getting a production similar to that obtained with a high protein input through the farming period, but at lower feed cost, and with a lower environmental impact. It is concluded that a high protein input through the whole farming period is not the best feeding strategy for any of the two species.  相似文献   

12.
This study evaluated the nutritional value of dietary n‐3 and n‐6 polyunsaturated fatty acids (PUFA) such as linoleic (LOA) and linolenic (LNA) acids, and highly unsaturated fatty acids (HUFA) such as arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids for juvenile Litopenaeus vannamei, based on their effects on growth, survival, and fatty acid composition of hepatopancreas and muscle tissue. Diets contained 5% total lipid. A basal diet contained palmitic and stearic acids each at 2.5% of diet. Five diets contained 0.5% dry weight of LOA, LNA, AA, EPA, or DHA. An additional diet evaluated HUFA in combination by supplementing at 0.5% of diet, a mixture of n‐3 HUFA. All HUFA showed higher nutritional value than PUFA for shrimp and produced significantly (P < 0.05) higher final weight, weight gain, and total lipid in shrimp muscle. Fatty acid profiles of shrimp tissues reflected the composition of the dietary lipids. In general, saturated fatty acids were more abundant in the neutral factions, while PUFA and HUFA were more abundant in the polar fractions of tissues. Under these experimental conditions, HUFA had much greater nutritional value than PUFA for juvenile L. vannamei; moreover, dietary requirements for PUFA were not demonstrated.  相似文献   

13.
对从美国进口的选育凡纳滨对虾(Litopenaeus vannamei)海南群体(进口亲虾繁育的第1世代,G1)、山东和饶平群体(G2)、湛江2和湛江3群体(G3)、湛江1和上海群体(G4)共7个养殖群体4个世代1150个个体的生长性状体长和体重进行了分析。7个群体的平均体长(范围)分别为14.76(13.25~15.99)、8.46(6.28~10.48)、9.24(4.28~10.70)、7.75(5.13~9.36)、11.38(8.13~14.12)、5.25(3.47~6.83)和7.14(4.14~9.00),变异系数分别为0.04、0.08、0.08、0.09、0.12、0.14、0.14,平均体重(范围)分别为33.41(24.33~39.74)、5.19(1.80~9.68)、6.95(3.18~11.34)、4.62(1.52~9.87)、15.03(6.00~26.96)、1.47(0.48~3.42)、3.29(0.49~6.20),变异系数分别为0.10、0.23、0.21、0.27、0.32、0.39、0.36。体长和体重的变异系数随着繁育世代的增加而增加,其中体重的变异系数每繁殖1代增加10%,其第1代的变异系数与美国选育的亲本群体相同。体长、体重相关与回归分析表明,体长与体重相关极显著(P<0.01),体长和体重的回归方程为W=0.01L2.93。表明随着繁育世代的增加,生长性状逐代分化。  相似文献   

14.
This trial was conducted to evaluate the effects of nucleotides on growth of whiteleg shrimp, Litopenaeus vannamei, and the survival and metabolic responses to ammonia stress test. Experimental diets were as follows: low fish meal diet (LFMD), and four LFMD test diets, each supplemented with 0.1% guanosine monophosphate (GMP), 0.1% inosine monophosphate (IMP), 0.1% mixture of GMP and IMP and 0.1% mixture of GMP, IMP, uridine monophosphate (UMP) and cytidine monophosphate (CMP). The shrimp specimens (initial body weight: 0.99 ± 0.01 g) were randomly allocated into five groups and fed four times daily for 8‐weeks. After the trial, final body weight was recorded and haemolymph was withdrawn for haematological analysis. The shrimp was then challenged with 70 mg/L ammonia (LC50) for 10 days. Survival and haemolymph of the shrimp were taken after exposure to ammonia. The highest growth performance was observed in the shrimp fed diet supplemented with GMP (p < .05), while survival was not influenced by the test diets in the feeding trial. In the ammonia challenge test, the highest survival was observed in the shrimp fed GMP supplemented diet compared to others. The plasma protein, glucose and cholesterol levels increased in all the treatments while triglycerides level decreased post challenge. Cortisol level recovered at day 10th after the challenge. Shrimps fed with nucleotides diets showed higher protein and glucose level compared to control groups post challenge. In general, nucleotides supplemented in the diet enhanced growth, improved stress resistance while modulating the haemolymph metabolites in L. vannamei under ammonia stress.  相似文献   

15.
氨氮胁迫下白斑综合征病毒对凡纳滨对虾的致病性   总被引:1,自引:0,他引:1  
为了评价养殖水环境中氨氮(NH_4-N)对凡纳滨对虾(Litopenaeus vannamei)的危害性,开展了NH_4-N胁迫对凡纳滨对虾感染白斑综合征病毒(WSSV)后的死亡率、WSSV增殖速率和对虾主要免疫相关酶活性影响的实验。在NH_4-N胁迫质量浓度为15.6 mg·L-1,分别注射2×105和2×106个WSSV粒子,结果显示,NH_4-N胁迫下注射2×105个WSSV粒子的凡纳滨对虾第144小时死亡率达到53.3%,显著高于无胁迫组(40.0%)。对虾鳃组织WSSV荧光定量PCR检测结果显示,NH_4-N胁迫下凡纳滨对虾鳃组织内WSSV的增殖加快。此外,免疫相关酶活性结果显示,NH_4-N浓度突变会促使对虾血清中酚氧化酶(PO)、酸性磷酸酶(ACP)和碱性磷酸酶(AKP)活性短暂升高后持续降低。由此可见,NH_4-N胁迫会加快WSSV在患病凡纳滨对虾体内的增殖,导致更高死亡率,这可能是因为胁迫造成了对虾免疫相关酶活性降低和抗病原感染能力下降。  相似文献   

16.
17.
Growth rate, soluble-protein content and digestive-enzyme activities were studied in Litopenaeus vannamei (Boone, 1931) early post-larvae under six feeding regimens, which included combinations of freshly hatched Artemia nauplii, an artificial diet and algae. Growth (0.11 mg DW day−1) and soluble-protein content (61.8 μg protein larvae−1 at PL10) of post-larvae fed mixed diets were significantly higher (P < 0.05). An artificial diet used alone or co-fed with algae caused the lowest growth (0.03–0.05 mg DW day−1) and soluble-protein content (13.7–15.5 μg protein larvae−1 at PL10). Trypsin-like activity was higher (up to 10 times) in post-larvae fed Artemia nauplii and an artificial diet alone or plus algae. The artificial diet stimulated chymotrypsin activity, apparently in response to squid meal present in this diet. Amylase activity increased when post-larvae were fed the artificial diet. This was apparently related more to the origin of the starch than to the total carbohydrate level of the diet. No obvious relationship was found between enzyme activity and growth in any feed combination. Based on growth and soluble-protein content, we determined that partial substitution (50%) of Artemia nauplii by artificial diet and the use of algae co-fed beyond the first post-larval stage benefits growth and the nutritional state of L. vannamei post-larvae.  相似文献   

18.
Despite the recent success of Alabama shrimp farmers in culturing the Pacific white shrimp, Litopenaeus vannamei , in inland low-salinity waters there is large variability in growth and survival among ponds. Farmers suspect that high mortality occurs during the first weeks of culture following stocking of postlarvae (PL). In order to determine the effect of pond ionic composition on PL growth and survival, three trials were carried out at a shrimp farm. Trials 1 and 2 evaluated PL growth and survival over 21- and 28-day periods, respectively, using static water from different production ponds. Trial 3 evaluated growth and survival over 7, 14, 21 and 28 days using water from one production pond. Results suggest that initial mortality (8–10%) is attributed to the acclimation process and occurs immediately following stocking. Pond-to-pond variations in ionic profiles could be a contributing factor but are not likely the major reason for variable 'survival'. Mortalities after stocking appear to occur quickly as there were no differences in survival from 7 to 28 days post stock. Variable survival is likely due to a combination of reasons including environmental factors, but is largely due to poor handling of PL and stocking errors that produce perceived reductions in survival.  相似文献   

19.
益生菌对凡纳滨对虾生长和全虾营养组成的影响   总被引:4,自引:2,他引:4  
研究了芽孢杆菌制剂(Bacillus sp.,10^9CFU·g^-1)对凡纳滨对虾Litopenaeus vannamei(初始体重0.03g·尾^-1)生长性能、全虾营养成分和氨基酸的影响。7种试验饲料中芽孢杆菌制剂的添加量分别为0,0.5,1.0,1.5,2.0,2.5和3.0g·kg^-1饲料。芽孢杆菌制剂对凡纳滨对虾的成活率没有显著影响。摄食添加益生菌1.0和1.5g·kg^-1饲料的凡纳滨对虾的增重率高并且饲料系数低于对照组,特别是添加量为1.0g·kg^-1时,差异显著;然而,其它添加量并不存在显著性差异。添加益生菌对凡纳滨对虾全虾的水分、蛋白质和灰分含量的影响不显著;投喂添加益生菌1.0和1.5g·kg^-1饲料,脂肪含量高于对照组。饲料中添加益生菌可以改变凡纳滨对虾全虾中部分氨基酸的含量。  相似文献   

20.
为了探讨低盐度(0.6~0.8 g/L)条件下初始体质量为(0.38±0.004)g的凡纳滨对虾(Litopenaeus vannamei)幼虾的亮氨酸需求量,以鱼粉、花生麸和L-晶体氨基酸为蛋白源配制含粗蛋白400 g/kg的6种等氮饲料,标记为L7~L12组,各组亮氨酸水平分别为15.95、17.95、19.95、21.95、23.95和25.95 g/kg(饲料干物质).每组3个重复,每个重复30尾虾,进行56 d生长实验.结果表明,凡纳滨对虾幼虾的增重率随饲料亮氨酸水平的升高而升高,当亮氨酸水平达到23.95 g/kg(L11组)时,增重率达到最高值(1143.11±36.40)%,显著高于L7组(P<0.05);亮氨酸水平继续提高,增重率变化不显著(P>0.05).幼虾的蛋白质效率、全虾体蛋白沉积率和血淋巴总蛋白随着饲料亮氨酸水平的升高呈现升高趋势,最高值出现在L11组,并显著高于L7组(P<0.05).各实验组饵料系数、血淋巴谷丙转氨酶、谷草转氨酶活性和尿素氮含量则呈现降低的趋势,最低值出现在L11组,且显著低于L7组(P<0.05).以增重率为指标,根据折线模型可知,低盐度条件下凡纳滨对虾幼虾的亮氨酸最适需要量为24.80 g/kg饲料,即61.99 g/kg饲料蛋白.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号