首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was suspected that feline immunodeficiency virus (FIV) infection would affect the function of feline macrophages, and that the concomitant infection of cats with FIV and Toxoplasma gondii would cause even greater changes in macrophage function. Sixteen specific-pathogen-free kittens, four per group, were infected either with FIV, T. gondii, both pathogens, or neither pathogen. After the cats had been infected with FIV for 14 weeks (8 weeks after T. gondii infection), peritoneal macrophages were collected. Some macrophages were stimulated with lipopolysaccharide and supernatants were collected for the measurement of interleukin-1 production. Other macrophages were infected with T. gondii in a microbiocidal assay. Peritoneal macrophages from cats infected with FIV had decreased interleukin-1 secretion and increased antimicrobial activity. Co-infection with T. gondii apparently had no effect on these modifications of macrophage activity. Thus, acute FIV infection alone caused significant changes in macrophage functions that were not affected by concomitant T. gondii infection.  相似文献   

2.
A group of 15 cats experimentally infected with a Swiss isolate of feline immunodeficiency virus (FIV) and a group of 15 FIV-negative control cats were inoculated with an FeLV vaccine containing recombinant FeLV-envelope. High ELISA antibody titer developed after vaccination in FIV-positive and FIV-negative cats. Vaccinated and nonvaccinated controls were later challenge exposed by intraperitoneal administration of virulent FeLV subtype A (Glasgow). Although 12 of 12 nonvaccinated controls became infected with FeLV (10 persistently, 2 transiently), only 1 of 18 vaccinated (9 FIV positive, 9 FIV negative) cats had persistent and 2 of 18 had transient viremia. From these data and other observations, 2 conclusions were drawn: In the early phase of FIV infection, the immune system is not depressed appreciably, and therefore, cats may be successfully immunized; a recombinant FeLV vaccine was efficacious in protecting cats against intraperitoneal challenge exposure with FeLV.  相似文献   

3.
Lymphocytes from normal cats or cats experimentally infected with feline immunodeficiency virus (FIV) were stimulated with phytohemagglutinin, pokeweed mitogen, or concanavalin A. Lymphocytes from infected cats had lower responses than those from uninfected cats. These results support the hypothesis that FIV induces immunosuppression.  相似文献   

4.
5.
Sera from cats with naturally acquired and experimentally induced feline immunodeficiency virus (FIV) infections were tested by immunoblot analysis, radioimmunoprecipitation assay (RIPA), and a complex trapping/blocking ELISA. In sequentially obtained samples from experimentally inoculated cats, antibodies against the envelope protein gp120 and the core protein p15 were the first to appear, as indicated by results of RIPA, using lysates of FIV-infected lymphocytes. Antibodies could be detected as early as 2 weeks after infection, followed by a response against p24, p43, and p50. By immunoblot analysis, p24 and p15 were the first proteins detectable between postinoculation weeks 3 and 5; an anti-envelope response was never found by use of this assay, but was found by RIPA. Using the latter test, most sera of naturally infected cats were found to recognize the major core protein p24 in addition to 1 or more minor core proteins. All 40 sera tested precipitated the envelope protein; 3 reacted exclusively with it. A complex trapping/blocking ELISA was developed to quantitate the anti-p24 response. Sera from healthy FIV-infected cats were shown to have higher anti-p24 titer than did those from diseased cats.  相似文献   

6.
Cats that are persistently infected with FeLV or feline immunodeficiency virus but are not manifesting clinical signs of disease are at risk for developing a wide variety of immunosuppressive, degenerative, or neoplastic diseases. Infected cats should be isolated to prevent transmission of virus to healthy cats, and to protect infected cats from exposure to pathogens that can cause life-threatening secondary infections. Iatrogenic transmission of virus from infected cats in isolation to healthy cats may be reduced by strict adherence to handling, sanitation, and disinfection procedures. Husbandry practices that may delay the complications of infection include regular vaccination, provision of high-quality diets, reduction of stress, control of endoparasites and ectoparasites, and early and aggressive treatment of clinical signs of disease.  相似文献   

7.
Tumor necrosis factor alpha (TNF alpha) levels were determined by enzyme-linked immunosorbent assay (ELISA) and by cell culture bioassay in supernatants of lipopolysaccharide-stimulated feline monocyte cultures and in cat serum samples. There was a good correlation between the results obtained by the two methods. From the fact that TNF alpha was neutralized quantitatively by antibodies to human TNF alpha in feline monocyte supernatants and in feline sera, it was concluded that feline TNF alpha immunologically cross-reacts with human TNF alpha and that the human TNF alpha ELISA can be used to quantitate feline TNF alpha. During the first 6 months after experimental feline immunodeficiency virus (FIV) infection no differences in serum TNF alpha values were observed between infected and non-infected cats. TNF alpha levels increased significantly after primary vaccination with a feline leukemia virus (FeLV) vaccine in FIV infected cats over those in the non-infected controls. During secondary immune response TNF alpha levels rose transiently for a period of a few days in both the FIV positive and the FIV negative cats. After FeLV challenge, TNF alpha levels increased in all animals challenged with virulent FeLV for a period of 3 weeks. This period corresponded to the time necessary to develop persistent FeLV viremia in the control cats. It was concluded from these experiments that in the asymptomatic phase of FIV infection no increased levels of TNF alpha are present, similar to the situation in asymptomatic HIV infected humans. Activation of monocytes/macrophages in FIV infected cats by stimuli such as vaccination or FeLV challenge readily leads to increased levels of TNF alpha.  相似文献   

8.
9.
Objective To determine prevalences of feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) infections in ‘healthy’ cats that, through acute misadventure or other circumstance, were presented to veterinary practitioners. Prevalences of FeLV and FIV in this population were compared to those in a population of predominantly sick cats. Design and procedures Serum specimens were obtained over a 2-year period from 200 cats oldeer than 1 year of age presented to veterinary clinics for routine procedures, including cat fight injuries or abscesses, vehicular trauma, neutering, dental scaling, vaccination, grooming or boarding. An additional 894 sera were obtained over approximately the same period from specimens submitted by veterinarians to a private clinical pathology laboratory, mainly from sick cats suspected of having immune dysfunction, but including some sera from healthy cats being screened prior to FeLV vaccination. FIV antibody and FeLV antigen were detected in samples using commercial enzyme immunoassays. Results Amongst 200 ‘healthy’ cats, the prevalence of FeLV infection was 0 to 2%, and the prevalence of FIV was 6.5 to 7.5%, depending on the stringency of the criteria used to define positivity. FIV infection was significantly more prevalent in cats which resided in an inner city environment (P = 0.013). Of the 894 serum specimens submitted to the laboratory by practitioners, 11/761 (1.4%) were FeLV positive, while 148/711 (20.8%) were FIV positive. The prevalence of FIV was significantly higher in these predominantly ‘sick’ cats than in cats seen for routine veterinary procedures (P < 0.00001), while there was no difference in the prevalence of FeLV (P = 0.75) Conclusions The prevalence of FeLV and FIV in healthy cats may have been substantially overestimated in some previous Australian surveys. FeLV infection would appear to be a rare cause of disease in Australian cats. The higher prevalence of FIV positivity in sick as opposed to healthy cats infers that FIV infection contributes to the development of disease.  相似文献   

10.
Foamy viruses (FV) are complex retroviruses which are commonly isolated from cats, cattle and non-human primates. The infection is persistent and infected animals have a sustained antibody response. The role of FV in diseases remains unclear, in cats, a possible association with uncharacterized renal symptoms remains to be confirmed. To demonstrate feline FV (FFV) in tissues of experimentally infected cats three polyclonal monospecific antisera from rabbits against three different viral proteins, the structural Gag and the non-structural Bel 1 and Bet proteins were tested for their applicability in immunohistochemistry with paraffin sections. Only the Bet antiserum allowed detection of FFV-specific proteins, the antibodies against Gag and Bel 1 did not work even after pre-treatment of the slides with proteinase K or cooking in a pressure cooking pot. The Bet-reactive antibodies were detected using a commercial streptavidin kit and revealed Bet in the cytoplasm of cells from different lymphoid tissues like lymphnodes, tonsils, thymus and spleen. The method described opens new ways to explore the in vivo replication and tissue specificity of FFV and its possible role in disease.  相似文献   

11.
Adenosine deaminase (ADA), an enzyme involved in purine metabolism, has been shown to be of clinical importance in several diseases in humans. To investigate whether ADA is of any clinical significance in cats, plasma adenosine deaminase (P-ADA) and T cell adenosine deaminase (T-ADA) activities were measured in feline immunodeficiency virus (FIV) negative and positive cats. The AIDS-related complex (ARC) group showed a significant elevation in P-ADA activity compared to the asymptomatic carrier (AC), and FIV-negative groups (P<0.005). T-ADA activity was significantly elevated in FIV-positive cats compared to the FIV-negative group (P<0.05) and this elevation was attributed to the increase in the ARC group (P<0.01). A correlation was found between P-ADA and T-ADA activities in the FIV-negative group. T-ADA activity and CD4(+)cell number showed a strong negative correlation in FIV-positive cats (P<0.0005). CD4(+) cell numbers were significantly reduced in the ARC group compared to the healthy controls (P<0.005). Our results showed that T-ADA is increased in FIV-positive cats during the ARC stage. These results also suggest that ADA may be an indicator of T cell activation in the ARC stage of FIV infection.  相似文献   

12.
13.
Thirty-two cats referred to the Feline Studies Centre between June 1987 and October 1988, and 14 in-contact cats, were found to be infected with feline immunodeficiency virus. Most of the 46 cats were non-pedigree and free ranging; 27 were male (19 neutered) and 19 were female (18 neutered). Their ages ranged from one to 17 years and the average age was 5.8 years. The most common clinical signs were lethargy, inappetence, weight loss, pyrexia and lymphadenopathy; most cases had multiple abnormalities. Other common signs were gingivitis, diarrhoea, rhinitis and ocular discharge. Eight cats had neoplasia. The commonest haematological abnormalities were anaemia, neutropenia, lymphopenia and monocytosis. Eight cats had lymphocytosis; seven of these were in a single house-hold. Several cats had high serum globulin levels and half of those tested had high IgG levels. Seven cats had no detectable antibody to feline immunodeficiency virus even though the virus was cultured from the peripheral blood lymphocytes. During follow-up for up to 60 weeks one cat died and 23 were destroyed on humane grounds.  相似文献   

14.
The humoral antibody responses of 82 domestic cats to the common commensal bacteria Pasteurella multocida and Staphylococcus aureus were measured by an indirect immunofluorescence assay to give a subjective quantification of specific IgG in serum. There was no significant difference in specific serum IgG levels between sick cats which tested antibody-positive to feline immunodeficiency virus or antigen-positive to feline leukaemia virus and sick, virus-negative cats. This finding suggested that there was no change in immune status, as measured by this method, in both feline leukemia and feline immunodeficiency virus infections, although, based on clinical signs shown by the virus-positive cats, overall immunosuppression was indicated. Feline immunodeficiency virus and feline leukemia virus infection may have an effect on cellular immunity, as is the case with human immunodeficiency virus.  相似文献   

15.
A significant elevation in the percentage of CD4+ and CD8+ T-lymphocytes expressing major histocompatibility complex (MHC) Class II antigens was observed in the blood of cats shortly after they were experimentally infected with feline immunodeficiency virus (FIV). In addition to an increase in the relative proportion of T-lymphocytes expressing Class II antigens, there was an increase in the density of Class II antigens on the cell surface. These elevations were still evident at the completion of the 5 month study. A second group of cats that had been infected with FIV for almost 5 years, and with either normal or abnormally low levels of CD4+ T-lymphocytes, had similar elevations in MHC II expression, suggesting that such abnormalities are lifelong. Cats with chronic (2 year) feline leukemia virus (FeLV) infection or dual FIV/FeLV infections also showed similar alterations in MHC II expression on CD4+ and CD8+ T-lymphocytes, suggesting that these alterations were not FIV specific. Feline T-lymphocytes expressed more MHC II antigen and interleukin-2 (IL-2) receptor following stimulation in vitro with conconavalin A and IL-2, demonstrating that feline T-lymphocytes respond to activation signals in a manner similar to T-lymphocytes of other species. However, changes in MHC II expression on T-cells of FIV infected cats were not explainable by viral induced T-cell activation alone, because FIV infected cats with elevated MHC II expression did not have coincident elevations in IL-2 receptor expression.  相似文献   

16.
Platelet function was evaluated in six specific-pathogen-free cats prior to and following intraperitoneal inoculation with feline infectious peritonitis virus (FIPV). By 4 days post-inoculation, platelet samples from five of six cats responded with irreversible platelet aggregation to threshold concentrations of adenosine diphosphate (ADP). This was accompanied by enhanced platelet 14C-serotonin release (greater than 10%) in two cats. Compared to one of six baseline samples, five of five post-inoculation samples exhibited microaggregate formation in response to 20 microM epinephrine. Enhanced platelet 14C-serotonin release did not accompany these responses. Enhanced platelet responses to ADP and epinephrine were also observed on day 11 post-inoculation and day 16 (when one cat died) or 21 (the end of the study). Platelet 14C-serotonin release in response to 20 microM epinephrine increased markedly in three of five cats on day 21. Enhanced collagen-induced platelet responses were not demonstrated. Although the mechanism for the enhanced platelet responses observed on day 4 was unknown, a direct effect on the virus on platelets, mononuclear inflammatory cells, and endothelial cells must be considered.  相似文献   

17.
Postmortem bronchoalveolar lavage of feline immunodeficiency virus-infected cats indicated an alveolitis process, and histological examination of their lungs confirmed the occurrence of alveolitis, parenchymatous lymphoplasmocytic infiltration and myomatosis. Similar lymphoid interstitial pneumonitis has been described in human and animal lentiviral diseases: lymphocytic interstitial pneumonitis in -1-infected human beings, and maedi in sheep infected by the maedi-visna virus. Such lymphoid interstitial pneumonitis may thus be a common feature of lentiviral infections.  相似文献   

18.
T-cell subsets were studied by flow cytometry in 58 feline leukaemia virus (FeLV)-positive cats with naturally acquired FeLV infection to determine whether the changes in CD4+ or CD8+ T cell populations differed from those observed in 55 feline immunodeficiency virus (FIV)-positive cats with naturally acquired FIV infection. The sole criterion for inclusion into the study was seropositivity. Mean (SD) CD4+ T cell values of FeLV positive cats were decreased to 31·1 (8·0) per cent and their CD8+ T cell values were increased to 22·8 (6·3) per cent in comparison with uninfected control cats (37·9 [9·5] per cent CD4+; 15·2 [6·3] per cent CD8+). The CD4+/CD8+ ratio was reduced to 1·5 (0·7), compared with 3·0 (1·5) in 39 FeLv- and FIV-negative control cats. Differences from control values were significant, but there was no significant difference between CD4+ and CD8+ lymphocytes of FeLV- versus FIV-infected cats. These findings indicate that FeLv and FIV have similar effects on T lymphocyte subsets. Both retrovirus infections can induce immunodeficiency, both viruses infect a broad range of lymphohaemopoietic cells, despite having different primary target cells, and can induce the killing of lymphocytic cells in vitro. It is concluded that a decreased CD4+/CD8+ ratio is not restricted to FIV infections but may also occur in FeLv infection.  相似文献   

19.
20.
Four specific pathogen-free (SPF) cats were each inoculated with one of two genetically and antigenically well characterized feline caliciviruses originally isolated from cats with acute respiratory disease (FCV-KS100/2), or with chronic stomatitis (FCV-KS20). Two cats of each group were euthanized at day 10 post infection and two cats at day 28. No clear differences between the clinical disease induced by the two isolates could be observed, and no apparent differences in the tissue spectrum were seen between day 10 and 28. No persistent virus shedding was observed over the 4-week period of this experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号