首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 921 毫秒
1.
    采用化学测试方法研究杭州市郊25个典型菜园土壤的磷素状况以及农学和环境磷素测试值间的相互关系,以建立磷素淋失的评价指标结果表明,菜园土壤全磷(TP)和土壤测试磷如水溶性磷(CaCl2-P)、速效磷(Olsen-P)、Mehlich Ⅲ提取的磷(PM3)均存在较大的变幅,分别为07~29 gkg-1、048~1964 mgkg-1、1065~15160 mgkg-1和5053~90495 mgkg-1,72%的土壤超过菜园土磷素丰缺的有效磷临界值(Olsen-P=60 mg·kg-1)草酸浸提的土壤磷饱和度(DPSox)和Mehlich Ⅲ浸提的土壤磷饱和度(DPSM3)分别在691%~4915%和582%~5256%之间,与TP、Olsen-P、PM3之间存在极显著的正相关,DPSox与DPSM3间存在极显著正相关通过分段线性模型分析水溶性磷与Olsen-P、DPSox和DPSm3的关系,均存在一个明显的突变点(土壤磷素淋失的临界值),该值分别为Olsen-P=7619 mg·kg-1,DPSox=26%,DPSM3=22%,供试土壤中超过上述Olsen-P或者DPS临界值的占60%以上,存在磷素淋溶的风险土壤磷素淋失的Olsen-P临界值高于农学磷素丰缺的临界值,因此,合理施用磷肥和有机肥使土壤磷水平低于上述磷素淋失临界值,不仅可以满足作物的磷素营养需要,而且可以避免磷淋溶进入水体  相似文献   

2.
福州市蔬菜地土壤磷淋失的“阈值”研究   总被引:2,自引:0,他引:2  
以福州郊区蔬菜地土壤为研究对象,通过室内模拟试验,研究6种不同土壤测试磷(Olsen-P、CaCI2-P、H2O-P、NaOH-P,Bray-P、有机磷)含量与磷素淋失之间的关系,探讨土壤磷素淋失风险评估的指标.结果表明,CaCI2-p、有机磷与淋洗液溶解总磷(DTP)的当次释放量及其累积量具有极显著的相关关系,可作为评价蔬菜地土壤磷淋失风险的指标,以DTP 0.05 nmg·L-1作为引起水体富营养化的临界值,获得本试验区域蔬菜地土壤磷素淋失的CaCl2-P、有机磷阀值分别为14.1 mg·kg-1和205.8 mg·kg-1;以Hesketh2000年提出的“突变点”方法预测土壤磷素淋失风险,得出本试验区域蔬菜地土壤磷发生淋溶的Olsen-P“突变点”为96.6 mg · kg-1·.  相似文献   

3.
吉林省春玉米种植区土壤磷库特征及磷素淋失风险评价   总被引:1,自引:0,他引:1  
【目的】探明春玉米主产区主要土壤类型的磷库特征,合理评估该区域土壤磷素淋失风险,为减少磷投入、实现土壤磷养分的高效利用及减小养分流失所导致的环境风险提供参考。【方法】于2018年在吉林省春玉米种植区,采集4种主要土壤类型(黑土、黑钙土、白浆土、暗棕壤)表层土(0~20 cm),测定全磷、速效磷(Olsen-P)和水溶性磷(CaCl_2-P)含量,分析土壤CaCl_2-P与Olsen-P含量的关系,确定4种土壤类型磷素淋失的临界值。【结果】黑土、黑钙土、白浆土和暗棕壤全磷含量平均值依次为0.48,0.51,0.55和0.79 g/kg,Olsen-P含量平均值依次为73.34,35.85,39.52和37.02 mg/kg。与第二次土壤普查结果相比,4种土壤类型的全磷含量均有所增加。根据《中国土壤》中土壤Olsen-P含量分级标准,可知大部分土壤的Olsen-P含量都处于极好水平(40 mg/kg)。土壤CaCl_2-P和Olsen-P含量之间的关系符合双直线模型。黑土、黑钙土、白浆土和暗棕壤磷素淋失"突变点"所对应的Olsen-P含量分别为78.82,47.37,48.61和54.00 mg/kg,CaCl_2-P含量为0.94,0.54,0.53和0.75 mg/kg。【结论】随着耕种时间的延长,春玉米种植区土壤全磷含量不断增加,其中Olsen-P含量增加更为明显。当土壤Olsen-P含量大于磷素淋失临界值时,41.4%的黑土、33.3%的黑钙土、30.4%的白浆土和22.7%的暗棕壤均存在磷素淋失风险。  相似文献   

4.
洋河流域典型旱坡地土壤磷素淋失风险研究   总被引:2,自引:1,他引:1  
为深入研究土壤磷素含量与水体富营养化发生的关系,以秦皇岛洋河流域典型旱坡地为研究对象,采用网格法(5 m×5m)采集表层(0~30 cm)土壤样品31个,进行相关分析.结果表明,土壤有效磷、易解吸磷与地表径流中磷酸根态磷之间存在显著的相关性,一定程度上可用Olsen-P作为评价旱坡地土壤磷素淋失风险的指标;同时得出土壤Olsen-P含量为9.40 mg·kg-1为洋河流域土壤磷素淋失的临界值,土壤Olsen-P含量为42.73 mg·kg-1时,是土壤磷素淋失引起下游水体发生富营养化的临界值,并以此初步对洋河流域旱坡地进行了土壤磷素淋失风险评估.  相似文献   

5.
长期过量施肥可导致蔬菜地土壤养分大量累积、养分利用效率下降和环境污染风险增加。以浙北平原不同种植年限蔬菜地土壤为研究对象,采用化学测试方法研究了菜地土壤氮和磷的积累及其淋失潜力的变化。结果表明,随着种植年限的增加,蔬菜地土壤全磷、有效磷(Olsen P)和NO3-N呈明显的积累;蔬菜种植年限为2、2~5、6~10、11~20、20~30和30a的表土全P平均分别为0.66、0.75、1.07、1.49、2.40和2.12g·kg-1,有效P平均分别为13.2、37.8、42.2、70.2、137.9和101.7mg·kg-1,NO3-N平均分别为9.15、13.58、50.18、46.48、73.28和74.20mg·kg-1,同时土壤N和P垂直下移渐趋明显。土壤水溶性磷含量随土壤有效磷(OlsenP)积累的变化存在一个明显的突变点,相对应的土壤OlsenP临界值约为60mg·kg-1。随着种植年限增长,蔬菜地地表径流中氮和磷浓度呈明显增加,利用年限为20~30a的蔬菜地径流中可溶性P和NO3-N浓度分别约为利用年限2a蔬菜地的13.12和9.48倍。研究认为,长期超量施肥已导致这一地区蔬菜地土壤养分的过度积累,在蔬菜生产中应重视和提倡平衡施肥,控制土壤氮磷的积累。  相似文献   

6.
种植年限对设施菜田土壤剖面磷素累积特征的影响   总被引:11,自引:2,他引:9  
以山东寿光集约化设施菜田为研究对象,分析了不同种植年限设施菜田土壤磷素投入和土壤磷素累积的差异,比较不同种植年限土壤剖面中无机磷、有机磷、Olsen-P和CaCl2-P含量的变化特征。结果表明:磷素过量积累是设施菜田的显著特征,主要由于有机肥以粪肥投入为主,复合肥中P素比例偏高,收获作物带走量仅占磷素投入的7.2%;随着种植年限增加,P素累积现象明显,过量的磷素盈余导致了土壤剖面中不同形态磷含量的上升,其中以无机磷尤其明显;用来表征土壤有效磷指标的Olsen-P与CaCl2-P有显著的相关性,研究区域中当土壤(Olsen-P)达到80.7mg·kg-1时,土壤CaCl2-P开始显著升高,增大了设施菜田磷素淋溶风险。  相似文献   

7.
吴一群  李延 《安徽农学通报》2011,17(23):103-106
通过室外土柱模拟淋洗试验研究表明,随着施磷量的增加,蔬菜地土壤全磷、无机磷含量提高,磷肥施用不仅造成表层土壤磷素含量积累,还会造成底层土壤磷素积累。与单施无机磷肥相比较,有机无机磷肥配施不仅显著提高表层土壤有机磷含量,而且增加底层土壤中有机磷的含量,促进磷的向下迁移。随着施磷量的增加,各土层土壤Olsen-P、CaCl2-P含量均逐渐增大,说明施用磷肥增加了土壤中磷素淋失的潜力。与单施无机磷肥相比较,有机无机磷肥配施造成底层土壤中Olsen-P、CaCl2-P含量的增加,提高了土壤中磷素淋失的潜力。  相似文献   

8.
水稻土磷环境敏感临界值的研究   总被引:16,自引:0,他引:16  
采用室内测试方法研究了3组质地(粘土、重壤土和轻壤土)水稻土水溶性磷(0.01mol·L-1CaCl2-P)与土壤测试磷(Olsen-P和Bray1-P)及土壤磷饱和度的关系。结果表明,水稻土因淹水耕作,其磷释放潜力明显高于旱地土壤,水溶性磷随土壤测试磷的增加而增加。土壤测试磷及磷的饱和度与土壤水溶性磷的关系存在转折点,当土壤磷超过转折点时,土壤水溶性磷和磷的释放潜力明显增加。在好气条件下,供试水稻土磷环境敏感临界值(转折点)在Olsen-P50~75mg·kg-1、Bray1-P90~140mg·kg-1和磷饱和度21%~23%之间;在厌气条件下,供试水稻土磷环境敏感临界值(转折点)在Olsen-P35~45mg·kg-1、Bray1-P75~115mg·kg-1和磷饱和度16%~18%之间,超过临界值土壤磷素可对环境产生非常明显的负影响,不应再施用磷肥和粪肥。  相似文献   

9.
磷肥施用对红壤有效磷含量和易流失磷含量的影响   总被引:1,自引:0,他引:1  
[目的]该研究旨在探讨好气培养条件下,不同磷肥施用量的红壤中,应用Olsen法和Bray-1法测定的土壤有效磷含量及应用CaCl2法测定的土壤易流失磷含量的变化及其相关关系,为红壤区的磷素管理及磷素流失潜力评价提供理论依据。[方法]试验共设6个土样处理,室内好气培养后测定各土样中Olsen-P、Bray-1-P和CaCl2-P含量。[结果]随培养时间的延长,施用不同量磷肥的红壤中Olsen-P含量逐渐降低,Bray-1-P含量逐渐升高,CaCl2-P含量呈先升高后降低的趋势;CaCl2-P含量与Olsen-P含量和Bray-1-P含量均呈线性相关关系;肥料磷进入红壤Bray-1-P库的比例高达62%,进入Olsen-P库的比例为14%,进入CaCl2-P库的比例为0.12%。[结论]好气条件下施用磷肥造成红壤磷流失的风险不大,但随施磷量的增加,磷流失潜能仍会升高,且在施磷初期流失潜能最高。  相似文献   

10.
作物的磷素需求和投入的差异导致土壤磷素积累对环境的影响不同。通过分析京郊平谷区果树、蔬菜和粮食作物的磷素投入数量和农田土壤有效磷含量,比较研究不同作物体系中土壤磷素积累对环境的影响。结果表明,粮田、菜地和果园平均年际磷投入量分别为76、575kgP2O5·hm-2和693kgP2O5·hm-2,其中菜地和果园的磷素投入以有机肥为主,年际磷盈余分别达到498kgP2O5·hm-2和468kgP2O5·hm-2,远大于粮田的磷素盈余(38kgP2O5·hm-2)。这种状况造成粮田、菜地和果园土壤Olsen-P含量差异很大,分别为18.4(n=260)、44.3(n=108)mg·kg-1和40.4mg·kg-1(n=548)。分析钙质土壤Olsen-P与CaCl2浸提P的相关性发现,钙质土壤存在着Olsen-P与CaCl2-P突变拐点即磷的淋溶拐点,在拐点之后土壤CaCl2-P随土壤Olsen-P的增加而显著增加,且土壤磷淋溶拐点明显受土壤类型及质地的影响。按质地分类,砂壤、轻壤和重壤拐点分别是23.1、40.1mg·kg-1和51.5mg·kg-1,土壤质地由轻至重拐点Olsen-P值随之逐渐增加。根据质地模拟...  相似文献   

11.
The concentration of soil Olsen-P is rapidly increasing in many parts of China, where P budget(P input minus P output) is the main factor influencing soil Olsen-P. Understanding the relationship between soil Olsen-P and P budget is useful in estimating soil Olsen-P content and conducting P management strategies. To address this, a long-term experiment(1991–2011) was performed on a fluvo-aquic soil in Beijing, China, where seven fertilization treatments were used to study the response of soil Olsen-P to P budget. The results showed that the relationship between the decrease in soil Olsen-P and P deficit could be simulated by a simple linear model. In treatments without P fertilization(CK, N, and NK), soil Olsen-P decreased by 2.4, 1.9, and 1.4 mg kg~(–1) for every 100 kg ha~(–1) of P deficit, respectively. Under conditions of P addition, the relationship between the increase in soil Olsen-P and P surplus could be divided into two stages. When P surplus was lower than the range of 729–884 kg ha~(–1), soil Olsen-P fluctuated over the course of the experimental period with chemical fertilizers(NP and NPK), and increased by 5.0 and 2.0 mg kg~(–1), respectively, when treated with chemical fertilizers combined with manure(NPKM and 1.5 NPKM) for every 100 kg ha~(–1) of P surplus. When P surplus was higher than the range of 729–884 kg ha~(–1), soil Olsen-P increased by 49.0 and 37.0 mg kg~(–1) in NPKM and 1.5 NPKM treatments, respectively, for every 100 kg ha~(–1) P surplus. The relationship between the increase in soil Olsen-P and P surplus could be simulated by two-segment linear models. The cumulative P budget at the turning point was defined as the "storage threshold" of a fluvo-aquic soil in Beijing, and the storage thresholds under NPKM and 1.5 NPKM were 729 and 884 kg ha~(–1)P for more adsorption sites. According to the critical soil P values(CPVs) and the relationship between soil Olsen-P and P budget, the quantity of P fertilizers for winter wheat could be increased and that of summer maize could be decreased based on the results of treatments in chemical fertilization. Additionally, when chemical fertilizers are combined with manures(NPKM and 1.5 NPKM), it could take approximately 9–11 years for soil Olsen-P to decrease to the critical soil P values of crops grown in the absence of P fertilizer.  相似文献   

12.
【目的】 系统分析连续11年增量施磷下赤红壤蔗地土壤全磷、Olsen-P以及地表径流磷流失量的变化特征和土壤磷素变化与磷盈亏、蔗茎产量的响应关系,为土壤磷素科学管理提供参考。【方法】 依托长期肥力及地表径流定位监测试验(2008年—),选取不施肥(CK)、推荐施肥(OPT)和增量施磷(OPT+P)3个处理,测定土壤全磷、Olsen-P含量及地表径流磷流失量,分析土壤磷素变化与磷累积盈亏量的关系,采用Mitscherlich模型拟合蔗茎产量对Olsen-P的响应曲线,计算土壤Olsen-P农学阈值,并推算施肥处理土壤Olsen-P含量从第11年降至环境阈值所需的时间。【结果】 CK处理逐年降低土壤全磷含量,年降速率为0.0251 g·kg -1·a -1。施肥土壤全磷和Olsen-P含量随种植年限波动增加,土壤全磷和Olsen-P增速率OPT+P处理高于OPT处理。不施肥土壤表观磷盈亏10.2 kg·hm -2·a -1,施肥处理土壤表观磷盈余41.3—69.2 kg·hm -2·a -1,占施磷量的31.9%—35.6%,以OPT+P处理显著高于OPT处理67.5%。施肥下赤红壤蔗区土壤全磷和Olsen-P变化量均与土壤累积磷盈亏量呈显著正相关关系(P<0.01),土壤每累积盈余100 kg P·hm -2,OPT处理和OPT+P处理土壤全磷上升0.06 g·kg -1和0.09 g·kg -1,Olsen-P 含量上升11.0 mg·kg -1和9.1 mg·kg -1。土壤每累积亏缺100 kg P·hm -2,CK处理土壤全磷下降0.32 g·kg -1。Mitscherlich模型较好地拟合蔗茎产量与赤红壤Olsen-P含量的响应关系(P<0.01)。其计算出的土壤Olsen-P 农学阈值为12.1 mg·kg -1。施肥显著提高地表径流磷流失量,且OPT+P处理也显著高于OPT处理。地表径流磷流失量与土壤Olsen-P含量显著正相关。基于土壤磷素变化与累积磷盈亏的关系推算得出第11年OPT和OPT+P处理Olsen-P水平降至环境阈值的时间分别需要12年和16年。 【结论】 在南方赤红壤区,施肥尤其增量施磷在提高土壤磷素累积的同时增加了地表径流磷流失风险。在本试验磷的基础养分条件下,按OPT处理施磷,并从甘蔗种植的第2—3年实行隔年施磷可维持土壤磷素处于农学阈值与环境阈值之间。  相似文献   

13.
【目的】通过总结分析长期施肥处理下紫色土稻麦轮作土壤有效磷的变化特征,以及土壤磷素变化对作物产量的影响,为紫色土稻麦轮作磷素管理提供理论依据。【方法】依托国家肥力监测网紫色土肥力监测试验站27年的稻麦轮作定位试验,选取10种不同施肥处理:CK处理(只种作物不施肥);N、NP、NK、PK、NPK为不同氮(N)、磷(P)、钾(K)化肥配施处理;M、NPKS、NPKM、1.5NPK+M为有机肥(M)、秸秆还田(S)及其与化肥配施处理。试验数据涵盖1991—2018年,测定不同施肥处理下土壤有效磷含量和作物产量,计算100 kg籽粒磷素吸收量和磷肥利用率,分析土壤磷素变化对累积磷盈亏的响应,采用不同模型计算土壤磷素农学阈值。【结果】长期施用磷肥能够显著提高土壤有效磷含量,各施磷处理有效磷年均增量为0.80—2.32 mg·kg-1;而不施磷处理CK、N、NK和单施有机肥处理M的土壤有效磷含量则逐年下降至平稳状态。不施磷处理土壤磷素一直处于亏缺状态,施磷各处理27年后土壤累积磷盈余量为244.8—698.2 kg P·hm-2,其中1.5NPK+M处理累积磷盈余量最高;施磷处理土壤累积盈余量与土壤Olsen-P增量呈显著线性相关,土壤每盈余磷100 kg·hm-2,土壤有效磷含量提高4.27—6.5 mg·kg-1。磷肥施用能显著提升稻麦轮作系统作物产量和吸磷量,100 kg水稻籽粒需磷量为0.17—0.41 kg,100 kg小麦籽粒需磷量为0.25—0.57 kg;试验各处理的磷肥利用率为10.3%—39.7%;4种模型(线性-平台模型、双直线模型、BoxLucas模型和米切里西模型)均能较好地拟合作物产量与紫色土有效磷含量的响应关系,其中双直线模型的拟合度最好,其计算的水稻和小麦的土壤有效磷农学阈值分别为13.28和9.93 mg·kg-1。 【结论】在紫色土水稻-小麦轮作体系中,合理施用磷肥能显著提高作物吸磷量、产量以及土壤有效磷含量。推荐双直线模型用于计算紫色土稻麦轮作体系下土壤有效磷的农学阈值,生产上应根据土壤有效磷含量及其农学阈值调整磷肥施用量。  相似文献   

14.
长期施肥条件下黑垆土有效磷对磷盈亏的响应   总被引:18,自引:3,他引:15  
【目的】阐明不同施肥条件下土壤有效磷与土壤磷素累积的响应关系,为黄土高原旱作农区科学施用磷肥提供依据。【方法】分析了黑垆土28年(1979—2007年)肥料长期定位试验中,不同施肥处理下土壤磷素盈亏与土壤有效磷的变化特征。【结果】长期施用化肥(NP)、单施有机肥(M)及化肥与有机配施(NPM),土壤有效磷含量随试验年限的延长呈极显著(P0.01)上升趋势,年均分别增加0.54、0.64和1.11mg·kg-1,而不施肥和单施氮肥处理土壤有效磷含量呈持平或下降趋势。土壤有效磷增加量随磷盈亏而变化,二者呈极显著(P0.01)正相关,施用化学磷肥、单施有机肥和有机无机肥配施,土壤中的磷素均有盈余,土壤中每盈余100kg·hm-2磷所能增加的土壤有效磷分别为3.85、0.29和0.53mg·kg-1。施用化学磷肥土壤有效磷的增加速率是施有机肥的11.6倍。【结论】土壤有效磷随土壤磷素盈余而变化与加入磷素形态密切相关,长期单施化学磷肥提升土壤有效磷的速率显著大于单施有机肥。  相似文献   

15.
Phosphorus(P) is an important macronutrient for plant but can also cause potential environmental risk. In this paper, we studied the long-term fertilizer experiment(started 1980) to assess the soil P dynamic, balance, critical P value and the crop yield response in Taihu Lake region, China. To avoid the effect of nitrogen(N) and potassium(K), only the following treatments were chosen for subsequent discussion, including: C0(control treatment without any fertilizer or organic manure), CNK treatment(mineral N and K only), CNPK(balanced fertilization with mineral N, P and K), MNK(integrated organic manure and mineral N and K), and MNPK(organic manure plus balanced fertilization). The results revealed that the response of wheat yield was more sensitive than rice, and no significant differences of crop yield had been detected among MNK, CNPK and MNPK until 2013. Dynamic and balance of soil total P(TP) and Olsen-P showed soil TP pool was enlarged significantly over consistent fertilization. However, the diminishing marginal utility of soil Olsen-P was also found, indicating that high-level P application in the present condition could not increase soil Olsen-P contents anymore. Linear-linear and Mitscherlich models were used to estimate the critical value of Olsen-P for crops. The average critical P value for rice and wheat was 3.40 and 4.08 mg kg~(–1), respectively. The smaller critical P value than in uplands indicated a stronger ability of P supply for crops in this paddy soil. We concluded that no more mineral P should be applied in rice-wheat system in Taihu Lake region if soil Olsen-P is higher than the critical P value. The agricultural technique and management referring to activate the plant-available P pool are also considerable, such as integrated use of low-P organic manure with mineral N and K.  相似文献   

16.
长期施肥条件下潮土土壤磷素对磷盈亏的响应   总被引:14,自引:2,他引:12  
杨军  高伟  任顺荣 《中国农业科学》2015,48(23):4738-4747
【目的】土壤磷素状况是评价土壤养分的重要指标之一。探讨长期施肥条件下土壤有效磷、全磷对土壤磷素盈亏(平衡)的响应,为潮土区施肥管理和土壤培肥提供科学依据。【方法】分析了天津潮土33年(1979-2012)肥料长期定位试验中,不同施肥处理下土壤磷素盈亏与Olsen磷、全磷的变化特征。【结果】长期不施肥(CK)、单施氮肥(N)、氮钾配施(NK)及秸秆与氮肥配施(NS)处理,土壤中磷素常年处于亏缺状态。施磷处理(PK,NP,NPK)和有机肥与氮肥配施(NM),土壤中磷素均有盈余,PK处理盈余最多,但随试验年限延长(约20年后),NP,NPK和NM处理土壤中磷素盈余量呈下降趋势。土壤有效磷增加量随磷盈亏而变化,二者呈显著正相关(P<0.05)。施用无机磷肥或有机肥,均可使土壤中的磷素盈余,土壤中每盈余100 kg·hm-2磷,PK、NP、NPK、NM处理土壤中的Olsen磷分别增加3.59、1.19、1.75和2.40 mg·kg-1。长期不同施肥,土壤磷平衡与土壤全磷增量间呈正相关,但不同处理下差异较大。单施氮肥(N)和秸秆还田(NS)处理,可认为累积磷平衡对土壤全磷增量无影响。施用无机磷肥或有机肥,土壤中每盈余100 kg P·hm-2,PK、NP、NPK、NM处理土壤中全磷分别增加0.06、0.07、0.07和0.10 g·kg-1。【结论】土壤磷素盈亏状况与肥料配施类型密切相关,长期施用化学磷肥或有机肥,土壤有效磷、全磷增加量与土壤磷素盈亏呈显著直线正相关。有机肥与氮肥配施提升土壤全磷的速率大于施用化肥。  相似文献   

17.
长期施肥对黄壤性水稻土磷平衡及农学阈值的影响   总被引:10,自引:0,他引:10  
【目的】研究长期施肥条件下土壤有效磷(Olsen-P)的演变特征及土壤磷素的累积状况,分析土壤磷素累积与土壤有效磷的响应关系,明确Olsen-P的农学阈值及合理磷肥施用量,为西南黄壤地区科学施用磷肥提供理论依据。【方法】以贵州黄壤肥力与肥料长期定位试验为平台,选择试验中6个处理分别是不施肥(CK)、偏施氮钾肥(NK)、常量氮磷钾肥(NPK)、常量有机肥(M)、减1/2有机肥+减1/2氮磷钾肥(1/2 M +1/2 NPK)和常量有机肥+常量氮磷钾肥(MNPK)。分析西南黄壤性水稻土19年(1995-2013)土壤Olsen-P含量与植株吸磷量,研究土壤Olsen-P的变化规律及土壤累积磷盈亏状况,通过Mitscherlich方程模拟作物相对产量对土壤Olsen-P的响应关系,明确西南黄壤性水稻土的农学阈值,并分析Olsen-P与施肥量之间的关系。【结果】长期施用磷肥处理可显著提高土壤Olsen-P含量,各施磷处理Olsen-P年增长速率在0.72-2.47 mg·kg-1·a-1,其中MNPK处理Olsen-P增长速率最大,NPK处理最小,主要与施肥量的高低有关;有机肥配施化学磷肥比单施化学磷肥和单施有机肥更能有效地促进作物对磷素的吸收;不施磷处理土壤磷素一直处于亏缺状态,施磷处理土壤磷素盈余量为176-1 200 kg·hm-2,其中MNPK处理磷素盈余量最高;土壤累积磷盈余量与土壤Olsen-P增量呈显著线性相关,土壤中磷素每盈余100 kg·hm-2,NPK、M、1/2M+1/2NPK、MNPK处理Olsen-P含量分别提高4.0、2.0、3.2和2.0 mg·kg-1;土壤每年磷盈亏和Olsen-P含量与磷肥施用量呈极显著正相关关系,磷肥用量(纯P)17.4 kg·hm-2时土壤磷盈亏呈持平状态,西南黄壤性水稻土Olsen-P的农学阈值为15.8 mg·kg-1;对应的施肥量(纯P)为每年37.2 kg·hm-2·a-1。【结论】土壤有效磷随土壤磷素盈余而变化,同时与磷素投入量密切相关,当磷肥用量(纯P)为17.4 kg·hm-2·a-1土壤磷素呈持平状态。当磷肥用量(纯P)为37.2 kg·hm-2·a-1时,可获得较高作物产量,磷肥当季利用率高,且磷素在土壤中累积较少。当磷肥用量(纯P)大于37.2 kg·hm-2·a-1时,作物产量对磷肥用量无响应,大量磷素累积在土壤中,增加土壤磷素的流失风险。土壤中累积磷盈余量一定的情况下,西南黄壤性水稻土长期单施化学磷肥提升土壤Olsen-P的速率大于施用有机肥处理。  相似文献   

18.
长期不同施肥红壤磷素变化及其对产量的影响   总被引:7,自引:0,他引:7  
目的 定量长期不同施肥红壤磷素的演变特征,研究红壤磷素变化对生产力的影响,为红壤地区磷素管理提供理论依据。方法 利用持续26年的红壤旱地长期定位试验平台(1991—2016年),比较长期不施磷肥(CK、N、NK)、施用化学磷肥(PK、NP、NPK)、化肥配合秸秆还田(NPKS)和化肥配施有机肥及有机肥(1.5NPKM、NPKM、M)土壤Olsen-P和全磷含量变化,分析土壤磷素对磷盈亏量的响应,采用不同模型拟合作物产量对有效磷的响应曲线,计算土壤有效磷农学阈值。结果 长期施用磷肥显著提高了土壤全磷和有效磷含量,提升了土壤磷素活化系数(PAC)。化肥配施有机肥及有机肥处理(1.5NPKM、NPKM、M)的PAC高于化肥配合秸秆还田(NPKS)和施用化学磷肥(PK、NP、NPK)。红壤地区土壤全磷和有效磷变化量与土壤磷盈亏量呈正相关关系(P<0.01),土壤每累积盈余100 kg P·hm -2,土壤Olsen-P含量上升3.00—5.22 mg·kg -1,全磷上升0.02—0.06 g·kg -1。土壤每累积亏缺磷100 kg P·hm -2,不施磷肥处理(CK、N、NK)土壤Olsen-P分别下降1.85、0.40、1.76 mg·kg -1。化肥配施有机肥及有机肥处理(1.5NPKM、NPKM、M)的小麦和玉米产量显著高于化肥配合秸秆还田(NPKS)以及施用化学磷肥(PK、NP、NPK),显著高于不施磷肥(CK、NK、N)。化肥配施有机肥及有机肥处理(1.5NPKM、NPKM、M)的产量可持续指数也高于其他处理。3种模型(线性-线性模型、线性-平台模型和米切里西方程)均能较好地拟合作物产量与红壤有效磷含量的响应关系(P<0.01)。在红壤地区推荐使用拟合度较好的线性-线性模型,其计算出小麦和玉米的土壤Olsen-P农学阈值分别为13.5和23.4 mg·kg -1结论 在南方红壤地区,化肥配施有机肥更有利于磷素累积和提升磷素有效性。化肥配施有机肥作物产量显著高于其他处理,且稳产性好。线性-线性模型可用于计算红壤地区有效磷的农学阈值。生产上应该根据土壤有效磷含量及其农学阈值调整磷肥施用量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号