首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ueda MU 《Tree physiology》2012,32(7):859-866
Nitrogen (N) retranslocation within tree canopies has been intensively studied and assumed to function as a one-way process (e.g., from older to newer leaves). However, recent studies have found that both N output and input occur in individual leaves, suggesting that 'gross' N retranslocation exists behind 'net' N retranslocation. In the present study, the amount and direction of gross N retranslocation within a canopy of deciduous oak Quercus serrata Thunb. ex. Murray saplings were investigated. Labeling was conducted with leaves of Q. serrata saplings cultivated under conditions of low-N (LN) or high-N (HN) fertility. Subsequently, N movement within the canopy was traced. Leaves at two different positions in the canopy (top and lateral) were labeled to determine the direction of gross N retranslocation. To detect seasonal differences, the leaf-labeling experiment was conducted twice during the early and late phases of the growing season. In addition, to compare the quantitative importance of gross N retranslocation and root N uptake, the latter was determined by labeling Q. serrata roots. The N-labeling experiment revealed gross N retranslocation among leaves, i.e., from top to lateral, lateral to top and lateral to lateral positions. Gross N retranslocation was quantitatively more important than root uptake, especially for plants cultivated at LN fertility. Season also affected the amount of gross N retranslocation, and these effects differed between LN and HN fertilities. These findings suggest that N allocation within a canopy is controlled dynamically by both gross N output and input. The mechanisms controlling gross N output and input likely function as key determinants of N allocation within a tree canopy.  相似文献   

2.
This study was conducted to compare the virulences of various isolates of Raffaelea quercivora—a fungus that causes Japanese oak wilt disease—towards Japanese oak trees. Five isolates were collected from a wide range of Japan and inoculated into Quercus serrata logs and Q. crispula saplings. The tangential length of the discolored sapwood in the Q. serrata logs differed significantly among the isolates. The trend in isolate virulence was similar for the Q. serrata logs and the Q. crispula saplings. This is the first report suggesting that there is variability in virulence among isolates of R. quercivora.  相似文献   

3.
To elucidate the relationships between spatiotemporal changes in leaf nitrogen (N) content and canopy dynamics, changes in leaf N and distribution in the canopy of a 26-year-old deciduous oak (Quercus serrata Thunb. ex. Murray) stand were monitored throughout the developmental sequence from leaf expansion to senescence, by estimating the leaf mass and N concentrations of all the canopy layers. Seasonal changes were observed in leaf N concentration per unit leaf dry mass (N (m)), which peaked after bud burst, declined for two weeks shortly thereafter, and then remained constant for the rest of the growing season for each canopy layer. Leaf N concentration per unit leaf area (N (a)) was higher in the upper layer than in the lower layer throughout the growing season, and was closely correlated with relative irradiance (RI) in the summer when the air temperature was moderately high. The N concentrations of all leaf layers started to decrease in November, and reached their lowest values in late November, whereas LMA scarcely changed throughout the season. The lowest N concentrations did not differ significantly among the canopy layers. Seasonal changes in the relationship between N (a) and RI were detected, indicating that N (a) is optimized temporally as well as spatially. Nitrogen resorption efficiency was highest in the upper canopy layers where larger amounts of N were invested. Based on the estimates of leaf mass and leaf N concentrations of the canopy layers, total leaf N concentration of the whole canopy was estimated to be 84.1 kg ha(-1) in the summer, and 37.3 kg ha(-1) in late November. Therefore, 46.8 kg ha(-1) of leaf N in the canopy (about 56% of the total N) was resorbed just before leaf abscission.  相似文献   

4.
The occurrence and localization of endophytic actinomycetes within diverse organs of host plants provide ecological information that can be used to evaluate the significance of their spatial habitats. The aim of this study was to isolate and characterize endophytic actinomycetes in different organs of Quercus serrata. For this purpose, actinomycete isolates were obtained from surface-sterilized tissues of both symptomless seedlings and aged trees of Q. serrata and rhizosphere soil of the sampled seedlings. Thirty-five isolates with the ability to sporulate, including 4 from leaves of the aged trees, 10, 6, and 15 from leaves, stems, and roots of the seedlings, respectively, and 8 soil-derived isolates, were selected and characterized. The 16S rDNA nucleotide sequence analyses revealed that all of them belonged to the genus Streptomyces. According to a neighbor-joining phylogenetic tree constructed based on the results, the isolates of plant origin were divided into three major clades with high bootstrap values of 98 or 99 %, whereas eight soil-derived isolates were located at different positions from those of the endophyte isolates. Moreover, two larger clades were formed, one of which contained isolates derived only from aboveground parts, while the other contained isolates from all of the organs. These results suggest that the endophytic streptomycetes in Q. serrata may differ in their habitat positions (i.e., either above- or belowground parts).  相似文献   

5.
6.
Bostad PV  Reich P  Lee T 《Tree physiology》2003,23(14):969-976
We conducted controlled (chamber) and natural (field) environment experiments on the acclimation of respiration in Quercus alba L. and Quercus rubra L. Three-year-old Louisiana, Indiana and Wisconsin populations of Q. alba were placed in growth chambers and exposed to alternating 5-week periods of cool (20 degrees C mean) and warm (26 degrees C mean) temperatures. We measured respiration rates on fully expanded leaves immediately before and approximately every 2 days after a switch in mean temperature. In a second chamber experiment, 3-year-old potted Q. alba seedlings were exposed to alternating warm (26 degrees C mean) and cool (16 degrees C mean) temperatures at 4-day intervals. Leaf dark respiration rates were measured on days 2, 3 and 4 after each change in temperature. In a third, field-based study, we measured leaf respiration rates in the same three sources of Q. alba and in Arkansas, Indiana and Minnesota sources of Q. rubra before and after a natural 16 degrees C change in mean daily ambient temperature. We observed rapid, significant and similar acclimation of leaf respiration rates in all populations of Q. alba and Q. rubra. Cold-origin populations were no more plastic in their acclimation responses than populations from warmer sites. All geographic sources showed lower respiration rates when measured at 24 degrees C after exposure to higher mean temperatures. Respiration rates decreased 13% with a 6 degrees C increase in mean temperature in the first chamber study, and almost 40% with a 10 degrees C increase in temperature in the second chamber study. Acclimation was rapid in all three studies, occurring after 2 days of exposure to changed temperature regimes. Acclimation was reversible when changes in ambient temperature occurred at 4-day intervals. Respiration response functions, ln(R) = ln(beta0) + beta1T, were statistically different among treatments (cool versus warm, first chamber study) and among sources in a pooled comparison. Pair-wise comparisons indicated statistically significant (P<0.05) differences in cool- versus warm-measured temperature/respiration response functions for Indiana and Wisconsin sources of Q. alba. Log-transformed base respiration rates were significantly lower during periods of higher mean temperatures. Indiana Q. alba showed a significantly higher beta1 when plants were grown at 16 degrees C than when grown at 26 degrees C. Acclimation in Q. alba was unaccompanied by changes in leaf nitrogen concentration, but was associated with a change in leaf total nonstructural carbohydrate concentration. Total nonstructural carbohydrate concentration was slightly, but statistically, lower (13.6 versus 12%, P<0.05) after a 10 degrees C increase in temperature.  相似文献   

7.
对定植在江苏省林业科学研究院苗圃(南京)内的美国栎属3个树种,19个种源、家系(包括柳叶栎9个种源、家系,北方红栎6个家系,红栎4个种源)的2年生幼树进行了年高生长节律和物候期(包括展叶期、叶变色期和落叶期)的定期观测(分别每3~15d观测1次)。结果表明:(1)3个树种在南京年高生长节律差异显著。柳叶栎在生长期内抽梢次数较多,在5次以上,基本呈连续生长趋势。生长节律呈快(5月)-慢(6月)-最快  相似文献   

8.
观察比较了8个鹅掌楸种源幼树在南京地区田间高生长适应性表现,统计分析结果表明:我国西南部分布的鹅掌楸种源在南京地区具有良好的生长适应性,而东部种源生长适应性则较差。  相似文献   

9.
We investigated how shoot gross morphology and leaf properties are determined in Fagus japonica Maxim., a deciduous species with flush-type shoot phenology, in which all leaves are produced in a single flush at the start of each season. We examined relationships between current-year shoot properties and local light environment in a 14-m tall beech tree growing in a deciduous forest. Leaf number (LN), total leaf area (TLA), and total leaf length (SL) of the current-year shoot increased with increasing photosynthetic photon flux density (PPFD). Leaf thickness, dry mass per leaf area and nitrogen content on a leaf area basis increased, whereas the chlorophyll/N ratio decreased with increasing PPFD. To separate the effects of current-year PPFD from those of previous year(s), we artificially shaded a part of the uppermost leaf tier. Reciprocal transfers of beech seedlings between controlled PPFD regimes were also made. Characteristics of shoot gross morphology such as LN, TLA and SL were largely determined by the PPFD of the previous year. The exception was the length of the longest "long shoots" with many leaves, in which elongation appeared to be influenced by both previous-year and current-year PPFD. In contrast, leaf properties were determined by current-year PPFD. The ecological implications of our findings are discussed.  相似文献   

10.
Herbivore browsing on tree saplings is a common phenomenon that can cause damage particularly on preferred species. In this study, the combined effects of light availability and timing of browsing on the response of 9-year-old Abies alba saplings were tested experimentally. Leader shoot clipping was applied before budburst, shortly after budburst or in autumn on saplings grown in full light or under artificial shade. Timing of clipping, light availability and tree vigour (expressed as height and tree ring width before clipping) had an effect on the height after clipping. After clipping in autumn or before budburst, fast-growing fir saplings bent up twigs to form new leader shoots and overcompensated height loss; saplings characterised by intermediate growth rates formed new shoots out of regular visible lateral buds; and slow-growing saplings had no new shoot in the first year after clipping, such that the clipping-induced height difference even increased over time. Saplings clipped shortly after budburst elongated the remaining part of the shoot in the first year and developed shoots out of the most distal lateral buds in the second growing season, leading to complete height compensation. Multi-trunking was typical for all clipped trees. We conclude that the microscale conditions under which a tree is growing (i.e. which affect tree vigour) are highly important for determining whether the height reduction imposed by browsing is offset by overcompensation or increases over time relative to unclipped trees. This response can partly be influenced by forest management via enhancing tree vigour via the light regime.  相似文献   

11.
Water relations in woody species are intimately related to xylem hydraulic properties. High CO(2) concentrations ([CO(2)]) generally decrease transpiration and stomatal conductance (g(s)), but there is little information about the effect of atmospheric [CO(2)] on xylem hydraulic properties. To determine the relationship between water flow and hydraulic structure at high [CO(2)], we investigated responses of sun and shade leaves of 4-year-old saplings of diffuse-porous Betula maximowicziana Regel and ring-porous Quercus mongolica Fisch. ex Ledeb. ssp. crispula (Blume) Menitsky grown on fertile brown forest soil or infertile volcanic ash soil and exposed to 500 micromol CO(2) mol(-1) for 3 years. Regardless of species and soil type, elevated [CO(2)] consistently decreased water flow (i.e., g(s) and leaf-specific hydraulic conductivity) and total vessel area of the petiole in sun leaves; however, it had no effect on these parameters in shade leaves, perhaps because g(s) of shade leaves was already low. Changes in water flow at elevated [CO(2)] were associated with changes in petiole hydraulic properties.  相似文献   

12.
HARMER  R. 《Forestry》1990,63(3):279-283
The sequence and timing of shoot development from buds on thebranches and trunk of Quercus robur were observed over 2 years.Shoots on crown branches began development before those on existingepicormic branches but both stopped growing at about the sametime. Epicormic buds on the trunk began expanding 3–4weeks after crown buds, and finished growth 3 weeks later. Theseobservations do not support previous claims that new epicormicshoots grow before development of the canopy.  相似文献   

13.
The three-dimensional (3-D) architecture of a peach tree (Prunus persica L. Batsch) growing in an orchard near Avignon, France, was digitized in April 1999 and again four weeks later in May 1999 to quantify increases in leaf area and crown volume as shoots developed. A 3-D model of radiation transfer was used to determine effects of changes in leaf area density and canopy volume on the spatial distribution of absorbed quantum irradiance (PAR(a)). Effects of changes in PAR(a) on leaf morphological and physiological properties were determined. Leaf mass per unit area (M(a)) and leaf nitrogen concentration per unit leaf area (N(a)) were both nonlinearly related to PAR(a), and there was a weak linear relationship between leaf nitrogen concentration per unit leaf mass (N(m)) and PAR(a). Photosynthetic capacity, defined as maximal rates of ribulose-1,5-bisphosphate carboxylase (Rubisco) carboxylation (V(cmax)) and electron transport (J(max)), was measured on leaf samples representing sunlit and shaded micro-environments at the same time that the tree crown was digitized. Both V(cmax) and J(max) were linearly related to N(a) during May, but not in April when the range of N(a) was low. Photosynthetic capacity per unit N(a) appeared to decline between April and May. Variability in leaf nitrogen partitioning between Rubisco carboxylation and electron transport was small, and the partitioning coefficients were unrelated to N(a). Spatial variability in photosynthetic capacity resulted from acclimation to varying PAR(a) as the crown developed, and acclimation was driven principally by changes in M(a) rather than the amount or partitioning of leaf nitrogen.  相似文献   

14.
Hydraulic and light environments have variation within the crown in well-grown trees. Shoot morphology and shoot hydraulics were compared between the upper and lower crown or among branching patterns in well-grown Quercus crispula Blume. Shoots in the upper crown had longer and thicker axes and lower water potential than did shoots in the lower crown. Hydraulic conductance from the soil to the shoot did not differ between the upper crown and the lower crown. Shoots in the upper crown are exposed to hydraulic stress, and shoots in the lower crown are under shade stress. Shoot morphology and shoot hydraulic traits (i.e., higher Huber value and higher hydraulic conductivity) in the upper crown affected the hydraulic conductance of shoots. Shoots in the lower crown showed larger light-receiving leaf area per leaf biomass investment, which is an adaptive morphology under shaded environments. Shoot morphology and shoot hydraulics were not correlated to branching pattern significantly, but shoots with higher branching intensity in the upper crown represented trends for higher hydraulic conductivity. These results reveal that shoot morphological and physiological characteristics in the upper crown reduce hydraulic stress, and those in the lower crown reduce shade stress. I conclude that vertical position within a crown affects both morphological and physiological acclimation for light acquisition and hydraulic conductance, and that hydraulic architecture is associated with crown architecture.  相似文献   

15.
容器高度可有效调控苗木质量,该研究采用不同容器高度培育蒙古栎容器苗,探讨容器高度对苗木生长的影响,为培育蒙古栎容器幼苗提供参考.以当年生蒙古栎播种苗为研究对象,采用完全随机区组设计,设置5个无纺布容器高度(T1:8cm× 10cm,T2:8cm×15cm,T3:8cm×20cm,T4:8cm×25cm,T5:8cm×3...  相似文献   

16.
通过对粽粑竹生长发育过程中不同阶段的出笋数、退笋数和幼竹高生长的测定,研究了粽粑竹的出笋、退笋和幼竹高生长规律.粽粑竹出笋时间始于2月初,结束于5月底,3月中下旬为出笋盛期,出笋呈正态分布.不同出笋时间的竹笋-幼竹高生长的数学模型表明,粽粑竹竹笋-幼竹高生长呈慢-快-慢的规律,符合Logistic曲线.  相似文献   

17.
[目的]以河南登封林场栓皮栎人工林为研究对象,研究抚育间伐对林分不同生长阶段林木株数、林木直径分布和树高分布的影响,为制定科学合理的抚育经营措施奠定理论和技术基础.[方法]在株数强度为31.55%的间伐林分和条件基本一致的未间伐林分内,分别设置1个1 hm2样地,间伐作业2 a后获取每木检尺数据,分别利用Normal分...  相似文献   

18.
Summary A necrosis of leaves of Quercus pubescens caused by the fungus Ulocladium chartarum is reported. This fungus causes leaf spots both under natural conditions and following artificial inoculation of unwounded attached leaves. A high incidence of leaf spotting by U. chartarum seems to be associated with wet summers.  相似文献   

19.
Throughfall and stemflow measurements in a 60-year-old white oak stand (Quercus serrata Thunb.) were carried out during two periods totalling eleven months, from August to November 1993 and from May to November 1994, in order to clarify the rainfall partitioning of this forest. Troughs and spiral-type stemflow gauges connected to tipping bucket-gauges were used for throughfall and stemflow measurements. Seventy-five storms were analyzed individually. Coefficients of variation for throughfall and stemflow ranged between 5–25% and 20–70% respectively. Partitioning of net rainfall in throughfall and stemflow represent 72% and 10% of the gross rainfall respectively. Multiple regression analyses were carried out to determine the stemflow variability. In was determined that maximum rain intensity was highly correlated with stemflow and this variable explained a further 5.5% of the stemflow variation. Estimates of averaged lag time and drainage after rain cease for stemflow were 290 and 164 min, while estimates for throughfall were 60 and 104 min. respectively. The canopy saturation was estimated from continuous storms and showed a value of 0.6 mm. The trunk storage capacity was estimated at a value of 0.2 mm. The interception loss from the forest canopy was estimated in 18%. Interception loss was heighly correlated with rainfall characteristics such as duration and intensity.  相似文献   

20.
Patterns of shoot development and the production of different types of shoots were compared with scion leaf area index (LAI) to identify how eight clonal Actinidia rootstocks influence scion development. Rootstocks selected from seven Actinidia species (A. chrysantha Merri., A. deliciosa (A. Chev.) C. F. Liang et A.R. Ferguson, A. eriantha Benth., A. hemsleyana Dunn, A. kolomikta (Maxim. et Rupr.) Maxim., A. kolomikta C.F. Liang and A. polygama (Sieb. et Zucc.) Maxim.) were grafted with the scion Actinidia chinensis Planch. var. chinensis 'Hort16A' (yellow kiwifruit). Based on an earlier architectural analysis of A. chinensis, axillary shoot types produced by the scion were classified as short, medium or long. Short and medium shoots produced a restricted number of preformed leaves before the shoot apex ceased growth and aborted, resulting in a 'terminated' shoot. The apex of long shoots continued growth and produced more nodes throughout the growing seasons. Mid-season LAI of the scion was related to the proportion of shoots that ceased growth early in the season. Scions on low-vigor rootstocks had 50% or less leaf area than scions on the most vigorous rootstocks and had a higher proportion of short and medium shoots. On low-vigor rootstocks, a higher proportion of short shoots was retained during pruning to form the parent structure of the following year. Short parent shoots produced a higher proportion of short daughter shoots than long parent shoots, thus reinforcing the effect of the low-vigor rootstocks. However, overall effects of rootstock on shoot development were consistent regardless of parent shoot type and nodal position within the parent shoot. Slower-growing shoots were more likely to terminate and scions on low-vigor rootstocks produced a higher proportion of slow-growing shoots. Shoot termination also occurred earlier on low-vigor rootstocks. The slower growth of terminating shoots was detectable from about 20 days after bud burst. Removal of a proportion of shoots at the end of bud burst increased the growth rate and decreased the frequency of termination of the remaining shoots on all rootstocks, indicating that the fate of a shoot was linked to competitive interactions among shoots during initial growth immediately after bud burst. Rootstock influenced the process of shoot termination independently of its effect on final leaf size. Scions on low-vigor rootstocks had a higher proportion of short shoots and short shoots on all rootstocks had smaller final leaf sizes at equivalent nodes than medium or long shoots. Only later in the development of long shoots was final leaf size directly related to rootstock, with smaller leaves on low-vigor rootstocks. Thus, the most important effect of these Actinidia rootstocks on scion development occurred during the initial period of shoot growth immediately after bud burst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号