首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Growth and survival of juvenile greenlip (39.03 (SD 3.80) mm (n=524)) and blacklip (31.92 (SD 4.19) mm (n=531) abalone were investigated at high dissolved oxygen levels (95–120% saturation) between 17 and 19°C. Abalone were fed the same artificial diet and each species was contained in groups of approximately 30 individuals within triplicate tanks for each of six treatments and were exposed to flow through water adjusted to give experimental conditions for up to 75 days. Blacklip abalone held at 16.9°C and 97% oxygen saturation grew in shell length significantly faster than all other treatments of blacklip abalone held at 19°C, and significantly faster than blacklip abalone maintained at 111% oxygen saturation and 17.5°C. Both temperature and oxygen saturation significantly affected the survival of this species. Blacklip abalone held at 19°C had significantly lower survival for both 96% oxygen saturation and 120% oxygen saturation, compared with blacklip abalone maintained at either 110% oxygen saturation and 19°C, or for any 17°C treatment. No significant differences were noted for greenlip abalone within the range tested in terms of growth rate, food consumption rate or survival, indicating that greenlip abalone tolerated these conditions better than did blacklip abalone.  相似文献   

2.
The kuruma shrimp, Penaeus (Marsupenaeus) japonicus (Bate, 1888), is a valuable aquaculture species in Queensland, Australia. The shrimp is supplied live to the Japanese market and must survive emersed transport for up to 36 h. In-transit mortality after harvest from high water temperatures (> 30 °C) has been reported by the industry, and a knowledge of the effects of high water temperature may provide important information for producers on grow-out management, timing of production and farm location. Experiments were conducted to determine the effect of high water temperature on survival, moulting and food consumption in P. japonicus. Replicated groups of 15.6 ± 0.2 g shrimp were acclimated and exposed to five temperatures, between 28 and 36 °C, for up to 28 days. Mortality was highest at 36 °C and equally lowest between 28 °C and 32 °C. Intermoult period was not significantly different for temperatures between 28 and 32 °C (19.8–15.5 days) but was significantly greater above 32 °C (27.4 days at 34 °C and > 104 days at 36 °C). There was evidence of moulting synchrony at 28 °C. Mean daily food consumption was highest at 32 °C at 2.34% of body weight, but decreased to 1.56% at 28 °C and 1.33% at 36 °C. Over the range of water temperatures examined, survival, moulting rate and food consumption were highest at 32 °C.  相似文献   

3.
Effects of temperature on food consumption, growth and oxygen consumption were estimated for the freshwater prawn Macrobrachium rosenbergii postlarvae at 23 °C, 28 °C and 33 °C in the laboratory. The results showed that the animal's initial body weight had a close linear relationship with food consumption and growth. Food consumption increased directly with temperature. Consumption rates (C; mg day?1 ind?1 ) of the 28 °C and 33 °C groups were much higher than that of the 23 °C group (P < 0.001), and the 33 °C group's consumption rate was higher than that of the 28 °C group (P < 0.05). The relationship of food consumption with temperature and initial body weight (W; mg) could be described as: C = 0.0679W + 0.185t? 3.17. Growth increased significantly with increased temperature. The relationship among specific growth rate, temperature and initial body weight was as follows: SGR = ?0.110W + 0.213t + 0.176. However, temperature showed no effect on growth efficiency. Oxygen consumption increased significantly with temperature (P < 0.01). The weight‐specific oxygen consumption rates (mg O2 g?1 h?1) at 23 °C, 28 °C and 33 °C were 0.83, 1.16 and 1.49 mg O2 g?1 h?1 for 61.92 mg M. rosenbergii.  相似文献   

4.
Laboratory studies showed that higher relative humidity (RH) and lower air temperature increase the tolerance of the Japanese clam, Ruditapes philippinarum (Adams & Reeve), to exposure. Aerial respiration of the clam was also measured. At high RH, the exposure time which gave 50% survival (LT50) was 1.97 and 1.75 times longer than in low RH at air temperatures of 15 and 25 °C, respectively. At 15 °C, all clams previously acclimatized at 15 °C survived for 58 h at low RH and 102 h at high RH. These differences can potentially be exploited to improve the shipment of clams. The aerial respiration experiment showed that the increase of the oxygen consumption rate at 25 °C was greater than that at 15 °C, following an increase in exposure time. The aerial respiration rates of the clams were ≈ 41.6% and 50.0% of those in water at 25 and 15 °C, respectively. The survival of the clams in air was dependent on aerobic rather than anaerobic respiration.  相似文献   

5.
In this study, the energy budget of the Manila clam, Ruditapes philippinarum, was evaluated after one-week acclimation periods at 5, 10, 15, 20, and 25°C. Small clams (151 ± 12 mg DW) and large clams (353 ± 16 mg DW) were fed with the microalgae, Isochrysis galbana. Filtration rate, ingestion rate, assimilation efficiency, oxygen-consumption rate, and ammonia excretion rate were measured. Both filtration rate and ingestion rate of small and large clams were found to be related to temperature. The highest Q 10 values were measured in the range 15–20°C for both small and large clams. Assimilation efficiency of both small and large clams was not significantly influenced by temperature, although the maximum mean values were detected at 20°C. Oxygen consumption rate and ammonia excretion rate of small and large clams were found to be related directly to temperature over the entire range, with a maximum being detected at 25°C. The highest Q 10 value was estimated in the range 10–15°C with regard to oxygen consumption rate, and in the range of 15–20°C with regard to ammonia excretion rate. Scope for growth (SFG) was positive at all temperatures, achieving a maximum value at 20°C in both small and large clams, primarily as a consequence of the enhanced ingestion rate which offset the concomitant elevation in the metabolic rate. In this study we have estimated the thermal optimum for this species at 20°C.  相似文献   

6.
拟穴青蟹幼蟹耗氧率和窒息点的研究   总被引:2,自引:1,他引:2  
在盐度20、温度28.0±0.2℃条件下,采用密封流水方法进行了拟穴青蟹幼蟹耗氧率和窒息点的研究。结果表明:拟穴青蟹Ⅴ期幼蟹的平均耗氧率高于Ⅵ期幼蟹,Ⅴ期幼蟹的窒息点也高于Ⅵ期幼蟹。其中,当蟹苗体质量为1.00±0.22 g时,耗氧率为0.437 2±0.083 mg/(g.h),耗氧量0.423 7±0.080 mg/(ind.h),窒息点为0.716 0±0.017 mg/L;当蟹苗体质量为1.81±0.30 g时,耗氧率为0.381 6±0.081 mg/(g.h),耗氧量0.671 7±0.140 mg/(ind.h),窒息点为0.698 7±0.011 mg/L。实验发现,拟穴青蟹幼蟹的耗氧率和耗氧量具有比较明显的昼夜变化规律,其峰值出现在20∶00及02∶00左右,谷值出现在08∶00及16∶00。研究结果可为拟穴青蟹养殖生产中制定合理的苗种放养密度和养殖工艺提供参考依据。  相似文献   

7.
The respiratory rates of Tawny puffer Takifugu flavidus juvenile were measured at four temperatures (20, 23, 26 and 29 °C) and seven salinities (5, 10, 15, 20, 25, 30 and 35 g L?1). The results showed that both temperature and salinity significantly affected the oxygen consumption of tawny puffer juvenile. The oxygen consumption rate (OCR) increased significantly with an increase in the temperature from 20 to 29 °C. Over the entire experimental temperature range (20–29 °C), the Q10 value was 1.59, and the lowest Q10 value was found between 23 and 26 °C. The optimal temperature for the juvenile lies between 23 °C and 26 °C. The OCR at 25 g L?1 was the highest among all salinity treatments. The OCRs show a parabolic relationship with salinity (5–35 g L?1). From the quadratic relationship, the highest OCR was predicted to occur at 23.56 g L?1. The optimal salinity range for the juvenile is from 23 to 25 g L?1. The results of this study are useful towards facilitating an increase in the production of the species juvenile culture.  相似文献   

8.
In order to clarify the respiratory responses strategy of Amur sturgeon Acipenser schrenckii exposed to water temperature changes, respiratory parameters of the fish were studied under two temperature regimes: fish acclimated at 13°C for Group I, temperature was increased to 16°C, 19°C, 22°C and 25°C and then returned stepwise to 22°C, 19°C, 16°C and 13°C; and fish acclimated at 25°C for Group II, the water temperature was reduced in steps to 22°C, 19°C, 16°C and 13°C, subsequently, returned to 16°C, 19°C, 22°C and 25°C. The results showed that the respiratory frequency (fR), oxygen consumption rate (VO2) and gill ventilation (VG) of the fish were directly dependent on the acute temperature in both acclimation groups (p < .05). The initial 25°C VO2 in Group II was significantly higher than the initial 13°C VO2 in Group I (p < .05), but was significantly lower than that at 25°C in Group I (p < .05). In Group I, respiratory stroke volume (VS.R) of fish significantly increased or decreased with the acute temperature increases or decreases, respectively (p < .05); oxygen consumption efficiencies (EO2) of fish did not significantly show differences when temperature increased to 25°C from 13°C (p > .05), but the EO2 significantly declined while returning to acclimation temperature (p < .05). In Group II, the VS.R of the fish did not significantly change with acute temperature fluctuations between 25 and 13°C (p > .05), while the EO2 increased with acute temperature increases (p < .05). The Q10 values for fR, VO2, VS.R, VG and EO2 were 1.53–1.72, 1.92–2.06, 1.07–1.60, 1.78–2.44 and 1.11–1.65 at 13–25°C of temperature interval respectively. Amur sturgeon showed partial metabolic compensation to temperature changes. The study results suggest that the ability of Amur sturgeon to regulate metabolism in response to acute temperature changes makes this species good adaptability in the aquaculture rearing.  相似文献   

9.
This study was carried out to find out the effects of anaesthetics, 2-phenoxyethanol. quinaldine sulphate. MS-222 and metomidate. at various dosages, on the oxygen consumption rates of two size groups of platyfish. Xiphophorus maculatus (Günther) at three temperatures. The results show that the oxygen consumption by the platyfish of both size groups was temperature dependent, being higher at higher temperature, but not size dependent. The effects of anaesthetics on the oxygen consumption rates of platyfish were dosage dependent and temperature dependent, especially for 2-phenoxyethanol, the effect always being significantly greater at lower temperature. Small and large fish did not show much difference in their responses to anaesthetic treatments. However, with 2-phenoxyethanol, the effect on the large platyfish was always better than on the small ones at 20-25°C. At 220-440 ppm and at 20°C, 2-phenoxyethanol was more effective than the other anaesthetics in suppressing oxygen consumption by the platyfish.  相似文献   

10.
Juvenile Atlantic cod (Gadus morhua L.) and haddock (Melanogrammus aeglefinus L.) were subjected to 30 s air exposure stressors following acclimation to 4, 10 and 14 and 4, 8 and 14°C respectively. Both species responded to the stressor with increases in plasma cortisol at all temperatures tested. At 14°C cortisol levels peaked within 1 h post‐stressor, and returned to pre‐stressor levels within 24 h. In contrast, at 4°C, peak cortisol levels were not attained until 6 h post‐stressor in haddock and remained elevated beyond 24 h in both species. The rate of plasma glucose accumulation was greater at higher temperatures in both species and no increase was seen at 4°C. Lysozyme activity in cod, in response to the stressor, was lower than the values reported for some other species and increased slightly at 14°C. The results show that cod and haddock acclimated to different temperatures respond to common, acute stressors in a manner similar to other teleosts.  相似文献   

11.
Observations were made in an experimental stream tank (total area 14.7 m2) on juvenile Atlantic salmon, Salmo salar L (parr), relating experimental observations to field observations, including the reported diurnal fasting behaviour of juvenile salmon at water temperatures <10 °C. Densities in the tank ranged from five to twenty parr, at water temperatures ranging from 4.6 °C to 15.8 °C. The wide channel of the stream tank, with mean water velocity of 18.8 cm·s?1, was the preferred section, where territorial behaviour was observed. Biomass was regulated in the wide channel by territorial mosaics or by dominance hierarchies. Dominance hierarchies were reflected in coloration of the fish. Dominant salmon were generally in the wide channel. Densities of salmon parr (of mean fork length 10.2 cm) in the channel ranged from 0.84 m?2 to 1.73 m?2, with an average biomass of 14.2 g·m?2. Growth was least at the 5.9 °C temperature treatment. In experiments at temperatures below 10 °C, feeding, dominance hierarchy and territorial behaviour were observed in daylight hours, contrary to the published literature. Interactions with other species may affect behaviour. Some observations were made on a closely related species, brown trout (Salmo trutta L.), a commonly cohabiting species in many systems. Trout displaced salmon from their preferred locations in the tank and were more aggressive than the salmon, reducing agonistic behaviour by the salmon. The commonest agonistic act shown by salmon was ‘charge’ and that by the trout was ‘approach’. Some field observations affecting behaviour and production are discussed.  相似文献   

12.
The physiological responses of the juvenile Crassostrea nippona in terms of filtration, oxygen consumption and ammonia excretion to changes in temperature (16–32°C), salinity (15–35 psu) and body size (small, medium and large) were investigated. In this study, the values of filtration rate (FR), oxygen consumption rate (OCR) and ammonia excretion rate (AER) increased with temperature rising from 16°C to 24°C, reaching the highest values at 24°C and 28°C; with any further increase in temperature above this limit, these values decrease drastically (p < .05). The highest Q10 coefficients were 2.75 for large, 3.54 for medium at 16–20 and 3.47 for small size at 20–24°C respectively. Moreover, the responses of FR and OCR were found to be influenced significantly by salinity, tending to increase concomitantly with salinity up to 25–30 psu, though the values of these parameters were diminished dramatically (p < .05) above this level, showing a reverse pattern from that observed in AER, which firstly decreased to the lowest level at 25 and 30 psu, and then severely (p < .05) increased to the highest level at 35 psu. In addition, the low O:N ratios of all sizes of C. nippona at 16°C and 30–35 psu were indicative of a protein‐dominated catabolism, whereas the O:N ratios of large size at 20–32°C and all sizes at 20–30 psu, indicating that the metabolic energy from protein diminished and lipid and carbohydrate were used as the energy substrates. Physiological rates of C. nippona were well correlated with its size. The average values of mass exponents (b‐values) estimated in the present study were 0.657 for OCR and 0.776 for AER at different temperatures, and 0.647 for OCR and 0.767 for AER at varying salinities, signifying that physiological process of C. nippona becomes relatively slower with increasing body size regardless of temperature or salinity. Finally, our results confirm that the optimal temperature and salinity for juvenile C. nippona lie within 24–28°C and 25–30 psu respectively. The results of physiological traits in response to environmental factors of this species are informative in site selection for the cultivation.  相似文献   

13.
温度对白斑狗鱼耗氧率、窒息点及主要生化指标的影响   总被引:1,自引:0,他引:1  
在不同温度下,测定了平均体重为(597.2±96.3)g的白斑狗鱼(Esox lucius)的呼吸耗氧率、窒息点及主要生化指标。结果显示:在水温为3℃、8℃、13℃和18℃下,白斑狗鱼的耗氧率随着温度的升高而显著上升(P<0.05)。3℃时耗氧率最低;为(0.0047±0.000017)mg/g.h,18℃时耗氧率最高;为(0.029±0.0011)mg/g.h。当水温在13℃时,白斑狗鱼的昼夜平均耗氧率在(0.020±0.0031)mg/g.h,15:00耗氧率最低,11:00耗氧率出现最高值。Q10值的变化显示白斑狗鱼的耗氧率对温度具有敏感性,13~18℃时,Q10最小,此温度为白斑狗鱼的较适生长温度。在高温下(18℃),白斑狗鱼呼吸急促,呼吸频率达到(68.50±3.58)次/min;在低温下(3℃),白斑狗鱼呼吸缓慢,呼吸频率下降到(29.00±4.31)次/min。白斑狗鱼的窒息点随着水温的升高而增大,水温为13℃,其窒息点最高为1.68 mg/L,水温为3℃时,其窒息点最低为0.82 mg/L。随着水温的不断上升,白斑狗鱼的肝糖元含量、肝胰脏中的乳酸含量显著减少(P<0.05)。肝糖元含量由(67.70±6.66)mg/g降至(41.83±3.72)mg/g。乳酸含量由(0.36±0.0041)mmol/gprot降至(0.15±0.0034)mmol/gprot。肝胰脏中的碱性磷酸酶、酸性磷酸酶的酶活力随着水温的升高而小幅缓慢下降,分别由(21.51±0.69)U/gprot和(22.34±0.43)U/gprot降至(19.04±0.62)U/gprot和(18.10±0.41)U/gprot。  相似文献   

14.
胭脂鱼幼鱼的耗氧率及窒息点研究   总被引:1,自引:0,他引:1  
在自制的可控温密封式流水呼吸室内,对0+龄胭脂鱼(Myxocyprinus asiaticus)的耗氧率和耗氧量进行了测定,并对0+龄和1+龄胭脂鱼的窒息点和窒息过程作了分析。结果显示,平均体重6~7 g的0+龄胭脂鱼在15℃时的平均耗氧率和耗氧量分别为0.0585 mg/(g.h)和0.3567 mg/(尾.h);20℃时的平均耗氧率和耗氧量为0.1176 mg/(g.h)和0.8232 mg/(尾.h);昼间耗氧率与夜间耗氧率未显差异。15、20、25和30℃下0+龄胭脂鱼的窒息点分别为0.4921、0.8319、0.9356和1.5144 mg/L,25和30℃下1+龄胭脂鱼的窒息点为1.0738和1.1027 mg/L。  相似文献   

15.
Propeller-aspirator-pump aerators of 0.38, 1.5, and 2.24 kW transferred averages of 1.73 to 1.91 kg oxygen/kW · h in standardized oxygen transfer tests (tap water; 20°C; 0 mg/l dissolved oxygen) conducted in a shallow basin (1.04 m of water depth). In comparison tests, spray-type surface aerators transferred 1.34 to 1.41 kg oxygen/kW · h and a diffused-air system transferred 1.08 kW · h. The water-mixing capabilities of aerators were estimated from the time to completely mix salt (NaCl) throughout the volumes of ponds, and from the time required to spread a dye over surfaces of ponds. The propeller-aspirator-pump was effective in mixing pond water. A 1.5-kW propeller-aspirator-pump spread dye over a 0.4-ha pond in 32 min and mixed salt throughout 3000 m3 of water in 90 min. A larger spray-type surface aerator (2.24 kW) required 1.5 h to spread dye and 1.75 h to mix salt in the same pond.  相似文献   

16.
In this study, two experiments were conducted to test the effect of high temperature on survival, behavior, oxygen consumption, ammonia-N excretion, and enzyme activities related to oxidative stress of the Japanese scallop Mizuhopecten yessoensis. In the first test, we abruptly transferred scallops from the rearing temperature (15 °C, control temperature) to 20, 22, 24, and 26 °C. Scallops exposed to 26 °C were significantly affected by temperature, with 100 % mortality after 12 h. The 8-, 12-, 24-, 48-, and 96-h lethal temperatures for 50 % mortality (LT50) were 27.5, 24.4, 24.3, 24.2, and 23.8 °C, respectively. The activities of CAT and SOD and the T-AOC in the coelomic fluid of M. yessoensis changed significantly after high-temperature stress (P < 0.05). They reached to the highest levels after 8 h of stress in the 22, 24, and 26 °C treatment groups then returned to the control group level. The content of MDA reached the highest level after 12 h in each temperature treatment. In the second test, scallops were acclimatized to the different temperature levels (20, 22, 24, and 26 °C) and then maintained for 30 days. Survival was significantly lower at 26 °C than at the other temperatures, and the highest survival occurred in the 15 °C treatment. High temperature also significantly influenced the oxygen consumption rates and ammonia-N excretion rates (P < 0.05). As the temperature increased, the CAT and SOD activities and the T-AOC in the coelomic fluid of M. yessoensis declined significantly, whereas the MDA content increased. These results illustrate that high temperature can significantly affect the survival, behavior, oxygen consumption, ammonia-N excretion, and enzyme activities related to oxidative stress of M. yessoensis.  相似文献   

17.
A 5 week experiment was carried out with juvenile yellowtail kingfish Seriola lalandi to investigate the interactive effects of water temperature (21, 24, or 27°C) and dissolved oxygen regime (normoxic vs. hypoxic) on the growth rate, feed intake and digestive enzyme activity of this species. Specific growth rate (SGR) was highest at 24°C, regardless of oxygen regime, but the SGRs of the fish exposed to hypoxia at 21, 24 and 27°C were 13%, 20% and 17% lower, respectively, than the SGRs recorded for the fish reared under normoxic conditions. The digestive enzyme activities (i.e. trypsin, lipase and α‐amylase) were influenced by temperature but did not appear to be affected by dissolved oxygen concentration. Information about the effects of water temperature and dissolved oxygen on feeding, growth and digestive capacity of juvenile yellowtail kingfish could contribute to improving feed management decisions for production of this fish species under different environmental conditions.  相似文献   

18.
Standard oxygen consumption rate (MO2) was determined for 19 cownose rays (Rhinoptera bonasus) using flow-through respirometry. Rays ranged in size from 0.4 to 8.25 kg (350–790 mm DW). Respirometry experiments were conducted on seasonally acclimatized rays at temperatures from 19.0 to 28.8 °C. Estimates of mass-dependent MO2 ranged from 55.88 mg O2 kg−1 h−1 for an 8.25 kg ray to 332.75 mg O2 kg−1 h−1 for a 2.2 kg animal at 22–25°C. Multiple regression analysis examining the effect of temperature, salinity, and mass on standard mass-independent MO2 found temperature (P < 0.01), and mass (P < 0.0001) to have a significant effect on oxygen consumption, whereas salinity did not (P > 0.05). Q 10 was calculated as 2.33 (19–28 °C), falling between the estimates determined for two other batoid species, the bull ray (Myliobatos aquila; Q 10 = 1.87) and the bat ray (Myliobatis californica; Q 10 = 3.00). The difference in the Q 10 estimates may be attributed to the use of seasonally acclimatized as opposed to laboratory-acclimated animals.  相似文献   

19.
Survival, growth and proximal body composition of juvenile Farfantepenaeus californiensis (Holmes) were examined at two dissolved oxygen concentrations (mean 5.8 and 2.6 mg L?1) and three temperatures (19 °C, 23 °C and 27 °C) for 50 days. Three replicate experiments were performed with a 12 h light/dark photoperiod. Survival was 68–85% at the lower dissolved oxygen level and 77–82% at the higher level and was not significantly affected by the treatments (P > 0.01). Growth at the lower oxygen concentration was significantly less (P < 0.01) than at the higher concentration, with growth rates of 2, 12 and 24 mg day?1 from the lowest to the highest temperature and 4, 17 and 26 mg day?1 for the three temperatures at the higher dissolved oxygen level. Body lipids were 1.2% wt/wt at the higher temperature and 2.1% wt/wt at the lower temperature, while proteins were 15.1% wt/wt at the higher temperature and 12.5% wt/wt at the lower temperature. These results indicate that low oxygen levels and low temperature significantly depress growth at this particular stage of life.  相似文献   

20.
The metabolic physiological response to body mass, temperature (12–28 °C) and salinity (20–36 g L?1) was examined in this paper. Oxygen consumption rate, which is dependent on environmental conditions, was exponentially related to body mass and varied from 0.045 to 1.11 mg h?1 g?1. Oxygen consumption rate increased as salinity increased from 20 to 36 g L?1, and increased with increasing temperature. The effect of temperature gradient between experimental treatments on oxygen consumption rate was evaluated by calculating Q10 (the Arrehenius relationship for increase with temperature). The Q10 value within the temperature range from 12 to 16 °C was much higher than the value within the temperature range from 16 to 20 °C, 20 to 24 °C and 24 to 28 °C, indicating a reduced temperature dependence of ascidian metabolism at a high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号