首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Factors such as limitations in water quality and quantity, cost of land, limitations on water discharges, environmental impacts and diseases, are driving the aquaculture industry toward more intensive practices. This will force producers to adopt environmentally friendlier technologies. Recirculating systems, with a biofilter as the most prominent characteristic, treat internally the water contaminated with dissolved organics and ammonia and reduce the amount of water use and discharge from aquaculture operations. This paper reviews the implications of the changing use of recirculating aquaculture systems (RAS) on biofiltration research for freshwater and marine operations. Demand for cost effective biofilters will increase with the expansion of recirculating systems, both as a complement and replacement of traditional ponds. For freshwater aquaculture, emphasis should be placed in cost competitiveness, low head operations, intensification of ponds with RAS biofiltration and the evaluation of suspended growth systems. In the marine systems, an increase in demand of oligotrophic and ultraoligotrophic systems is expected, particularly in the nursery systems. Sizing and cost efficiency of biofilters for nursery operations should be addressed. Problems in marine biofilter acclimation appear to justify the development of new acclimation procedures. Biosecurity concerns, land cost and storm threats will drive nursery systems inland, where saltwater supply and disposal will force an increased water reuse. Denitrification strategies will need to be redefined and optimized for the marine nursery environment.  相似文献   

2.
This paper describes the performance characteristics of an industrial-scale air-driven rotating biological contactor (RBC) installed in a recirculating aquaculture system (RAS) rearing tilapia at 28 °C. This three-staged RBC system was configured with stages 1 and 2 possessing approximately the same total surface area and stage 3 having approximately 25% smaller. The total surface area provided by the RBC equaled 13,380 m2. Ammonia removal efficiency averaged 31.5% per pass for all systems examined, which equated to an average (± standard deviation) total ammonia nitrogen (TAN) areal removal rate of 0.43 ± 0.16 g/m2/day. First-order ammonia removal rate (K1) constants for stages 1–3 were 2.4, 1.5, and 3.0 h−1, respectively. The nitrite first-order rate constants (K2) were higher, averaging 16.2 h−1 for stage 1, 7.7 h−1 for stage 2, and 9.0 h−1 stage 3. Dissolved organic carbon (DOC) levels decreased an averaged 6.6% per pass across the RBC. Concurrently, increasing influent DOC concentrations decreased ammonia removal efficiency. With respect to dissolved gas conditioning, the RBC system reduced carbon dioxide concentrations approximately 39% as the water flowed through the vessel. The cumulative feed burden – describes the mass of food delivered to the system per unit volume of freshwater added to the system daily – ranged between 5.5 and 7.3 kg feed/m3 of freshwater; however, there was no detectable relationship between the feed loading rate and ammonia oxidation performance.  相似文献   

3.
Monod kinetics are widely used to model nitrifying biofilters. However, these kinetics are incapable of representing the collapse of volumetric TAN conversion rate (VTR) under high organic loadings. Failure to recognize the underlying heterotrophic interference can lead to calibration issues as a single Monod function is applied across contrasting levels of carbon loading. This, plus an historic bias towards the analysis of peak carrying capacities leave modelers poorly prepared to serve the needs of a mariculture industry demanding oligotrophic designs for broodstock maturation and larval/fingerling production. Consequently, data was generated by a Monte Carlo technique under the assumption of heterotrophic inhibition to nitrification. The data was used to compare the accuracy of calibration of the Monod relationship using the traditional Lineweaver–Burke and Eadie–Hofstee calibration methods against direct linear regression for low substrate (mesotrophic/oligotrophic) regimes. The results indicate that a simple linear relationship with a zero intercept, calibrated on data ranging from 0.1 to 0.5 g-TAN m−3, is most suitable for the representation of the mesotrophic/oligotrophic performance of nitrifying biofilters based on a comparison of SSE for both the Monte Carlo and field data analyzed herein. Additionally, the coefficient of variation was found to be between 7 and 8% for the parameter τ, which is the slope of the linear relationship between total ammonia nitrogen (TAN) and VTR while the CV for the Monod parameters ranged between 22 and 143% for VTRmax and between 29 and 137% for the apparent half-saturation constant showing the improved stability of the linear model to that of the Monod model.  相似文献   

4.
鲟鱼工厂化循环水养殖系统设计及运行效果   总被引:2,自引:0,他引:2  
针对目前中国淡水工厂化循环水养殖系统建设和运行成本过高,推广应用受到一定程度制约的问题,在自主研发斜管重力滤沉淀装置、内循环流化床反应器、一体化臭氧接触反应器等水净化设备的基础上,通过应用物质平衡相关原理,精确设计、确立不同阶段系统关键运行参数,建立一种高效节能的鲟鱼工厂化循环水养殖系统。通过96 d养殖试验,结果显示,鲟鱼摄食和生长情况正常,养殖密度平均(41.2±2.3)kg/m~3,存活率95.8%,饲料系数1.17。日换水量在5%以下,水质情况良好,氨氮和亚硝酸盐氮后期稳定控制在(0.80±0.21)mg/L和(0.38±0.12)mg/L;系统平均日耗电量为33.3 kW·h,平均产出1kg鲟鱼耗电7.30 kW·h。系统运行具有低能耗、高效率的特点,可为鲟鱼循环水养殖提供技术支撑。  相似文献   

5.
6.
The fast evolution of recirculation systems for salmonids has challenged the engineering companies to develop new and better design and engineering practices, to improve the water quality and system flexibility. One of the major factors that affect the water quality parameters is the total suspended solids produced within the system. The design of water flow from the water inlet into the culture tank down to the effluent pipeline and the water filtration unit, will determine a system's performance. Two recirculating systems for 250 and 1500 m3 have been designed and built applying specific design keys focused in good solids removal, system removal exchange, piping size and layout, filtration process, biofiltration units, gas balancing and CO2 removal, oxygenation devices, and disinfection process. All these treatments have been designed and built for both facilities, and they are currently operating with very good results. Both facilities are in separate isolated buildings but in the same hatchery site. They share a common heat pump unit that delivers chilled water to the incubation room, and the makeup water is from several wells on site. This paper describes the main design keys used under this project focusing on the small recirculation system (250 m3).  相似文献   

7.
Nitrate reducing potency of 88 bacterial isolates segregated from marine and brackish water nitrifying bacterial consortia (NBC), generated for activation of nitrifying bioreactors, was confirmed by determining the nitrate reducing capability under aerobic conditions as maintained in nitrifying bioreactors. All the isolates had the potential to be used as bio‐augmentors for activating nitrate dissimilation in recirculating aquaculture system. The existence of nitrate reducers with nitrifiers in NBC and in the reactor configuration negates the requirement of integrating anoxic denitrifying system for effective removal of NO3?‐N. Phylogenetic analyses of representative isolates from each cluster of the dendrograms generated based on phenotypic characterization and amplified ribosomal DNA restriction analysis revealed profound diversity of nitrate reducing bacterial flora in the NBC. They were composed of Streptomyces enissocaesilis, Marinobacter sp., Pseudomonas sp., Microbacterium oxydans, Pelagibacterium halotolerans and Alcanivorax dieselolei from marine NBC and Streptomyces tendae, Nesterenkonia sp., Bacillus cereus, Microbacterium oxydans and Brevibacterium sp. from brackish water NBC. The diversity indices of the consortia were calculated using Mega 5.0, primer 7 and VITCOMIC softwares. Marine NBC exhibited higher Shannon wiener diversity and mean population diversity than brackish water NBC. The study delineated higher species richness and diversity in marine NBC than in its brackish water counterpart, a possible reflection of the higher biodiversity of marine systems, and hence, the former is more promising to be used as start‐up cultures for the activation of nitrifying bioreactors after appropriate acclimatization to the desired salinity.  相似文献   

8.

Gilthead sea bream (Sparus aurata) was raised in six individual recirculating aquaculture systems (RAS) whose biofilters’ performance was analyzed. Fish were fed with three different diets (a control diet, a fishmeal-based diet (FM), and a plant meal-based diet (VM)) and with three different feeding strategies (manual feeding to apparent satiation, automatic feeding with restricted ration, and auto-demand feeding). For every combination of diet and feeding strategy, the mean oxygen consumption, ammonia excretion, and ammonia removal rate were determined. Fish fed with the VM diet consumed the most oxygen (20.06?±?1.80 gO2 consumed kg?1 day?1). There were significant differences in ammonia excretion depending on the protein content and protein efficiency of the diet, as well as depending on feeding strategy, which in turn affected ammonia removal rates. Fish fed by auto-demand feeders led to the highest mean ammonia removal rate (0.10 gN-TAN removed m?2 biofiltration area day?1), while not leading to peaks of high ammonia concentration in water, which preserve fish welfare and growth.

  相似文献   

9.
Delta smelt are cultured at the UC Davis Fish Conservation and Culture Lab (FCCL) for research purposes. The culture systems used are based on recirculation technology to ensure optimum water quality for the fish at each life stage. Larval culture takes place in recirculation systems with green water to which a Nannochloropsis algal concentrate is added to maintain a turbidity of approximately 9 NTU. A bubble-wash bead filter is used to remove total suspended solids (TSS) from the recirculation system. The performance of the bubble-wash bead filter has been evaluated by testing the TSS and particle size distribution in two parallel systems operated in the same way. The need for bubble-wash bead filter backwashing and the impact of the backwash method were evaluated also.The results show that the bubble-wash bead filter removed a great deal of the TSS, including the algae added to maintain the turbidity. An improper backwash method could result in a short term but significantly high TSS peak in the system immediately after the backwash event. Testing over an extended filtration period with a prolonged backwash interval showed that the TSS in the system remained stable up to 150 h post backwash, at which time it increased rapidly. The TSS accumulation in the system with a bubble-wash bead filter that was not backwashed was greater than that in a parallel system without a bubble-wash bead filter. No significant mortality increase was found in the system without a bubble-wash bead filter for 34 days, which provides a possible alternative in order to lower the rearing cost. Nevertheless, there are benefits of using a bead filter, and these are discussed in the paper.  相似文献   

10.
When operating water recirculating systems (RAS) with high make-up water flushing rates in locations that have low alkalinity in the raw water, such as Norway, knowledge about the required RAS alkalinity concentration is important. Flushing RAS with make-up water containing low alkalinity washes out valuable base added to the RAS (as bicarbonate, hydroxide, or carbonate), which increases farm operating costs when high alkalinity concentrations are maintained; however, alkalinity must not be so low that it interferes with nitrification or pH stability. For these reasons, a study was designed to evaluate the effects of alkalinity on biofilter performance, and CO2 stripping during cascade aeration, within two replicate semi-commercial scale Atlantic salmon smolt RAS operated with moving bed biological filters. Alkalinity treatments of nominal 10, 70, and 200 mg/L as CaCO3 were maintained using a pH controller and chemical dosing pumps supplying sodium bicarbonate (NaHCO3). Each of the three treatments was replicated three times in each RAS. Both RAS were operated at each treatment level for 2 weeks; water quality sampling was conducted at the end of the second week. A constant feeding of 23 kg/day/RAS was provided every 1–2 h, and continuous lighting, which minimized diurnal fluctuations in water quality. RAS hydraulic retention time and water temperature were 4.3 days and 12.5 ± 0.5 °C, respectively, typical of smolt production RAS in Norway.It was found that a low nominal alkalinity (10 mg/L as CaCO3) led to a significantly higher steady-state TAN concentration, compared to when 70 or 200 mg/L alkalinity was used. The mean areal nitrification rate was higher at the lowest alkalinity; however, the mean TAN removal efficiency across the MBBR was not significantly affected by alkalinity treatment. The CO2 stripping efficiency showed only a tendency towards higher efficiency at the lowest alkalinity. In contrast, the relative fraction of total inorganic carbon that was removed from the RAS during CO2 stripping was much higher at a low alkalinity (10 mg/L) compared to the higher alkalinities (70 and 200 mg/L as CaCO3). Despite this, when calculating the total loss of inorganic carbon from RAS, it was found that the daily loss was about equal at 10, and 70 mg/L, whereas it was highest at 200 mg/L alkalinity. pH recordings demonstrated that the 10 mg/L alkalinity treatment resulted in the lowest system pH, the largest increase in [H+] across the fish culture tanks, as well as giving little response time in case of alkalinity dosing malfunction. Rapid pH changes under the relatively acidic conditions at 10 mg/L alkalinity may ultimately create fish health issues due to e.g. CO2 or if aluminium or other metals are present. In conclusion, Atlantic salmon smolt producers using soft water make-up sources should aim for 70 mg/L alkalinity considering the relatively low loss of inorganic carbon compared to 200 mg/L alkalinity, and the increased pH stability as well as reduced TAN concentration, compared to lower alkalinity concentrations.  相似文献   

11.
固定床生物膜反应器(fixed-bed biofilm bioreactor, FBBR)和移动床生物膜反应器(moving- bed biofilm reactor, MBBR)在养殖水体氨氮(NH4+-N)和亚硝酸氮(NO2–-N)污染控制中已有较为广泛的研究,然而相关研究大多是在实验室完成的,目前尚缺乏实际生产的循环水养殖系统(recirculating aquaculture system, RAS)中FBBR和MBBR水体净化效能的对比研究。因此,本研究将FBBR (弹性毛刷滤料)和MBBR (PVC多孔环滤料)并联接入实际生产的墨瑞鳕(Macculochella peeli) RAS中,实现二者的同步连续运行(35 d),考察了其出水水质变化和微生物群落结构。出水水质变化表明,FBBR和MBBR中氨氧化能力的形成快于亚硝氮氧化能力,硝化能力渐趋成熟,可以有效控制养殖水体中的NH4+-N和NO2–-N浓度,但会导致养殖水体中硝酸氮(NO3–-N)积累和pH下降;单因素方差分析表明,FBBR出水中NH4+-N、NO2–-N、NO3–-N浓度和pH与MBBR出水无显著差异,两反应器的硝化效率相似。FBBR和MBBR在微生物群落上的相同点在于:优势菌门为变形菌门(Proteobacteria) (相对丰度分别为69.42%和86.92%),优势菌纲为γ-变形菌纲(γ-Proteobacteria) (40.71%和63.36%)和α-变形菌纲(α-Proteobacteria) (26.58%和21.74%),优势菌属为不动杆菌属(Acinetobacter) (27.50%和53.29%);硝化菌由亚硝化单胞菌属(Nitrosomonas)和硝化螺菌属(Nitrospira)构成;硝化螺菌属的相对丰度远高于亚硝化单胞菌属,两反应器中可能存在完全氨氧化菌。两反应器在微生物群落上的不同点在于FBBR微生物群落的丰富度和多样性以及硝化菌的相对丰度均高于MBBR。本研究可以为RAS养殖水体净化提供技术支撑,助推循环水养殖模式的推广应用。  相似文献   

12.
As part of a larger study of micro-particles in a recirculating, cold water aquaculture system for juvenile Atlantic salmon (Salmo salar), particle size analyses were carried out on the culture and makeup waters over several months followed by samples of feed stirred in water. The particle size distributions followed the power law described in [Aquacult. Eng. 19 (1999): 259] but with a superimposed spike at around 4 μm in the culture water, which was not present in make-up waters. A similar spike appeared in the feed samples indicating that the spike had a feed origin. While the absolute value of the power law exponent (designated β, or the Beta value) was in the range of 2.6–3.6, consistent with aquacultural waters, the build-up of fine particles, expected in a recirculating system with time and which would have been indicated by an increase in Beta value to above 4, did not occur due to a system high water turn-over rate flushing much of the finer particles. There is a particle counts increase occurring across the degasser/oxygenator that needs further investigation.  相似文献   

13.
Recirculating aquaculture system (RAS) is an increasingly popular alternative to open aquaculture production systems. However, off‐flavours and odours can accumulate in the fish flesh from the circulating water and decrease the fish meat quality. Off‐flavours are typically caused by geosmin (GSM) and 2‐methylisoborneol (MIB) that are lipophilic compounds formed as secondary by‐products of bacterial metabolism. Even though GSM and MIB are not toxic, they often are disliked by consumers, and both have very low human sensory detection limits. Multiple methods have been suggested to remove or decrease GSM and MIB in fish, including ozonation, advanced oxidation processes (AOP)s and adsorption removal from water using activated carbon and/or zeolites. So far, purging with fresh water is the only efficient method available to remove the off‐flavours. There are multiple analytical methods available for the extraction and separation of GSM and MIB from fish flesh and water. This review discusses the current knowledge of GSM and MIB formation, the challenges faced by RAS farms due to these compounds and process solutions available for their removal.  相似文献   

14.
Recirculating aquaculture systems (RAS) are often designed using simplified steady-state mass balances, which fail to account for the complex dynamics that biological water treatment systems exhibit. Because of the very slow dynamics, experimental development is also difficult. We present a new, fast and robust Modelica implementation of a material balance-based dynamic simulator for fish growth, waste production and water treatment in recirculating aquaculture systems. This simulator is used together with an optimization routine based on a genetic algorithm to evaluate the performance of three different water treatment topologies, each for two fish species (Rainbow trout and Atlantic salmon) and each in both a semi-closed (no denitrification) and a fully recirculating version (with denitrification). Each case is furthermore evaluated at both saturated and supersaturated oxygen levels in the fish tank influent. The 24 cases are compared in terms of volume required to maintain an acceptable TAN concentration in the fish tank. The results indicate that the smallest volume is obtainable by introducing several bypass flows in the treatment system of a semi-closed RAS and that the gains can be significant. We also show that recycling already treated water back upstream in the treatment process degrades performance and that if one wishes to have a fully recirculating system with minimal water exchange, then the flows of oxygen, carbon and nitrogen must be carefully considered. For several of the cases, no optimum with denitrification could be found. We thus demonstrate that the best configuration and operation strategy for water treatment varies with the conditions imposed by the fish culture, illustrating the complexity of RAS plants and the importance of simulations, but also that computer-driven optimal design has the potential to increase the treatment efficiency of biofilters which could lead to cheaper plants with better water quality.  相似文献   

15.
The aim of this study was to evaluate variability of nitrifying bacterial community in the biofilm and in the water of a recirculating aquaculture systems (RAS) in a tilapia farming in order to determine if nitrification process is dependent, or not, of nitrifying bacteria abundance. Biofilm and water samples were collected periodically for 30 days and analysed with the fluorescent in situ hybridization (FISH) technique, used to quantify ammonia‐oxidizing bacteria (AOB) and nitrite‐oxidizing bacteria (NOB). Ammonia presented the peak in the first week, while the nitrite's maximum was recorded in the second week. Nitrate increased steadily, indicating nitrification activity. Total bacterial abundance in biofilm increased continuously, while in water, it did not change significantly. In the biofilm, number of AOB was high at beginning, decreased after few days and increased again following augment of ammonia. Number of NOB also showed an increase in abundance in biofilm following the increment of nitrite and nitrate. In water, AOB and NOB did not show major variability. Relative abundance of nitrifying bacteria represented more than 30% of total bacteria in biofilm at beginning of the experiment. Their contribution decreased to >3% in last days. It indicates that nitrifying bacteria are biofilm colonizers, and that their activity seems to be directly related to the concentration of nitrogen compounds. However, contribution of nitrifying bacteria did not vary much along the time. We may conclude that the biofilm‐nitrifying bacteria plays major role in nitrification process in RAS and that the activity of these organisms is dependent of their abundance in response to the concentration of nitrogen compounds.  相似文献   

16.
Increased demand has pushed extensive aquaculture towards intensively operated production systems, commonly resulting in eutrophic conditions and cyanobacterial blooms. This review summarizes those cyanobacterial secondary metabolites that can cause undesirable tastes and odors (odorous metabolites) or are biochemically active (bioactive metabolites) in marine and freshwater, extensive and intensive aquaculture systems. For the scope of this paper, biochemically active metabolites include (1) toxins that can cause mortality in aquaculture organisms or have the potential to harm consumers via accumulation in the product (hepatotoxins, cytotoxins, neurotoxins, dermatoxins, and brine shrimp/molluskal toxins), (2) metabolites that may degrade the nutritional status of aquaculture species (inhibitors of proteases and grazer deterrents) or (3) metabolites that have the potential to negatively affect the general health of aquaculture species or aquaculture laborers (dermatoxins, irritant toxins, hepatotoxins, cytotoxins). Suggestions are made as to future management practices in intensive and extensive aquaculture and the potential exposure pathways to aquaculture species and human consumers are identified.  相似文献   

17.
A principle concern for aquaculturists and aquarium hobbyists is the control and removal of dissolved organic matter. Granular activated carbon is a well-established medium for the adsorption of dissolved organic substances associated with these issues. The selection of activated carbon for aquaria and aquaculture is not well established due to innate heterogeneity of these waters. The means to completely characterize adsorption between carbon sources are generally not available to end users provided their level of expertise and/or resources at their disposal. This study introduces a relatively simple method for characterizing activated carbon quality and filter performance utilizing readily available and relatively safe indicator compounds to test adsorptive capabilities between different sources of granular activated carbon. Methylene blue and a commercial mix of humic and tannic substances were used to comparatively test adsorptive performance between two filter groups (i.e., sources of granular activated carbon) by tracking spectral absorbance with nonlinear regression statistics and validating removal trends against mature aquaculture water. Greater adsorptive capacities were consistently observed in one filter group throughout the indicator testing battery. Similar findings were observed between the two indicator tests, thereby confirming the method. This method can be adopted by commercial aquaculture operations or aquarists to assist in comparatively screening particular types, particle sizes, and sources of granular activated carbon for specific water quality and engineering requirements.  相似文献   

18.
研究了基于两级人工湿地的温室循环水系统中,养殖密度对鲫(Carassius cuvieri)生长、脏器系数、血清生理免疫指标及对嗜水气单胞菌(Aeromonas hydrophila)抵抗力的影响。试验设2 kg·m^-3、4 kg·m^-3、8 kg·m^-3和16kg·m^-3共4种密度组,每组2个平行,养殖68 d。结果显示:1)各养殖密度下鲫生长及脏器系数不存在显著差异;2)与2 kg·m^-3组鲫相比,16 kg·m^-3组鲫血清丙二醛(MDA)质量摩尔浓度显著升高,溶菌酶(LSZ)、酸性磷酸酶(ACP)和碱性磷酸酶(AKP)活性显著降低,超氧化物歧化酶(SOD)活性和总蛋白质量浓度虽有不同程度升高,但差异不显著;3)高密度组鲫对嗜水气单胞菌的抵抗力较低密度组弱。以上结果表明,如果以生长为考量指标,温室湿地循环水系统中鲫养殖密度可达16 kg·m^-3,但如此高的密度会对鲫免疫力造成负面影响。  相似文献   

19.
Recirculating aquaculture system (RAS) is being applied in many aquaculture industries as it provides an opportunity to produce fish in a contained system with minimal use of water. In proposed RAS-based farming of the American eel, 17β-estradiol (E2) is being investigated as an in-feed drug to feminize and increase growth of farmed eels. This creates potential for release of E2 and its metabolites from the eel RAS and information is needed to monitor and manage eel farm effluents to reduce impact on the environment. In the current study, the concentrations of E2 and its metabolites (i.e., estrone (E1) and estriol (E3)) were monitored from different compartments in the RAS and analyzed by liquid chromatography tandem mass spectrometry (LC–MS/MS). E2 levels ranged from 8 to 25 ng/L in the water recirculating within the RAS and declined to 2–6 ng/L in the weeks post-treatment. E1 levels were within similar ranges as E2, whereas E3 levels were below 2 ng/L throughout the study. The results were used to develop a computational model to describe the fate of E2 and its metabolites in the RAS, and to delineate the influences of metabolism and hydrodynamics for the removal of E2 by RAS processes. The rapid removal of uneaten feed and feces downstream of inventory tanks was found to be the most significant mechanism for the removal of 2–6% of the E2 added in feed daily, producing a concentrated effluent stream suitable for strategic treatment strategies. Greater than 94% of E2 added to the system with feed was either metabolized by the eels and/or bacteria in the biofilters of the RAS or was sufficiently bound to solids fractions in the solid samples to resist organic extraction and detection. Additionally, reducing daily water exchange from 23 to 7% of the system water inventory resulted in an increase of only 1 ng/L in E1 concentrations within the RAS system while a negligible change in the concentration of E2 was observed.  相似文献   

20.
Seaweeds have been used as a food for centuries in Asia and are increasingly exploited as a source for dietary supplements, animal feed, chemicals, and biofuels. In recent years, there has been an increase in the prevalence of diseases and pests in these aquaculture crops, with a subsequent reduction in their quantity and commercial value. In this article, we review diseases that have been reported in the scientific literature for species of red and brown seaweeds. We have focused on the major seaweed crops grown in Asia, where much of this production is centered. We also provide information on disease management and biosecurity and some observations on future directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号