首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
富贵竹内生细菌群落的生物效应研究   总被引:1,自引:0,他引:1       下载免费PDF全文
试验研究结果表明富贵竹中广泛存在具有多种生物效应的内生细菌群落。从 4个品种富贵竹茎叶中分离出 6 4个内生细菌 ,以烟草过敏性反应和半叶接种法测定其内生细菌中有 2 2个菌株具有潜在致病性 ;采用抑菌圈法测定其内生细菌中有 2 5个菌株对 6个病原真菌具不同拮抗作用 ,其中分别有 16个、5个、4个菌株对 1种、2种和 3种病原真菌有拮抗作用。有 16个菌株可刺激水稻或绿豆生长 ,具有刺激生长作用的混合菌株还可促进富贵竹生根。  相似文献   

2.
一株耐盐解磷菌的解磷能力及对玉米敏感期生长的影响   总被引:3,自引:0,他引:3  
从黄河三角洲盐碱化土壤中筛选了一株高效解磷真菌QL1501,经鉴定为草酸青霉菌,菌株QL1501对无机磷的解磷能力远大于对有机磷的解磷,解无机磷最大浓度达85.21 mg/L。菌株QL1501的最适生长pH值为8时菌体生长极好。当NaCl浓度为1%~5%时,菌株解磷能力变化不大,溶液中有效磷浓度为76.08~65.37 mg/L。当溶液中NaCl浓度高于7%时,菌体生长受到较大影响。接种解磷真菌QL1501处理的玉米株高、根干重和植株干重均显著高于未接种的对照处理,说明该解磷菌作为解磷生物肥料具有良好的效果。  相似文献   

3.
糜子溶磷内生真菌的筛选及其鉴定   总被引:1,自引:0,他引:1  
[目的]从产自宁夏回族自治区、甘肃省的不同糜子品种中分离、筛选出具有高效溶磷能力的内生真菌菌株并在糜子中接种,旨在评价其溶磷促生效果。[方法]采用溶磷圈和钼锑抗比色法测定糜子溶磷能力,同时通过盆栽试验测定其对糜子苗期生长、光合及磷素吸收累积的作用。[结果]从糜子种子内分离的内生菌株中有5株具有溶磷能力。其中,2株为来自甘肃省的LM_1(Talaromyces sp.黄丝曲霉属),LM_2(Talaromyces sp.),3株为来自宁夏回族自治区GM_1(Talaromyces sp.),GM_2(Penicillium sp.青霉属),GM_3(Penicillium chrysogenum产黄青霉)。GM_1,GM_3号菌株溶磷圈直径(D)与菌落直径(d)的比值(D/d)较大,分别达到了1.59,1.47;相同成分液体培养基中可溶性磷含量分别为264.75和323.48μg/ml,溶磷率分别达到5.26%和6.43%,显著(p0.05)高于其他菌株;其pH值分别为2.88和3.63,显著(p0.05)低于其他菌株。5个溶磷真菌的溶磷率与pH值呈极显著(p0.01)负相关。盆栽试验中,当磷用量减少75%和50%并接种溶磷菌GM3时,糜子SPAD值(叶绿素相对含量的一个参数)分别为20.63和21.46,净光合速率分别达为23.2和25.87μmol/(m~2·s)。植株全磷含量分别为10.08和12.39 mg/盆,均显著高于对照(CK)(p0.05),表明接种GM_3对糜子促生作用表现明显。[结论] GM_3为本试验得到的目标菌株,并且表现出良好的溶磷促生作用。  相似文献   

4.
从钾矿区优势蕨类植物-芒萁内生真菌中筛选出具溶磷、解钾、分泌吲哚乙酸(IAA)的功能菌株,并研究其对农作物的促生作用。采用菌株的形态学特性、培养特征及5.8S rDNA、18S rDNA ITS序列分析方法对菌株进行鉴定,并结合液体培养和固体培养方法初步测定菌株的溶磷、解钾能力,采用回接及盆栽试验研究它们对玉米幼苗的促生作用。从42株芒萁内生真菌中筛选得到2株具有高效溶磷、解钾、分泌IAA功能的内生真菌菌株(编号为MQ013和MQ039),经鉴定MQ013菌株为泡盛曲霉(Aspergillus awamori),MQ039菌株为黑曲霉(Aspergillus niger)。促生作用试验结果显示,MQ013、MQ039菌株能有效提高玉米植株体内叶绿素及磷、钾含量。MQ013、MQ039菌株具有一定的溶磷、解钾和分泌IAA活性,并对玉米幼苗的生长有明显的促进作用,该菌株在研制高效生物肥料接种剂方面可能具有较大潜力。  相似文献   

5.
内生环状芽孢杆菌Jcxy8对番茄灰霉病的防病机制研究   总被引:1,自引:0,他引:1  
为明确从番茄植株体内筛选出的内生环状芽孢杆菌(Bacillus circulan)Jcxy8对番茄灰霉病菌的抑菌作用及防病的生理生化机制,采用平板打孔法测定了菌株Jcxy8对灰霉病菌(Botrytiscinerea)的拮抗力。结果表明:菌株Jcxy8对灰霉病菌的抑菌圈直径为35.6mm,抑菌圈边缘的产孢抑制率达到66.9%。当菌株培养滤液浓度为40%时,病菌孢子萌发完全被抑制。镜检发现抑菌圈周围的菌丝(或芽管)细胞消融,生长扭曲,中间或顶端膨大成泡囊状。Jcxy8菌株与灰霉病菌同时处理的番茄果体内可溶性蛋白含量比清水对照处理高12.7%,比单独接种灰霉病菌处理高39.1%;SOD、POD、CAT活性均较只经病菌处理低;O2-产生速率比清水对照和病菌处理低,而比菌株Jcxy8处理高。说明菌株Jcxy8对番茄果实有明显的诱导抗病作用。  相似文献   

6.
本研究从秤锤树叶片中分离内生菌进行分子鉴定,并接种到无菌组培苗中研究其对植株生长的影响。研究结果显示,从秤锤树叶片中共分离获得7株真菌。扩增出的6个菌株经ITS测序,在NCBI网站上进行基因序列比对,鉴定出其中5株菌株均属于球毛壳菌(Chaetomium globosum),1株属于子囊菌(As-comycete)。进一步实验表明:分离的菌株多数对组培苗的株高生长影响不大,可初步鉴定其为内生菌,其中的属于球毛壳菌的F和H菌株对无菌苗的株高有明显的促进作用。  相似文献   

7.
内生真菌印度梨形孢(Piriformospora indica)已被证明能够增强许多植物对生物和非生物胁迫的抗性。为了研究印度梨形孢对烟草(Nicotiana tobacum)耐盐性的影响,本研究用300 mmol/L NaCl溶液处理接种和未接种印度梨形孢的烟草,分析两者在受盐胁迫后丙二醛(MDA)含量、脯氨酸(Pro)含量、相对电导率大小以及与耐盐胁迫相关基因表达水平的差异。结果表明,盐处理后,烟草叶片中MDA含量和相对电导率在接有印度梨形孢的烟草中显著低于未接种的烟草(P0.05);而接种印度梨形孢的烟草Pro含量显著高于未接印度梨形孢的烟草植株(P0.05)。RT-PCR分析表明,盐胁迫下根部接有印度梨形孢和未接印度梨形孢的烟草叶片中盐胁迫相关基因OPBP1、病程相关(PR)蛋白基因PR-1a、PR2、PR3和PR5都上调表达,这些基因在接种印度梨形孢的烟草中的表达量显著高于未接种的烟草(P0.05),表明盐胁迫下,印度梨形孢诱导烟草中抗盐相关基因的大量表达。结果表明:印度梨形孢提高烟草对盐胁迫的抗性,与MDA含量、质膜透性、Pro含量和相关基因的表达相关。接种印度梨形孢的烟草在盐胁迫下能维持生物膜系统的完整性和细胞内渗透压的稳定性以及膜脂过氧化较低水平,对盐胁迫的抗性增强。本研究初步明确了印度梨形孢提高烟草耐盐性的作用与部分机理,为深入研究印度梨形孢提高烟草的抗逆性作用及其机理提供基础资料。  相似文献   

8.
采集除草剂阿特拉津污染的土壤,通过直接涂布法和富集驯化培养分离法,分别获得6株和5株能够降解阿特拉津的细菌。通过降解效率和降解动态试验,筛选到1株高效降解阿特拉津的菌株FM326,该菌株能以阿特拉津为唯一的碳源和氮源生长,培养96h后对1000mg·L-1阿特拉津降解效率达到97%。通过生理生化鉴定和16SrDNA序列分析,菌株FM326鉴定为节杆菌属(Arthrobacter sp.)细菌。该菌株表现出最适生长温度30~35℃,最适生长pH值5~9,好氧生长的生长特性。  相似文献   

9.
番茄内生链霉菌S5的分离及其除草活性   总被引:1,自引:0,他引:1  
采用植物内生放线菌分离方法从健康番茄(Lycopersicon esculentum)根中分离纯化出58株内生放线菌,从中挑选部分代表性菌株进行代谢产物除草活性检测,发现编号为S5的菌株的代谢产物对小麦(Triticum aesfivum L.)和绿豆(Phaseolus radiatus L.)种子的发芽有强烈的抑制作用,但对发芽后的幼苗生长无明显影响。以百喜草(Paspalum notatum)和狗牙根(Cynodon dactylon)为实验对象,证明S5菌株的代谢产物的确能抑制草籽的发芽,该活性具有潜在的除草效能。经初步鉴定,S5菌株为淡紫灰链霉菌淡青变种(Streptomyces lavendulaevar.glaucescens)。发酵条件实验结果表明,S5菌株在1%葡萄糖和0.3%牛肉膏的S培养基中,以2%接种量在pH7.0和25℃摇床培养,可得到最强的抑制种子发芽的生物活性。  相似文献   

10.
从水稻根中分离出的内生细菌 HMC50通过 16S rRNA基因和全基因组序列分析鉴定为久留里副伯克霍尔德菌( Paraburkholderia kururiensiss)。在基因组水平预测到该菌株具有与促进植物生长、鞭毛介导的运动性和解毒作用相关的主要特征,发现与固氮相关的 18个基因中包括关键基因 nifH以及色氨酸合酶α链(EC4.2.1.20)基因和色氨酸合酶β链(EC4.2.1.20)基因,因此推测该菌株具有固定 N 2和分泌生长素(IAA)的能力;通过植物促生特性试验的验证,发现 HMC50的确具有分泌 IAA的能力(29.57 mg/L)并且具有较高的固氮酶活性 11.9nmol/(mL·h),除此之外,该菌株同时具有产铁载体的能力,定量检测 A/Ar是 0.29,1-氨基环丙烷羧酸脱氨酶活性为 0.35 U/mg,溶解无机磷的能力较强(菌落溶磷透明圈直径HD与菌落直径 CD的比值为 3.97);盆栽试验发现该菌株对水稻有促进生长的潜能,接菌后水稻幼苗的根长、茎长、根重以及总鲜重上都优于空白对照组  相似文献   

11.
Soil microorganisms play important roles in the plant-soil ecosystem, and plant growth-promoting rhizobacterium (PGPR) promotes plant growth through several mechanisms. To investigate the benefits of PGPR for root functions such as respiration, we used the plant model Cerasus sachalinensis Kom., in which root respiration provides a sensitive functional indicator to demonstrate the effect of soil sterilisation (SS) and inoculation with the PGPR Staphylococcus sciuri ss sciuri after SS on seedling root respiration and growth. Root respiration increased in the presence of PGPR inoculation alone, whereas Embden–Meyerhof–Parnas pathway activity decreased due to reduced phosphofructokinase and pyruvate kinase activities. Although cytochrome c oxidase activity decreased and alternative oxidase activity increased, only slight changes were observed in growth indicators such as seedling height. However, SS and PGPR inoculation after sterilisation reduced soil microbial biomass carbon and reduced root respiration. Pyruvate kinase activity as well as plant height and leaf number increased, thus promoting plant growth. Thus, we conclude that SS and PGPR inoculation altered enzymes activities, root respiration and plant growth of cherry rootstocks. The effects of microbial inoculation were altered by SS.  相似文献   

12.
The effect of plant growth-promoting bacteria inoculation on Helianthus annuus growth and copper (Cu) uptake was investigated. For this, the strains CC22, CC24, CC30, and CC33 previously isolated from heavy metal- and hydrocarbon-polluted soil were selected for study. These strains were characterized on the basis of their 16S rDNA sequences and identified as Pseudomonas putida CC22, Enterobacter sakazakii CC24, Acinetobacter sp. CC30, and Acinetobacter sp. CC33. Strains were able to synthesize indole, solubilize phosphorus, and produce siderophores in vitro, which are proper characteristics of plant growth-promoting (PGP) bacteria. Bacteria were also able to bioaccumulate Cu(II), and most of them could use aromatic hydrocarbons as a sole carbon source. Furthermore, Acinetobacter sp. CC33 exhibited the greatest extent of Cu(II) accumulation, and CC30 the widest range for degrading hydrocarbons. Acinetobacter sp. CC30 was selected for pot experiments on the basis of its plant growth-promoting properties. Inoculation with CC30 significantly increased the plant biomass (dry weight and length of root and shoot) and improved the photosynthetic pigment content in non- and Cu-contaminated soil (p < 0.05). Additionally, plant Cu uptake was improved by CC30 inoculation showing a significantly enhanced root Cu content (p < 0.05). Our findings evidenced that the strain CC30 protected the plant against the deleterious effect of Cu contamination and improved the Cu extraction by plant, hence concluding that its inoculation represents an alternative to improve phytoremediation process of heavy metals, particularly Cu, in contaminated environments.  相似文献   

13.
为揭示丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)对芦竹耐镉(Cd)胁迫的作用及其机理,采用大棚盆栽试验,利用丛枝菌根真菌(AMF)摩西管柄囊霉(Funneliformis mosseae,FM)、根内根孢囊霉(Rhizophagus intraradices,RI)、地表球囊霉(Glomus versiforme,GV)进行接种试验,研究了在Cd胁迫下接种AMF对芦竹生长、光合、矿质营养的影响。结果表明:AMF能够显著改善Cd胁迫下芦竹的生长状况,与对照相比,接种处理芦竹的株高增加19.09%~27.98%,叶长增加12.18%~31.06%,叶绿素相对含量SPAD值增加8.55%~9.36%,地上和根系生物量分别增加20.08%~31.41%、12.24%~24.12%,最大净光合速率增加7.08%~32.12%,芦竹根系全P含量增加30.26%~46.05%。接种处理后芦竹地上Cd含量介于68~105.97 mg/kg之间,显著高于对照处理(42.20 mg/kg),根系Cd含量介于113.07~221.47 mg/kg之间,显著高于对照处理(46.47 mg/kg),且根系Cd含量显著高于地上部。Cd胁迫下不同AMF菌种对芦竹产生的效应有差异,其中,RI处理对芦竹株高、叶长促进效应最好,经GV处理的芦竹全N、全P、全K含量以及Cd含量最高。Cd胁迫下接种AMF能促进芦竹的生长,增强其光合作用,提高全N、全P、全K吸收量,同时增强了芦竹对Cd的吸收。该研究表明芦竹丛枝菌根共生体对重金属Cd具有较强的固持作用,在Cd污染土壤修复中具有潜在应用价值。  相似文献   

14.
Abstract

Biofertilizers are an alternative to mineral fertilizers for increasing soil productivity and plant growth in sustainable agriculture. The objective of this study was to evaluate possible effects of three mineral fertilizers and four plant growth promoting rhizobacteria (PGPR) strains as biofertilizer on soil properties and seedling growth of barley (Hordeum vulgare) at three different soil bulk densities, and in three harvest periods. The application treatments included the control (without bacteria inoculation and mineral fertilizers), mineral fertilizers (N, NP and P) and plant growth promoting rhizobacteria species (Bacillus licheniformis RC04, Paenibacillus polymyxa RC05, Pseudomonas putida RC06, and Bacillus OSU-142) in sterilized soil. The PGPR, fungi, seedling growth, soil pH, organic matter content, available P and mineral nitrogen were determined in soil compacted artificially to three bulk density levels (1.1, 1.25 and 1.40 Mg m?3) at 15, 30, and 45 days of plant harvest. The results showed that all the inoculated bacteria contributed to the amount of mineral nitrogen. Seed inoculation significantly increased the count of bacteria and fungi. Data suggest that seed inoculation of barley with PGPR strains tested increased root weight by 9–12.2%, and shoot weight by 29.7–43.3% compared with control. The N, NP and P application, however, increased root weight up to 18.2, 25.0 and 7.4% and shoot weight by 31.6, 43.4 and 26.4%, respectively. Our data show that PGPR stimulate barley growth and could be used as an alternative to chemical fertilizer. Soil compaction hampers the beneficial plant growth promoting properties of PGPR and should be avoided.  相似文献   

15.
The plant growth, nutrient acquisition, metal translocation and antioxidant activities [ascorbate peroxidase (APX), glutatione reductase (GR), superoxide dismutase (SOD) and catalase (CAT)] were measured in plants growing in a heavy-metal (HM) multicontaminated soil inoculated with selected autochthonous microorganisms [arbuscular mycorrhizal (AM) fungus and/or plant growth promoting bacteria (PGPB)] and/or amended with an Aspergillus niger-treated agrowaste. The treated agrowaste on its own increased root growth by 296% and shoot growth by 504% compared with non-treated control plants. Both chemical and biological treatments, particularly when combined, enhanced plant shoot and root development. The stimulation effect on plant biomass was concomitant with increased AM colonization, P and K assimilation, and reduced metal translocation from soil to plant shoot. The treated residue, particularly through interactions with AM inoculation, produced the expected bioremediation effect, leading to enhanced plant development and successful rehabilitation of contaminated soil. The enhancement of CAT, APX and GR activities caused by AM inoculation suggests that AM colonization helped plants to limit oxidative damage to biomolecules in response to metal stress. The response of the plant's antioxidant activities to the amendment appears to be related to enhanced plant biomass production. The application of amendments and/or microbial inoculations to enhance plant growth and reduce metal translocation in multicontaminated soil could be a promising strategy for remediating HM pollution.  相似文献   

16.
ABSTRACT

Plant residue material produced compost is an organic fertilizer source and it is commonly used for soil amendments. Also in order to reduce the amount of chemical fertilizers need mycorrhizal inoculation can be used as an agricultural strategy. Thus, the aim of the research is to examine the effect of several residue materials produced compost and mycorrhizae fungi with two growth media on leek plant growth, nutrient uptake, and mycorrhizae spores’ production.

Eight different row organic materials and animal manures were used as compost production during 8 months. Leek (Allium porrum L.) plants were inoculated with Funneliformis mosseae and Claroideoglomus etunicatum with a level of 1000-spore per pot. The leek plant was analyzed for determination of nutrient concentration, root colonization, spore production, and shoot/root dry weight.

The composts were made from domestic waste, animal manure (bovine animal), animal manure (ovine animal), and different plant materials were determined to be the most suitable compost material for plant growth and mycorrhizal spore production compared to the rest of compost material. Mycorrhizal inoculation significantly increased leek plant growth and nutrient uptake especially phosphorus (P), potassium (K), copper (Cu) and zinc (Zn). Plants grown in 5:3:2 (volume/volume) growth media was responded better to the mycorrhizal inoculation than grown in 1:1:1 (v/v) growth media. Funneliformis mosseae inoculated plants have higher plant growth and nutrient uptake than that of Claroideoglomus etunicatum inoculation.  相似文献   

17.
Plant growth-promoting rhizobacteria, particularly those from the genus Azospirillum spp., may affect root functions such as growth and nutrient/water uptake, which in turn may affect shoot growth. Calculations based on data from literature on shoot and root mass of crop grasses (79 plant/bacteria associations were analyzed) revealed that inoculation with Azospirillum spp. increased the shoot-to-root (S/R) ratio in about half of reported cases and decreased the S/R ratio in the other half. In 11 of 35 cases, the S/R ratio increased when the shoot mass increased more than the root mass. In 23 of 35 cases, the root mass did not increase, yet the S/R ratio still increased. Thus, the increase in the S/R ratio indicated that shoot growth responds to inoculation more than root growth. A decrease in the S/R ratio occurred when (a) root growth dominated shoot growth even though both increased (16 of 36 cases), or (b) root growth either increased or remained unchanged, and shoot growth was either unaffected or even decreased (19 of 36 cases). This analysis suggests that: (a) Azospirillum spp. participates in the partitioning of dry matter (both carbon compounds and minerals) at the whole plant level by affecting root functions, and (b) the bacteria affect crop grass through multiple mechanisms operating during plant development.  相似文献   

18.
通过温室盆栽试验研究了不同水分处理下接种3种丛枝菌根(AM)真菌(Diversispora spurcum、Glomus aggre gatum和Glomus constrictum)后对稀土矿砂中黑麦草(Lolium perenneL.)和狗牙根(Cynodon dactylon(L.)Pers.)植物株高、地上和地下部分干重及植株内Pb和Zn含量的影响。结果表明:不同水分处理下黑麦草和狗牙根与AM真菌均有一定的结合。在干旱胁迫(W1和W2)下,接种3种AM真菌均提高了黑麦草的株高、地上和地下部分干重,其中,接种Glomus aggregatum促进作用最为显著,重度干旱胁迫(W1)处理下接种后黑麦草株高、地上和地下部分干重比对照分别提高了76.16%、202.86%和481.82%;接种Glomus constrictum显著提高了狗牙根的株高、地上和地下部分干重,W1处理下狗牙根接种后的株高、地上和地下部分干重比对照分别提高了119.17%、290.63%和247.37%。接种AM真菌的植株内Pb和Zn含量与AM真菌种类、植物品种、水分处理及重金属性质等相关,在W1处理下接种Glomus constrictum显著降低了黑麦草植株内Pb的含量,而对Zn的含量影响不大;而对于狗牙根,在W1处理下接种Glomus constrictum显著增加了其Pb和Zn的含量。此外,还测定了植物叶片丙二醛和脯氨酸含量,结果显示接种AM真菌明显降低了干旱处理下黑麦草和狗牙根叶片丙二醛和脯氨酸含量,表明接种AM真菌能有效提高植物的抗逆性。  相似文献   

19.
The partial sterilization of soil eliminates useful microorganisms, resulting in the reduced growth of mycorrhizae-dependent citrus plants, which are often unresponsive to the application of fertilizer. Research was conducted to test the hypothesis that indigenous mycorrhizae (IM) inoculation is as efficient as selected mycorrhizal inoculation under sterile and non-sterile soil conditions. Rhizophagus clarus and indigenous mycorrhiza spores, isolated from citrus orchards, were used as arbuscular mycorrhizae fungi under greenhouse conditions with sterile and non-sterile Çanakçi series (Typic xerofluvent) soils with low phosphorus (P) fertility. Different P (0 and 100 mg kg?1) and zinc (Zn) (0, 5 and 10 mg kg?1) concentrations were used at the start of the experiments. The shoot, root dry weight (RDW), root colonization, and P, Zn, iron (Fe), copper (Cu) and manganese (Mn) concentrations of the shoot were determined; mycorrhizae dependency (MD) was also calculated.

The results indicate that R. clarus and indigenous mycorrhiza in sterile and non-sterile soil conditions considerably increased the growth of citrus plants. Owing to existing beneficial indigenous rhizosphere microorganisms, citrus plant growth without inoculation was better in non-sterile soils than in the sterile soils. In non-sterilized soil, the plant growth parameters of R. clarus-inoculated soils were higher than those of indigenous mycorrhiza-inoculated soils. Mycorrhizae infection increased certain citrus plant growth parameters, such as root infection, biomass and nutrient uptake (P, Zn, Fe, Mn and Cu). In sterile soil, the addition of up to 5 mg kg?1 soil Zn and the inoculation of R. clarus significantly increased plant growth; inoculation with indigenous mycorrhiza produced more dry weight upon the addition of up to 100 mg kg?1 phosphorus pentoxide (P2O5). Under sterile soil conditions, without considering fertilizer addition, MD was found to be higher than that of non-sterile soils. In general, the contribution of the indigenous soil spores is significant. However, indigenous soil mycorrhizae may need to be managed for better efficiency in increasing plant growth and nutrient uptake. The major finding was that the inoculation of citrus seedlings with mycorrhiza is necessary under both sterilized and non-sterilized soil conditions.  相似文献   

20.
The effect of drought stress and inoculation with an indigenous Mozambican and a commercial arbuscular mycorrhizal (AM) inoculant on root colonization and plant growth and yield was studied in two peanut (Arachis hypogaea L.) cultivars—a traditional, low-yielding Mozambican landrace (Local) and a modern, high-yielding cultivar (Falcon)—grown in a non-sterile Mozambican soil. In these cultivars, AM mycorrhizal colonization was not substantially reduced by drought stress. Growth and yield of inoculated plants subjected to drought stress were increased in comparison with non-inoculated ones. The indigenous Mozambique inoculant significantly increased leaf and root growth in both cultivars under drought stress by preventing an increase in root weight ratio (RWR) and maximum root-length to leaf-area ratio (MRLAR). The commercial Hannover inoculant had a positive effect on growth only under well-watered conditions, this result was due most likely to a lesser ability to adapt to drought conditions to which the AM fungal strains in Mozambique inoculant are frequently exposed. Such drought-stress effects on growth could be alleviated by inoculation with Mozambique inoculant, particularly because of its ability to decrease sensitivity of the host plant to reduction in leaf expansion. Therefore, an adequate management of the AM symbiosis may improve peanut productivity, particularly under drought stress and in small-scale farming systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号