首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaplasma marginale is a tick-borne pathogen of cattle that causes the disease bovine anaplasmosis worldwide. Major surface proteins (MSPs) are involved in host-pathogen and tick-pathogen interactions and have been used as markers for the genetic characterization of A. marginale strains and phylogenetic studies. MSP1a is involved in the adhesion and transmission of A. marginale by ticks and varies among geographic strains in the number and sequence of amino-terminal tandem repeats. The aim of this study was to characterize the genetic diversity of A. marginale strains collected from countries in North and South America, Europe, Asia, Africa and Australia, inclusive of all continents. In this study, we characterized 131 strains of A. marginale using 79 MSP1a repeat sequences. These results corroborated the genetic heterogeneity of A. marginale strains in endemic regions worldwide. The phylogenetic analyses of MSP1a repeat sequences did not result in clusters according to the geographic origin of A. marginale strains but provided phylogeographic information. Seventy-eight percent of the MSP1a repeat sequences were present in strains from a single geographic region. Strong (> or =80%) support was found for clusters containing sequences from Italian, Spanish, Chinese, Argentinean and South American strains. The phylogenetic analyses of MSP1a repeat sequences suggested tick-pathogen co-evolution and provided evidence of multiple introductions of A. marginale strains from various geographic locations worldwide. These results contribute to the understanding of the genetic diversity and evolution of A. marginale and tick-pathogen interactions.  相似文献   

2.
Anaplasma marginale is a tick-borne pathogen of cattle that causes the disease bovine anaplasmosis worldwide. Major surface proteins (MSPs) are involved in host-pathogen and tick-pathogen interactions and have been used as markers for the genetic characterization of A. marginale strains. A. marginale genotypes are highly variable in endemic areas worldwide. The genetic composition of A. marginale strains during anaplasmosis outbreaks has been characterized in one study only which reported a single msp1alpha genotype in infected cattle. However, more information is required to characterize whether a single genotype is responsible for an anaplasmosis outbreak or whether multiple genotypes can cause disease in na?ve cattle within a single herd in endemic areas. The aim of this study was to characterize the genetic diversity of A. marginale strains from an outbreak of bovine anaplasmosis in the State of Tamaulipas, Mexico. A. marginale genotypes were characterized at the molecular level using msp4 and msp1alpha gene sequences. The results revealed that several A. marginale genotypes are present in cattle during acute anaplasmosis outbreaks, thus suggesting that mechanical transmission or stochastic biological transmission through equally efficient independent transmission events may explain A. marginale genotype frequency in a cattle herd during acute bovine anaplasmosis outbreaks in endemic areas. The results reported herein corroborated the genetic heterogeneity of A. marginale strains in endemic regions worldwide. The development and implementation of anaplasmosis control measures is dependent upon understanding the epidemiology of A. marginale in endemic regions, including the characterization of the genetic diversity of strains that produce outbreaks of bovine anaplasmosis.  相似文献   

3.
Although Anaplasma marginale was known to be endemic in Italy, the diversity of Anaplasma spp. from this area have not been characterized. In this study, the prevalence of Anaplasma spp. antibodies in randomly selected farm animals collected on the island of Sicily was determined by use of a MSP5 cELISA for Anaplasma spp. and an immunofluorescence test specific for Anaplasma phagocytophilum. Genetic variation among strains of Anaplasma spp. from animals and ticks was characterized using the A. marginale msp1alpha and the Anaplasma spp. msp4 genes. Eight species of ticks were collected and tested by PCR. Seropositivity for Anaplasma spp. and A. phagocytophilum was detected in bovine and ovine samples. All the donkeys were seropositive for A. phagocytophilum but not for Anaplasma spp. Four A. marginale genotypes were identified by msp4 sequences from bovine and tick samples. Two new genotypes of Anaplasma ovis were characterized in sheep. The sequences of A. phagocytophilum from three donkeys proved to be identical to the sequence of the MRK equine isolate from California. Six A. marginale genotypes were found in cattle and one tick using the A. marginale msp1alpha sequences. All genotypes had four repeated sequences in the N-terminal portion of the MSP1a, except for one that had five repeats. The Italian strains of A. marginale contained three repeat sequences that were not reported previously. Definition of the diversity of Anaplasma spp. in Sicily reported, herein is fundamental to development of control strategies for A. marginale, A. ovis and A. phagocytophilum in Sicily.  相似文献   

4.
Anaplasma marginale is the causative agent of bovine anaplasmosis, a disease which can be protected by vaccination with the less pathogenic Anaplasma species, A. centrale. Currently, there is no polymerase chain reaction (PCR) assay available which differentiates between different species of Anaplasma or which can differentiate isolates of A. marginale within outbreaks and between different countries. A molecular test specific for A. marginale would be ideal for the identification of Anaplasma species in wild ruminants, as possible reservoirs of anaplasmosis, and to differentiate between A. marginale from A. centrale. A PCR assay was designed to amplify the major surface protein 1alpha gene of the rickettsial bovine pathogen, A. marginale both as an inter- and intra-specific test. The test did not amplify A. centrale or A. ovis, and discriminated A. marginale by amplifying repeat regions within the msp1alpha gene which vary in number between many isolates. The nested A. marginale amplicons varied in size from 630 to 1190bp representing one to eight internal repeats. All 22 Australian isolates tested amplified a 630bp product (one repeat) in contrast to all 19 non-Australian isolates tested. Eight sequences from Australian isolates from different geographical regions confirmed the conserved nature of the Australian A. marginale msp1alpha genes. The Australian 'repeat unit' MSP1a deduced amino acid sequence has been designated as Australian type 1. The msp1alpha PCR method developed here enabled the amplification and comparison of A. marginale isolates originating from North and South America, Africa, Israel and Australia. The method is sensitive and specific for A. marginale. Although additional msp1alpha products were amplified from at least two Australian isolates, the results suggest limited introduction of A. marginale into Australia.  相似文献   

5.
Anaplasma marginale is an obligate intraerythrocytic rickettsial pathogen (order, Rickettsiales: family, Anaplasmataceae) that causes bovine anaplasmosis. This disease is widely distributed in tropical and sub-tropical regions of the world and causes important economic losses to cattle production. Major surface protein (MSP)1a (msp1alpha gene) is one of the six MSPs identified on A. marginale from cattle, whose sequence and size vary according to the number of tandem 28- to 29-amino acid repeats. This study characterized the msp1alpha and msp4 genes obtained from three distinct Brazilian herds from the State of Paraná. Three strains of the msp1alpha and one strain of the msp4 gene were sequenced. The strains evaluated revealed PCR products of different size, representing three, five and six internal repeats. Sequence analyses confirmed the number of tandem sequence copies and revealed a high degree of sequence identity with strains from other Brazilian States, as well as strains from the USA, Europe and Israel. The msp1alpha DNA and amino acid sequences from A. marginale and DNA sequences of msp4 strains did not reveal distinct phylogeographical segregation. However, the amino acid sequences of msp4 demonstrated definite phylogeographical relationship. These results suggest that the amino acid sequences of msp4 should be used for phylogenetic identification of A. marginale strains and may be an important tool for the epidemiology and control of anaplasmosis. Additionally, the close similarity of the Paraná strains of A. marginale with strains from USA, Europe and Asia may reflect the introduction of these genes during the development of the Brazilian bovine herd.  相似文献   

6.
Bovine anaplasmosis, caused by the tick-borne rickettsia Anaplasma marginale, is endemic in Sicily and results in economic loss to the cattle industry. This study was designed to characterize strains of A. marginale at the molecular level from cattle in the Province of Palermo, Sicily. Seropositivity of cattle >or=1 year old for A. marginale in the study area ranged from 62% to 100%. The observed prevalence of A. marginale infections in cattle herds ranged from 25% to 100%. Two predominant A. marginale msp4 genotypes were found. A positive correlation was found between the prevalence of infection and the presence of Rhipicephalus (Boophilus) annulatus. Phylogenetic analysis of msp4 sequences of European strains of A. marginale did not provide phylogeographical information. These results suggest that development of farm husbandry systems and vaccines for genetically heterogeneous populations of A. marginale are needed for control of anaplasmosis in this region of Sicily.  相似文献   

7.
Anaplasma marginale (Rickettsiales: Anaplasmataceae), a tick-borne pathogen of cattle, is endemic in tropical and subtropical regions of the world, and many isolates of A. marginale may occur in a given geographic area. Phylogenetic relationships have been reported for A. marginale isolates from the US using gene and protein sequences of MSP1a and msp4. These studies demonstrated that msp4 sequences, but not MSP1a DNA or protein sequences, provide phylogeographic information and also that MSP1a sequences are highly heterogeneous among A. marginale populations. However, little information is available on the genetic diversity of A. marginale isolates from other regions of the world. The present study was undertaken to examine genetic variation among 10 isolates of A. marginale obtained from infected cattle in the State of Minas Gerais, Brazil, where A. marginale is endemic. Neighbor-joining analysis of msp4 sequences of Brazilian and New World isolates of A. marginale from Argentina, Mexico and the US provided bootstrap support for a Latin American clade. The sequences of the MSP1a repeats of four Brazilian isolates of A. marginale were compared to sequences of Latin American and US isolates. The MSP1a repeated sequences of Latin American isolates of A. marginale had nine repeat forms, alpha-phi, which have not been reported previously in North American isolates of A. marginale. Furthermore, the repeated forms tau, sigma and mu were only present in the Brazilian isolates. The results demonstrated that the genetic heterogeneity observed among isolates of A. marginale is common in endemic areas, independent of the predominant tick vector and is consistent with previous studies in which msp4 provided phylogeographic information about A. marginale isolates, while MSP1a was found not to be a useful marker for phylogeographic characterization of A. marginale isolates.  相似文献   

8.
Anaplasma marginale (A. marginale) is a tick-borne ehrlichial pathogen of cattle that causes the disease anaplasmosis. Six major surface proteins (MSPs) have been identified on A. marginale from cattle and ticks of which three, MSP1a, MSP4 and MSP5, are from single genes and do not vary within isolates. The other three, MSP1b, MSP2 and MSP3, are from multigene families and may vary antigenically in persistently infected cattle. Several geographic isolates have been identified in the United States which differ in morphology, protein sequence and antigenic properties. An identifying characteristic of A. marginale isolates is the molecular weight of MSP1a which varies in size among isolates due to different numbers of tandemly repeated 28-29 amino acid peptides. For these studies, genes coding for A. marginale MSP1a and MSP4, msp1alpha and msp4, respectively, from nine North American isolates were sequenced for phylogenetic analysis. The phylogenetic analysis strongly supports the existence of a south-eastern clade of A. marginale comprised of Virginia and Florida isolates. Analysis of 16S rDNA fragment sequences from the A. marginale tick vector, Dermacentor variabilis, from various areas of the United States was used to evaluate possible vector-parasite co-evolution. Our phylogenetic analysis supports identity between the most parsimonious tree from the A. marginale MSP gene data and the tree that reflected the western and eastern clades of D. variabilis. These phylogenetic analyses provide information that may be important to consider when developing control strategies for anaplasmosis in the United States.  相似文献   

9.
Anaplasma marginale is a tick-borne hemoparasite of cattle worldwide. The Virginia isolate of A. marginale was propagated previously in a cell line derived from embryos of the tick, Ixodes scapularis. The cultured Anaplasma (VA-tc) was passaged continuously for over 4 years and retained its infectivity for cattle and antigenic stability. We report herein the continuous in vitro cultivation of a second isolate of A. marginale derived from a naturally infected cow in Oklahoma (OK-tc). Blood from the infected cow was subinoculated into a splenectomized calf and blood collected at peak parasitemia was frozen, thawed and used as inoculum on confluent tick cell monolayers. Colonies of Anaplasma were apparent in low numbers at 9 days post exposure (PE) and infection in monolayers reached 100% by 4-5 weeks PE. Cultures were passaged by placing supernatant onto fresh tick cell monolayers at a dilution of 1:5 or 1:10. By the third passage development of the OK-tc was similar to that of the VA-tc and a 1:5 dilution resulted in 100% infection in 10-12 days. Inoculation of OK-tc into a splenectomized calf caused clinical anaplasmosis and Dermacentor ticks that fed on this calf transmitted the organism to a second susceptible calf. Major surface proteins (MSPs) 1-5 of the OK-tc were compared with homologous proteins present on VA-tc and the erythrocytic stage of the Oklahoma isolate. The MSPs 1, 2, 4, 5 were conserved on the OK-tc but there was evidence for structural variation in MSP3 between the cultured and erythrocytic stage of Anaplasma. MSP2 and MSP3 were the major proteins recognized by serum from infected cattle. Two-dimensional gels also identified positional differences between VA-tc and OK-tc in MSP2 and MSP3. The OK-tc may have potential to be used as antigen for development of an improved vaccine for anaplasmosis in the South Central United States.  相似文献   

10.
Haematological and molecular analysis of blood samples was carried out during an outbreak of bovine anaplasmosis in Hungary. Acute disease was observed in five animals, two of which died. Anaplasma-carrier state was diagnosed in 69 (92%) of cattle. Further evaluation of 24 blood samples revealed concurrent infections with Mycoplasma wenyonii and 'CandidatusM. haemobos' in 22 and 21 animals, respectively. In addition, two cows were identified with rickettsaemia. Regarding molecular investigation of potential hard tick vectors, Haemaphysalis inermis and Dermacentor marginatus males collected from the animals were PCR-negative. However, in one pool (out of 18) of Ixodesricinus males, and in six pools (out of 18) of D. reticulatus males the msp4 gene of Anaplasma marginale was detected. In the same I. ricinus pool Anaplasma ovis was also identified. All ticks were negative for haemoplasmas. Anaplasma sequences yielded 97-99% homology to sequences deposited in the Genbank. This is the first report of fatal bovine anaplasmosis associated with divergent A. marginale genotypes and concurrent 'CandidatusM. haemobos' infection, as well as of an A. ovis strain in ticks collected from cattle.  相似文献   

11.
Phenotypic criteria for the identification of erythrocytic ruminant Anaplasma species has relied on subjective identification methods such as host pathogenicity (virulence for cattle or sheep) and/or the location of Anaplasma inclusion bodies within the host's red cells. Sequence comparisons of new and available GenBank Accessions were investigated to elucidate the relationships among these closely related Anaplasma species. Twenty-one 16S rDNA and GroEL (HSP60) sequences from 13 Anaplasma marginale (South Africa, Namibia, Zimbabwe, Israel, USA, Australia and Uruguay), three A. centrale (South Africa and Japan), two A. ovis (USA and South Africa), and two unknown Anaplasma species isolated from wild ruminants (South Africa), were compared. 16S rDNA maximum-likelihood and distance trees separated all A. marginale (and the two wild ruminant isolates) from the two South African A. centrale (including original vaccine strain, Theiler, 1911). The Japanese A. centrale (Aomori) demonstrated the lowest sequence identity to the remaining erythrocytic Anaplasma species. A. ovis inter-species relationships could not be resolved through the 16S rDNA analyses, whereas strong bootstrap branch support is demonstrated in the GroEL distance tree using A. ovis OVI strain. All erythrocytic Anaplasma species and isolates were confirmed to belong to the same cluster showing strong branch support to Anaplasma (Ehrlichia) phagocytophilum with Ehrlichia (Cowdria) ruminantium and Rickettsia rickettsii serving as appropriate out-groups. Based on groEL sequences, a specific PCR method was developed which amplified A. centrale vaccine (Theiler, 1911) specifically. This study confirms the suitability of 16S rDNA sequences to define genera and demonstrates the usefulness of GroEL sequences for defining species of erythrocytic Anaplasma.  相似文献   

12.
Bovine anaplasmosis is a tick-borne hemolytic disease of cattle that occurs worldwide caused by the intraerythrocytic rickettsiae Anaplasma marginale. Control measures, including use of acaricides, administration of antibiotics and vaccines, have varied with geographic location. Our research is focused on the tick-pathogen interface for development of new vaccine strategies with the goal of reducing anaplasmosis, tick infestations and the vectorial capacity of ticks. Toward this approach, we have targeted (1) development of an A. marginale cell culture system to provide a non-bovine antigen source, (2) characterization of an A. marginale adhesion protein, and (3) identification of key tick protective antigens for reduction of tick infestations. A cell culture system for propagation of A. marginale was developed and provided a non-bovine source of A. marginale vaccine antigen. The A. marginale adhesion protein, MSP1a, was characterized and use of recombinant MSP1a in vaccine formulations reduced clinical anaplasmosis and infection levels in ticks that acquired infection on immunized cattle. Most recently, we identified a tick-protective antigen, subolesin, that reduced tick infestations, as well as the vectorial capacity of ticks for acquisition and transmission of A marginale. This integrated approach to vaccine development shows promise for developing new strategies for control of bovine anaplasmosis.  相似文献   

13.
Anaplasmosis, a hemolytic disease of cattle caused by the tick-borne pathogen Anaplasma marginale (Rickettsiales: Anaplasmataceae) has been controlled using killed vaccines made with antigen harvested from infected bovine erythrocytes. We recently developed a cell culture system for propagation of A. marginale in a continuous tick cell line. In this study, we performed a cattle trial to compare the bovine response to vaccination with A. marginale harvested from tick cell culture or bovine erythrocytes. All immunized and control cattle were then challenge-exposed by allowing male Dermacentor variabilis infected with A. marginale to feed and transmit the pathogen. Nine yearling cattle (three per group) were used for this study and were immunized with cell culture-derived A. marginale, erythrocyte-derived A. marginale or received adjuvant only to serve as controls. Each vaccine dose contained approximately 2 x 10(10) A. marginale and three immunizations were administered at weeks 1, 4 and 6. At week 8, cattle were challenge-exposed by allowing 60 D. variabilis male that were infected with A. marginale as adults to feed on the cattle. Antibody responses of cattle against major surface proteins (MSP) 1a, 1b and 5, as determined by ELISAs, peaked 2 weeks after the last immunization. Cattle immunized with infected IDE8 cell-derived antigens had a preferential recognition for MSP1b while cattle immunized with erythrocyte-derived antigens had a preferential recognition for MSP1a. Protection efficacy was evaluated using the percent infected erythrocytes (PPE), the packed cell volume (PCV), and the prepatent period. A. marginale-immunized cattle showed lower PPE and higher PCV values when compared to control animals and did not display clinical anaplasmosis. The cell culture-derived A. marginale shows promise for use as antigen in development of a new killed vaccine for anaplasmosis.  相似文献   

14.
A seroepidemiological study was conducted on 151 cattle from the Botshabelo and Thaba Nchu areas in the central Free State Province of South Africa, two areas where small scale, peri-urban cattle farming is practised. An indirect fluorescent antibody test was used to test for Babesia bigemina and B. bovis antibodies. To test for Anaplasma marginale antibodies a competitive inhibition enzyme-linked immunosorbent assay method was used. There were no significant differences in serological test results between the cattle from Botshabelo and those from Thaba Nchu. The herd (two areas combined) had an average seroprevalence of 62.42% to B. bigemina, 19.47% to B. bovis and 98.60% to A. marginale. Based on the percentage of cattle that were seropositive to B. bigemina the immune status of cattle in the Botshabelo-Thaba Nchu area is approaching a situation of endemic stability. With reference to A. marginale, the high seroprevalence is indicative of a situation of endemic stability. The occurrence of B. bovis antibodies in the cattle is difficult to explain as Boophilus microplus ticks do not occur in the area in which the study was conducted.  相似文献   

15.
Anaplasmosis is a hemolytic disease of cattle caused by the ehrlichial tick-borne pathogen Anaplasma marginale. Killed vaccines used for control of anaplasmosis in the US used antigen harvested from infected bovine erythrocytes which was often contaminated with bovine cells and other pathogens. In this study, we performed an initial cattle trial to test A. marginale harvested from tick cell culture as an immunogen for cattle. Eleven yearling Holstein cattle were immunized with the cell culture-derived A. marginale and 11 cattle were non-immunized contact controls. Each vaccine dose contained approximately 2 x 10(10) A. marginale in an oil-based adjuvant. Two immunizations were administered subcutaneously 4 weeks apart and the cattle were challenge-exposed 10 weeks after the second immunization with A. marginale infected blood. Maximum antibody levels as determined by an A. marginale specific competitive ELISA were observed 2 weeks after the last immunization. Antibody responses against major surface proteins (MSPs) 1a and 1beta1 were also characterized and immunized cattle demonstrated a preferential recognition for MSP1beta1. Cattle immunized with the cell culture-derived A. marginale had a significantly lower percent reduction in the packed cell volume (P<0.05) after challenge exposure as compared with the controls and did not display clinical anaplasmosis. The cell culture-derived A. marginale shows promise for use as antigen in development of a new killed vaccine for anaplasmosis.  相似文献   

16.
为建立羊无浆体病简便快捷的病原学检测方法,论文以马米玲等已建立的边缘无浆体MSP5重组抗原间接ELISA检测方法对甘肃省景泰县多地采集的219份田间样品进行羊无浆体ELISA检测,以PCR检测方法进行病原学的检测和验证。同时为进一步验证MSP5基因在边缘无浆体和羊无浆体之间的保守性,Western blot检测证实边缘无浆体重组蛋白在45ku处与羊无浆体阳性血清反应,与羊其他病原阳性血清均不反应,表明该重组蛋白适合作为羊无浆体病的诊断抗原。在被检的219份样品中,ELISA方法检测阳性率为34.7%(76/219),PCR方法阳性率为30.6%(67/219),证实该地区存在羊无浆体病,与以往调查结果相比,阳性率有所下降。利用边缘无浆体MSP5重组抗原建立的EILSA方法具有良好的特异性和敏感性,可以检测羊无浆体病,为羊无浆体病的血清学诊断及流行病学调查提供了手段。  相似文献   

17.
Disease prevalence studies are one of the most valuable tools to demonstrate the risk or impact of certain infections in local and global economies. The data obtained in these studies contribute to develop strategies for disease control. The present study aims to provide information about the prevalence of babesiosis and anaplasmosis in the northern regions of Sudan. Blood samples from four different states of Sudan were collected from apparently healthy cattle (n=692), DNA was extracted and the prevalence of Babesia and Anaplasma species was analyzed by PCR. The results confirmed the presence of Babesia bigemina, Babesia bovis and Anaplasma marginale in cattle in northern Sudan with overall prevalence rates of 4.0%, 1.9% and 6.1%, respectively. Statistical analysis revealed that the prevalence of B. bigemina, B. bovis and A. marginale varies significantly between Sudanese states as well as in different age groups, while gender seems not to have a significant effect on the prevalence of these pathogens among Sudanese cattle. The highest prevalence for B. bigemina was found in the Aljazirah State while the highest number of A. marginale positive samples was reported in River Nile.  相似文献   

18.
Adult cows from an Anaplasma marginale-infected herd that were negative to the A marginale rapid card agglutination (RCA) and complement fixation (CF) tests for 1 to 4 years developed acute anaplasmosis after inoculation with 0.5 ml of blood from an A marginale carrier cow. The test cattle were as susceptible as the control cattle of similar ages. Also, 2 cows that had seroconverted from RCA/CF-positive to RCA/CF-negative status naturally were fully susceptible to anaplasmosis when they were experimentally infected. Results of the study indicated that indigenous seronegative cattle in anaplasmosis-enzootic regions probably do not have acquired or natural immunity to A marginale infection.  相似文献   

19.
Bovine anaplasmosis caused by Anaplasma marginale is a disease transmitted by ticks belonging to the Ixodidae family. Southern Italy is considered an endemic zone but environmental and social factors are changing the epidemiology of the disease to expand to previously anaplasmosis-free regions. The available data of published reports of anaplasmosis in Italy together with the data obtained by the National Centre of Reference for Anaplasma, Babesia, Rickettsia and Theileria (C.R.A.Ba.R.T.), allowed to report A. marginale infection in different Italian regions (Lazio, Marche, Campania, Puglia, Basilicata, Calabria, Lombardy, Tuscany, Umbria and Sicily). Cattle are also subject to infection with the related Ixodes ricinus-transmitted pathogen, Anaplasma phagocytophilum that results in reduced milk production in cattle. A. phagocytophilum infect also small ruminants, domestic and wild animals and causes the human granulocytic anaplasmosis. Different studies have been conducted on the presence of A. phagocytophilum in Italy both in the tick vectors and in the wild and domestic reservoirs. Contrary to A. marginale, the prevalence of A. phagocytophilum embraces the whole Italian territory from the Alps to the southern and insular regions.  相似文献   

20.
Anaplasma centrale msp4 and msp5 genes were cloned and sequenced, and the recombinant proteins were expressed. The identity between Anaplasma marginale and A. centrale MSP4 was 83% in the nucleotide sequences and 91.7% in the encoded protein sequences. A. centrale msp5 nucleotide sequences shared 86.8% identity with A. marginale msp5, and there was 92.9% homology between A. centrale and A. marginale encoded amino acids of the MSP5 protein. Southern blots hybridized with probes derived from the msp4 and msp5 central regions indicate that msp4 and msp5 of A. centrale are encoded by single copy genes. Recombinant MSP4 and MSP5 fusion proteins reacted with anti-A. marginale monoclonal antibodies ANAR76A1 and ANAF16C, respectively, demonstrating the conservation of conformation-sensitive B-cell epitopes between A. centrale and A. marginale. These data demonstrate the structural and antigenic conservation of MSP4 and MSP5 in A. centrale and A. marginale. This conservation is consistent with the cross-protective immunity between A. marginale and A. centrale and supports the development of improved vaccines based upon common outer membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号