首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to estimate genetic parameters for BW of Angus cattle up to 5 yr of age and to discuss options for including mature weight (MW) in their genetic evaluation. Data were obtained from the American Angus Association. Only records from herds with at least 500 animals and with >10% of animals with BW at ≥ 2 yr of age were considered. Traits were weaning weight (WW, n = 81,525), yearling weight (YW, n = 62,721), and BW measured from 2 to 5 yr of age (MW2, n = 15,927; MW3, n = 12,404; MW4, n = 9,805; MW5, n = 7,546). Genetic parameters were estimated using an AIREML algorithm with a multiple-trait animal model. Fixed effects were contemporary group and departure of the actual age from standard age (205, 365, 730, 1,095, 1,460, and 1,825 d of age for WW, YW, MW2, MW3, MW4, and MW5, respectively). Random effects were animal direct additive genetic, maternal additive genetic, maternal permanent environment, and residual. Estimates of direct genetic variances (kg(2)) were 298 ± 71.8, 563 ± 15.1, 925 ± 52.1, 1,221 ± 65.8, 1,406 ± 80.4, and 1,402 ± 66.9; maternal genetic variances were 167 ± 4.8, 153 ± 6.1, 123 ± 9.1, 136 ± 12.25, 167 ± 18.0, and 110 ± 14.0; maternal permanent environment variances were 124 ± 2.9, 120 ± 4.3, 61 ± 7.5, 69 ± 11.9, 103 ± 15.9, and 134 ± 35.2; and residual variances were 258 ± 3.8, 608 ± 8.6, 829 ± 34.2, 1,016 ± 38.8, 1,017 ± 52.1, and 1,202 ± 63.22 for WW, YW, MW2, MW3, MW4, and MW5, respectively. The direct genetic correlation between WW and YW was 0.84 ± 0.14 and between WW and MW ranged from 0.66 ± 0.06 (WW and MW4) to 0.72 ± 0.11 (WW and MW2). Direct genetic correlations ranged from 0.77 ± 0.08 (YW and MW5) to 0.85 ± 0.07 (YW and MW2) between YW and MW, and they were ≥ 0.95 among MW2, MW3, MW4, and MW5. Maternal genetic correlations between WW and YW and MW ranged from 0.52 ± 0.05 (WW and MW4) to 0.95 ± 0.07 (WW and YW), and among MW they ranged from 0.54 ± 0.14 (MW4 and MW5) to 0.94 ± 0.07 (MW2 and MW3). Genetic correlations suggest that a genetic evaluation for MW may be MW2-based and that including BW from older ages could be accomplished by adjusting records to the scale of MW2.  相似文献   

2.
Records of 18,770 Nelore animals, born from 1975 to 2002, in 8 herds participating in the Nelore Cattle Breeding Program, were analyzed to estimate genetic parameters for mature BW. The mature BW were analyzed as a single BW taken closest to 4.5 yr of age for each cow in the data file, considering BW starting from 2 (W2Y_S), 3 (W3Y_S), or 4 (W4Y_S) yr of age or as repeated records, including all BW starting from 2 (W2Y_R), 3 (W3Y_R), or 4 (W4Y_R) yr of age. The variance components were estimated by restricted maximum likelihood, fitting univariate and bivariate animal models, including weaning weight. The heritability estimates were 0.29, 0.34, 0.36, 0.41, 0.44, and 0.46 for W2Y_S, W3Y_S, W4Y_S, W2Y_R, W3Y_R, and W4Y_R, respectively. The repeatability estimates for W2Y_R, W3Y_R, and W4Y_R were 0.59, 0.64, and 0.72, respectively. Larger accuracy values associated with the EBV were obtained in the repeated records models. The results indicated the bivariate repeated records model as the most appropriate for analyzing mature BW.  相似文献   

3.
Genetic and environmental parameters for mature weight in Angus cattle   总被引:2,自引:0,他引:2  
Genetic and environmental variances and covariances and associated genetic parameters were estimated for weaning weight, asymptotic mature weight, and repeated mature weights. Data consisted of a set of weight measurements of 3,044 Angus cows born between 1976 and 1990. Mature weight was predicted by individually fitting Brody growth curves (asymptotic weight) and by using weights repeatedly measured after 4 yr of age. Variance and covariance components for mature weight were estimated by REML from a single-trait animal model with asymptotic weight, a two-trait animal model with asymptotic and weaning weight, and a two-trait animal model with repeated weights and weaning weight. Weaning and cow contemporary groups were defined as fixed effects. Random effects for weaning weight included direct genetic, maternal genetic, and permanent environmental effects; and for mature weight, direct genetic and repeated measurements (if in the model). Heritability estimates for weaning weight were similar for both two-trait models (.53 and .59). Estimates of heritability for mature weight were .44, .52, and .53 for the single-trait model with asymptotic weight, two-trait model with asymptotic weight, and two-trait model with repeated measures weights, respectively. The estimate of the genetic correlation between mature and weaning weight was higher for the repeated measures model (.85 vs. .63). A lower heritability estimate for mature weight from the single-trait model was likely due to postweaning culling. Therefore, a genetic evaluation of mature weight from field data should include a trait recorded earlier in life that is less subjected to selective data reporting.  相似文献   

4.
Birth weights (4,155) and weaning weights (3,884) of Line 1 Herefords collected at the Fort Keogh Livestock and Range Research Laboratory in Miles City, MT, between the years of 1935 to 1989 were available. To study the effect of misidentification on estimates of genetic parameters, the sire identification of calf was randomly replaced by the identification of another sire based on the fraction of progeny each sire contributed to a yearly calf crop. Misidentification rates ranged from 5 to 50% with increments of 5%. For each rate of misidentification, 100 replicates were obtained and analyzed with single-trait and two-trait analyses with a restricted maximum likelihood (REML) algorithm. Two different models were used. Both models contained year x sex combinations and ages of dam as fixed effects, calendar birth date as a fixed covariate, and random animal and maternal genetic effects and maternal permanent environment effects. Model 2 also included sire x year combinations as random effects. As the rate of misidentification increased, estimates of the direct-maternal genetic correlation increased for both traits, with both models, for all analyses. With singletrait analyses, estimates of the fraction of variance that were due to sire x year interaction effects increased slightly for birth weight (near zero) and decreased slightly (0.015 to 0.004) for weaning weight as misidentification increased. With two-trait analyses, estimates of fraction of variance that were due to sire x year effects gradually decreased for weaning weight as misidentification increased. With the two-trait analyses, and with both models, as the level of sire misidentification increased, estimates of the genetic correlation between direct effects gradually increased, and estimates of the correlation between maternal effects gradually decreased. Estimates of the direct-maternal genetic correlation were more positive with Model 2 than with Model 1 for all levels of misidentification. Results of this study indicate that misidentification of sires would severely bias estimates of genetic parameters and would reduce genetic gain from selection.  相似文献   

5.
The Bayesian approach was implemented for fitting several maternally ancestral models for weaning weight data of Angus calves. The goal was to evaluate to what extent genetic evaluation models with additive grand maternal effects (G), or with an ancestrally structured covariance matrix for maternal environmental effects (E), or with a sire × year interaction (ISY), or combinations thereof (GE, GSY, ESY, GESY), redistribute the additive variability and reduce the negative magnitude of the additive correlation between direct and maternal effects (r(AoAm)), when compared with the regular maternal animal model (I). All animals with records had known dams and maternal granddams. The sampling scheme induced low autocorrelations among all variables and tended to converge quickly. The signs of the estimates of r(AoAm) were consistently negative for all models fitted. The magnitudes of the estimates of r(AoAm) from models E, G, GE, ESY, and GESY were almost one-third of those from models I and ISY. Inclusion of the sire × year interaction had some effect in reducing the negative magnitude of r(AoAm), but also reduced the size of the estimates of direct (h(0)(2)) and maternal (h(m)(2)) heritabilities. In comparison, models E or G reduced the negative magnitude of r(AoAm) by 0.50 units and produced more favorable estimates of H(0)(2) and h(m)(2) than models I and ISY. The estimate of h(0)(2) from G was similar to the one from I; however, the estimated h(m)(2) was 0.04 units greater, whereas the estimate of r(AoAm) was much less negative (-0.21 vs. -0.71) than the respective estimates from I. The environmental correlation between the weaning weights of dams and their daughters (λ) was estimated to be -0.28 ± 0.03 in E and ESY, and -0.21 ± 0.03 in GE and GESY. Inclusion of the sire × year interaction effect by itself did not have much of an impact in the reduction of the estimated magnitude of r(AoAm). Rank correlations among EBV for direct effects were larger than 0.94 and did not show any appreciable difference among models, whereas the rank correlation among maternal breeding values displayed differences in the ranking between I and the other models. Models E and ESY recovered the largest amount of total additive variability with maternal effects.  相似文献   

6.
A study of 40 Hereford cattle dwarfs in New Zealand confirmed that dwarfism in this country was morphologically the same as that described in North American Herefords and that its mode of inheritance was as an autosomal recessive trait. The histological architecture of growth plates was essentially normal but palisading columns were shorter and more irregular than in controls. A small proportion of chondrocytes in dwarf cartilage showed increased areas of cytoplasmic metachromasia, which probably coincided with increased cystic dilations of endoplasmic reticulum containing granular material as noted by electronmicroscopy. The above growth-plate abnormalities were neither prominent nor consistent enough to be of diagnostic significance; nor do they currently help understanding of the underlying pathogenic mechanism of dwarfing. Histological and mucopolysaccharide excretion studies unequivocally demonstrated that this disease is not a mucopolysaccharidosis as had previously been reported.  相似文献   

7.
A study of 40 Hereford cattle dwarfs in New Zealand confirmed that dwarfism in this country was morphologically the same as that described in North American Herefords and that its mode of inheritance was as an autosomal recessive trait. The histological architecture of growth plates was essentially normal but palisading columns were shorter and more irregular than in controls. A small proportion of cbondrocytes in dwarf cartilage showed increased areas of cytoplasmic metachromasia, which probably coincided with increased cystic dilations of endoplasmic reticulum containing granular material as noted by electronmicroscopy. The above growth-plate abnormalities were neither prominent nor consistent enough to be of diagnostic significance; nor do they currently help understanding of the underlying pathogenic mechanism of dwarfing. Histological and mucopolysaccharide excretion studies unequivocally demonstrated that this disease is not a mucopolysaccharidosis as had previously been reported.  相似文献   

8.
Performance records on Hereford cattle raised in two herds were used to evaluate cytoplasmic genetic effects on preweaning growth and milk production. Animals were traced through maternal lineage to foundation females to form cytoplasmic lines. Growth records were available on 1,189 calves at Raleigh and 1,599 at Plymouth representing 27 and 15 cytoplasmic lines, respectively. Milk records were available on 418 cows at Raleigh and 522 cows at Plymouth, representing 20 and 13 cytoplasmic lines. After adjustment for sire, cytoplasmic effects were significant for birth weight (BWT), average daily gain (ADG) and 205-d weight (WT205) in both herds. Cytoplasm accounted for 2, 5 and 5% of the variance for BWT, ADG and WT205 at Raleigh; and 1, 2 and 2% of the variance at Plymouth. After addition of maternal grandsire to the model, cytoplasm was still significant; however, variances were reduced at Plymouth. Cytoplasmic effects for milk yield were important at Raleigh (P less than .01) but marginal at Plymouth (P = .10). Variance components for cytoplasm accounted for 4 and 1% of the variance for milk yield at Raleigh and Plymouth, respectively. Ranges for least-squares constants for cytoplasmic lines corresponded to one of two standard deviations. Correlations among least-squares constants for ADG, WT205 and milk yield were high, suggesting that cytoplasmic effects were mediated through milk production. More research is needed to confirm these results before cytoplasmic inheritance is considered in breeding programs for beef cattle.  相似文献   

9.
Tropical Animal Health and Production - In the present study, 10,116 body weight-age records were measured on 2537 Kermani lambs. The records were collected from Kermani Sheep Breeding Station,...  相似文献   

10.
The Goettingen minipig is a laboratory animal especially developed for medical research. For easy and comfortable handling during experiments, and to minimize costs, a low BW is essential. To breed for an even smaller minipig, genetic parameters for BW were estimated using a random regression model (RRM). The RRM was calculated using random animal, common litter environment, and permanent environment effects, respectively. Regressions for the random effects in the RRM were modeled using Legendre polynomials from second to fourth order of fit in different combinations. The model was applied to a data set that focused on the time period from 30 to 400 d of age. Eight age classes were built to consider heterogeneous residual variances. The heritabilities were moderate and ranged from 0.211 (375 d of age) to 0.254 (275 d of age). The variances initially decreased and then increased toward the end of the examined time period for permanent environment and litter effects. Genetic and phenotypic correlations between BW in different age classes decreased with increasing distance between age classes. The major eigenfunction showed positive values throughout the whole trajectory (i.e., a selection for low BW had positive effects on this trait throughout the whole range of time). On the basis of the estimated genetic parameters, a breeding scheme can be created to develop genetically smaller Goettingen minipigs in the future.  相似文献   

11.
The objective of this study was to determine an appropriate method for using yearling scrotal circumference observations and heifer pregnancy observations to produce EPD for heifer pregnancy. We determined the additive genetic effects of and relationship between scrotal circumference and heifer pregnancy for a herd of Hereford cattle in Solano, New Mexico. The binary trait of heifer pregnancy was defined as the probability of a heifer conceiving and remaining pregnant to 120 d, given that she was exposed at breeding. Estimates of heritability for heifer pregnancy and scrotal circumference were .138+/-.08 and .714+/-.132, respectively. Estimates of fixed effects for age of dam and age were significant for heifer pregnancy and bull scrotal circumference. The estimate of the additive genetic correlation between yearling heifer pregnancy and yearling bull scrotal circumference was .002+/-.45. Additional analyses included models with additive genetic groups for scrotal circumference EPD for heifer pregnancy or heifer pregnancy EPD for scrotal circumference to account for a potential nonlinear relationship between scrotal circumference and heifer pregnancy. Results support the development of a heifer pregnancy EPD because of a higher estimated heritability than previously reported. The development of a heifer pregnancy EPD would be an additional method for improving genetic merit for heifer fertility.  相似文献   

12.
13.
Selection was applied from 1964 to 1978 for increased weaning weight (WWL) or yearling weight (YWL) in two Hereford lines with an Angus line maintained as an unselected control line (CL). Each line was maintained with 50 cows and four sires (two sires selected each year and each used for 2 yr). Traits analyzed were birth weight (BW), preweaning daily gain (WDG), weaning weight (WW), weaning conformation grade (WG), weaning condition score (WC), weaning to yearling daily gain (YDG), yearling weight (YW), yearling conformation grade (YG) and yearling condition score (YC). After 15 yr of selection, a total of 3.22 generations of selection had occurred in both WWL and YWL. Average selection differentials in standard measure per generation for WWL, YWL and CL, respectively, were: BW, .44, .51, .0; WDG, .95, .81, .09; WW, .97, .85, .09; WG, .66, .57, .09; WC, .60, .38, -.02; YDG, .30, .79, .38; YW, .80, 1.05, .25; YG, .63, .62, .34 and YC, .45, .64, .24. The proportionate contribution of sire selection (delta S) to the average midparent selection differential per generation (delta M) was 70% in WWL and 76% in YWL. Selection indexes in retrospect were also calculated.  相似文献   

14.
A Derivative Free Restricted Maximum Likelihood (DFREML) algorithm was used with single trait and two traits animal models to estimate the variance and covariance components and thus, heritabilities and phenotypic, genetic and environmental correlations among nine different body measurements and weights of Brahman cattle raised in Mexico. The following measurements were considered: hip width, pin width, hip‐pin width, anterior height, posterior height, body length, thorax perimeter, scrotal circumference and weight. The analysis was based on a total of 1018 animals, born between 1992 and 1995, from 17 herds in the Mexican States of Chiapas, San Luis Potosi, Tabasco, Tamaulipas and Veracruz. The model included the following fixed effects: herd, year‐season of birth, sex, age of the animal and feed management. The only random effect was the direct additive genetic contribution of each animal. All fixed effects in the model were significant for all traits (p < 0.05). Estimated heritabilities for the traits were: hip width 0.57, pin width 0.32, hip‐pin width 0.41, anterior height 0.56, posterior height 0.54, body length 0.32, thorax perimeter 0.49, scrotal circumference 0.02 and weight 0.66. The magnitude of the heritabilities was medium to high, with the exception of scrotal circumference. The genetic correlations among all body measurements were consistently positive and high, ranging from 0.64 to 1.00. Although other measures showed higher genetic correlations with weight, thorax perimeter combines a high value (0.70) with ease and repeatability, making it a useful field measurement to estimate body weight when scales are not available.  相似文献   

15.
Selection was applied from 1964 to 1978 for increased weaning weight (WWL) or yearling weight (YWL) in two Hereford lines. An Angus line was maintained as an unselected control line (CL). Each line was maintained with 50 cows and four sires each year (two sires selected each year and used for 2 yr). Primary traits measured in the lines were birth weight (BW), preweaning daily gain (WDG), weaning weight (WW), weaning conformation grade (WG), weaning condition score (WC), weaning to yearling daily gain (YDG), yearling weight (YW), yearling conformation grade (YG) and yearling condition score (YC). Averaged over two methods, estimated genetic responses/generation (in standard deviation units) in WWL and YWL were: BW, .29, .26; WDG, .17, .15; WW, .22, .19; WG, .19, .26; WC, .12, .12; YDG, -.02, .04; YW, .08, .14; YG, .19, .16; YC, -.13, -.03. The realized heritability estimates were .23 and .15 for WW and YW, respectively. The realized genetic correlation between WW and YW was .69. Progeny from crosses of selected WWL and YWL sires to Angus cows had similar feedlot and carcass performance. At the end of the study, milk yield and composition were similar for mature cows in WWL and YWL.  相似文献   

16.
The objective of this research was to develop a prototype system for national cattle evaluation that would facilitate selection for improved fertility of daughters from Hereford sires. Raw data for this analysis were the birth dates of calves as reported by breeders to the American Hereford Association. Records from females entered this analysis with the reporting of a birth date for their first calf. At that time, females were required to be in contemporary groups of at least 3 animals and to have at least 2 additional paternal half-sibs also represented in the data. To explicitly define "sustained reproductive success," the philosophy taken was that a female that maintained a calving interval of 425 d or less would be considered successful. Females failing to meet this criterion were considered to be at the end of their successful lifetime. Data were analyzed using methodology for survival analysis with grouped data. Fixed contemporary groups were modeled as being time dependent, reflecting the females exposed for breeding in the same herd-year-season. Sire effects were time independent and considered random. Also included in the analysis were time-independent covariates for maternal weaning weight and total maternal calving ease from the national cattle evaluation of the American Hereford Association. Records from females still successfully in production at the time of this analysis, those that were transferred, those with calving intervals less than 280 d, and those that were successful until becoming donor dams for embryo transfer were considered censored. A total of 36,866 females contributed to this analysis, with 14,143 of these having censored records. The median number of females in a contemporary group was 6. A total of 3,323 sires had daughters with records. The median number of daughters per sire was 7. Heritability of sustained reproductive success on the underlying scale estimated from these data was approximately 0.05. Additional data accumulated over time will improve this genetic evaluation. Sustained reproductive success is important to the commercial beef industry, and results from this evaluation are expected to enhance the assessment of economic value of Hereford seedstock.  相似文献   

17.
Three models for the analysis of functional survival data in dairy cattle were compared using stochastic simulation. The simulated phenotype for survival was defined as a month after the first calving (from 1 to 100) in which a cow was involuntarily removed from the herd. Parameters for simulation were based on survival data of the Canadian Jersey population. Three different levels of heritability of survival (0.100, 0.050 and 0.025) and two levels of numbers of females per generation (2000 or 4000) were considered in the simulation. Twenty generations of random mating and selection (on a second trait, uncorrelated with survival) with 20 replicates were simulated for each scenario. Sires were evaluated for survival of their daughters by three models: proportional hazard (PH), linear multiple-trait (MT), and random regression (RR) animal models. Different models gave different ranking of sires with respect to survival of their daughters. Correlations between true and estimated breeding values for survival to five different points in a cow's lifetime after the first calving (120 and 240 days in milk after first, second, third and fourth calving) favoured the PH model, followed by the RR model evaluations. Rankings of models were independent of the heritability level, female population size and sire progeny group size (20 or 100). The RR model, however, showed a slight superiority over MT and PH models in predicting the proportion of sire's daughters that survived to the five different end-points after the first calving.  相似文献   

18.
The objectives of the current study were to investigate the additive genetic associations between heifer pregnancy at 16 months of age (HP16) and age at first calving (AFC) with weight gain from birth to weaning (WG), yearling weight (YW) and mature weight (MW), in order to verify the possibility of using the traits measured directly in females as selection criteria for the genetic improvement of sexual precocity in Nelore cattle. (Co)variance components were estimated by Bayesian inference using a linear animal model for AFC, WG, YW and MW and a nonlinear (threshold) animal model for HP16. The posterior means of direct heritability estimates were: 0.45 ± 0.02; 0.10 ± 0.01; 0.23 ± 0.02; 0.36 ± 0.01 and 0.39 ± 0.04, for HP16, AFC, WG, YW and MW, respectively. Maternal heritability estimate for WG was 0.07 ± 0.01. Genetic correlations estimated between HP16 and WG, YW and MW were 0.19 ± 0.04; 0.25 ± 0.06 and 0.14 ± 0.05, respectively. The genetic correlations of AFC with WG, YW and MW were low to moderate and negative, with values of − 0.18 ± 0.06; − 0.22 ± 0.05 and − 0.12 ± 0.05, respectively. The high heritability estimated for HP16 suggests that this trait seem to be a better selection criterion for females sexual precocity than AFC. Long-term selection for animals that are heavier at young ages tends to improve the heifers sexual precocity evaluated by HP16 or AFC. Predicted breeding values for HP16 can be used to select bulls and it can lead to an improvement in sexual precocity. The inclusion of HP16 in a selection index will result in small or no response for females mature weight.  相似文献   

19.
Single trait selection was practiced in three lines of Hereford cattle derived from a common base population. Selection was practiced on males only within sire families for increased weaning weight (WW) in the WW line (WWL), for postweaning gain (PG) in the PG line (PGL) and at random in the control line (CTL). Females were culled on the basis of age or reproductive failure. Progeny of selected bulls were produced in two herds from 1970 through 1981. The data consisted of records on 2,467 progeny of 125 sires and 922 dams. Generations of selection to produce the 1981 calf crop were 1.96, 1.85 and 1.80 for WWL, PGL and CTL, respectively. For calves born in 1981, mean cumulative selection differentials (CSD) were 54.5 kg in WWL and 37.8 kg in PGL. Corresponding values in standard deviation units (SDU) were 2.31 and 1.68, respectively. Secondary selection differentials were 25 to 40% as large as selection differentials for the primary traits. Unintentional selection in the CTL in 1981 was 16.2 kg or .68 SDU for WW and .2 kg or .01 SDU for PG, respectively. Regressions of CSD on year were 4.1 kg or .17 SDU in WWL and 3.2 kg or .14 SDU in PGL. Realized selection differentials were approximately 88% of the potential selection differentials in both lines. Inbreeding coefficients of dam and calves in 1981 were 2.0 and 3.5% in WWL, 2.1 and 3.5% in PGL and 2.9 and 5.8% in CTL.  相似文献   

20.
Information on mature weight, hip height, and body condition score from Angus cows was analyzed to estimate variance components and compare prediction models. Observations from repeated measures were analyzed with animal models with or without condition score as a covariate and with or without an effect for permanent environment. Heritability (repeatability) estimates for mature weight, hip height, and condition score from Method R procedures were 0.40 (0.77), 0.62 (0.81), and 0.11 (0.38), respectively, from animal models containing a permanent environmental effect but without a covariate for condition score. Heritability estimates from animal models without a permanent environmental effect were similar to repeatability estimates from animal models with it, suggesting inflated estimates of genetic variance from models not containing a permanent environmental effect. Regressing mature weight on condition score reduced both additive genetic variance and permanent environmental variance, increasing the heritability estimate of mature weight to 0.54 and altering the biological interpretation of the trait. The covariate for condition score had little effect on hip height. Regressions of mature weight and hip height on condition score were 25.9 kg/unit of body condition score and 0.4 cm/unit, respectively. Least-squares means for mature weight and hip height tended to increase until 7 and 5 yr of age, respectively. Condition score tended to increase until 6 yr of age and decrease after 8 yr of age. Correlations between breeding value solutions for the same trait were high whether or not prediction models included a permanent environmental effect or a covariate for condition score, and whether or not the variance components used were derived from models containing a covariate for condition score. Results suggest the importance of including a permanent environmental effect in genetic prediction models for these traits. Whether mature weight should be adjusted for body condition is arguable, depending on availability of condition score predictions and tools for analyzing mature weight and condition score predictions in an environment-specific context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号