首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about the diversity and public health significance of Cryptosporidium species in water buffaloes. In this study, we examined the distribution of Cryptosporidium spp. in water buffalo calves in Egypt. Rectal fecal specimens from 179 calves and 359 adults were screened microscopically for Cryptosporidium oocysts using modified Ziehl–Neelsen stain. Cryptosporidium spp. in 17 microscopy-positive specimens from calves were genotyped by DNA sequence analysis of the small-subunit rRNA gene, and Cryptosporidium parvum was subtyped by sequence analysis of the 60 kDa glycoprotein gene. Cryptosporidium ryanae was found in 10 specimens and C. parvum in 7 specimens, with the former belonging to the newly identified C. ryanae buffalo variant and the latter belonging to the subtypes IIdA20G1 (in 5 specimens) and IIaA15G1R1 (in 2 specimens). The prevailing occurrence of C. ryanae and the subtype family IId of C. parvum and the absence of C. bovis and C. andersoni represent some features of Cryptosporidium transmission in water buffaloes in Egypt.  相似文献   

2.
An outbreak of cryptosporidiosis occurred in a mixed sheep/cattle farm of Central Italy in October 2011. A total of 450 ovines (250 sheep and 200 lambs) and 140 bovines (130 cows and 10 calves) were housed in two separated units, at the time of the outbreak. About half of the lambs had diarrhea due to Cryptosporidium sp. with a mortality rate of 80%; calves were not infected. Genomic DNA was extracted from an archived slide and from fecal specimens, and the parasite was identified as Cryptosporidium parvum by PCR and sequence analysis at the CpA135 gene. Genotyping at the GP60 gene showed the presence of a very rare genotype, IIaA20G2R1. Shortly after the outbreak was identified, the son of the farm's owner, aged 18 months, experienced an acute gastroenteritis and was hospitalized due to recurrent episodes of diarrhea, fever, vomiting and lack of appetite. The feces tested negative for bacteria and viruses, whereas cryptosporidiosis was diagnosed by microscopy and an immunochromatographic test. Molecular typing identified the C. parvum genotype IIaA20G2R1 in the feces of the child. This is the first case of transmission of cryptosporidiosis in Italy involving lambs as source of oocysts infectious to humans.  相似文献   

3.
To obtain information about the occurrence and genotype distribution of G. intestinalis and C. parvum in Austrian cattle, faecal samples from diarrhoeic calves younger than 180 days of age originating from 70 farms were examined. Of the 177 faecal samples, 27.1% were positive for Giardia cysts (immunofluorescence microscopy) and 55.4% for Cryptosporidium oocysts (phase-contrast microscopy). Positive samples were characterized by nested PCR for Giardia, 83.3% (triosephosphate isomerase; tpi) and 89.6% (β-giardin; bg) were positive, while the Cryptosporidium nested PCR returned 92.5% (60-kDa glycoprotein) positive results. Sequence analysis revealed one assemblage A-positive sample and 30 (bg) respectively 29 (tpi) assemblage E-positive samples for G. intestinalis. For C. parvum four subtypes within the IIa family (IIaA15G2R1, n = 29; IIaA19G2R2, n = 3; IIaA21G2R1, n = 2; IIaA14G1R1, n = 1) could be differentiated. Validation of two immunochromatographic point-of-care tests resulted in a sensitivity of 29.2% and 77.6%; a specificity of 98.4% and 91.1% for the detection of Giardia intestinalis and Cryptosporidium parvum, respectively. Results confirm the widespread occurrence of both protozoa in diarrhoeic calves in Austria.  相似文献   

4.
The prevalence of Cryptosporidium species in calves and heifers with relation to diarrhea from several herds was investigated in this study. Fecal samples were collected from 135 and 120 pre-weaned calves and 79 and 130 heifers raised in the Central Anatolia (CAR) and Mediterranean Regions (MR) of Turkey, respectively. A total of 86 post-weaned calves in CAR were also included in the study. For diagnostic comparison, all samples were examined by microscopic examination, SSU rRNA nested PCR and TaqMan real-time PCR for the presence of oocyst and Cryptosporidium DNA. In total, 102 (34.0 %) and 93 (37.2 %) of the examined samples from CAR and MR were found positive for Cryptosporidium DNA with both nested PCR and real-time PCR analyses, respectively with an overall prevalence of 35.5 %. The diagnostic sensitivity and specificity of microscopic examination were determined as 68.7 % and 100.0 % compared to molecular tools, respectively. RFLP and sequence analyses of the SSU rRNA from the PCR products revealed that 138 (70.8 %) out of 195 positive isolates were C. parvum further confirming the species-specific real-time PCR results. Among the remaining 57 (29.2 %) positive isolates, 30 (15.4 %) and 27 (13.8 %) were characterized as C. ryanae and C. bovis, respectively. C. parvum was the dominant species in pre-weaned calves especially with diarrhea while C. bovis and C. ryanae were mostly found in post-weaned calves and heifers. The sequence analyses of the gp60 gene of C. parvum isolates revealed two subtypes (IIaA13G2R1, IIaA14G1R1) belonging to zoonotic family IIa, with IIaA13G2R1 being the most common in diarrheic calves.  相似文献   

5.
Cryptosporidium oocysts were found in 43 out of 77 calves from two farms in Iwate Prefecture and nine farms on Tanegashima Island, Kagoshima Prefecture, Japan. The DNA fragments of 18S ribosomal RNA (18S rRNA) gene were amplified by a nested PCR from 43 oocyst-positive as well as one oocyst-negative samples. All of them were precisely identified as C. parvum by analyzing the nucleotide sequences of the 18S rRNA gene. C. parvum oocyst-positive calves ranged in age from 6 to 13 days old and significantly have watery diarrhea (P<0.05). Sequences of the gene encoding the 60-kDa glycoprotein (GP60) in 43 Cryptosporidium oocyst-positive samples were identical to that of the zoonotic IIaA15G2R1 subtype. We therefore suggest that calves could be potential sources of C. parvum infections in humans.  相似文献   

6.
Molecular epidemiology of Cryptosporidium subtypes in cattle in England   总被引:1,自引:0,他引:1  
Samples of Cryptosporidium spp., collected in a cross-sectional study of calves (median age 26 days) from 41 farms in Cheshire, UK, underwent molecular typing. The aim was to determine naturally occurring species/genotypes and to investigate transmission pathways within a local area. Of 60 positive samples, 54 were sequenced at an 18S rRNA locus and 51 were typed at a GP60 locus. C. parvum was identified in 50 samples, three cases were C. bovis and one was Cryptosporidium deer-like genotype. Six GP60 subgenotypes were identified. One subgenotype (IIaA15G2R1) was highly prevalent throughout the study area. A single subgenotype was identified on 20/22 farms. Two subgenotypes were found on 2/22 farms. The spatial scan statistic detected a cluster of subgenotype IIaA15G2R1 comprising seven farms. This suggests local transmission of the parasite between farms. As most of the isolates detected were the potentially zoonotic C. parvum allele IIa, intervention strategies should be considered to reduce the threat to public health. Biosecurity measures may reduce transmission between farms and result in lower levels of environmental contamination.  相似文献   

7.
Cryptosporidium parvum from 73 dairy calves less than two months old from Buenos Aires province (Argentina) were molecularly characterized using sequence analysis of the GP60 gene. Seventy-five sequences were obtained, and seven different subtypes were identified, all belonging to the IIa subtype family. The most common subtypes were IIaA20G1R1 (27/75), IIaA22G1R1 (16/75), and IIaA18G1R1 (13/75). Subtypes IIaA21G1R1, IIaA23G1R1, IIaA16G1R1 and IIaA19G1R1 were found sporadically. Two samples contained mixed infections with IIaA21G1R1 and IIaA22G1R1. A significant association was found between subtypes and geographic location, whereas there was no relation between subtypes and presence of diarrhea. Three of the subtypes found in this study (IIaA16G1R1, IIaA18G1R1, and IIaA19G1R1) were previously identified in humans. These findings suggest that cattle could play an important role in the transmission of cryptosporidiosis to humans in Buenos Aires province.  相似文献   

8.
《Veterinary parasitology》2015,207(1-2):144-148
This report is the first to describe Cryptosporidium infection in bamboo rats (Rhizomys sinensis). Ninety-two fresh fecal specimens were collected from a pet market in Ya’an City, China. One Cryptosporidium isolate from an asymptomatic host and two isolates from separate hosts with diarrhea were obtained by using Sheather's sucrose flotation technique and modified acid-fast staining. The Cryptosporidium spp. were genotyped by nested PCR and nucleotide sequencing of the small subunit rRNA (SSU rRNA), 70-kDa heat shock protein (HSP70), oocyst wall protein (COWP), and actin genes: isolates were identified as Cryptosporidium parvum with minor nucleotide differences at all four loci. Further subtyping was performed by PCR amplification and DNA sequence analysis of the 60-kDa glycoprotein (gp60) gene: two subtype families were detected, including a novel C. parvum subtype IIpA9 and a rare subtype IIoA13G1 (only reported in diarrheal patients of Sweden). Our results suggest that the bamboo rat is a reservoir host of C. parvum. Significantly, we discovered that the rare C. parvum subtype family IIo is also a zoonotic subtype and confirmed C. parvum subtype IIpA9 as a novel subtype family.  相似文献   

9.

Background

Cases of cryptosporidiosis have not been officially reported in Estonia after the year 2000, and the disease appears to be either under-diagnosed or under-reported.

Findings

Based on a human case of cryptosporidiosis contracted during faecal sampling in dairy farms, cattle considered to be sources of infection were analysed for Cryptosporidium spp. by a modified Ziehl Neelsen technique and molecular typing. C. parvum subtype IIaA16G1R1 was detected from the human case and from calves from one of nine farms enrolled in the study providing strong circumstantial evidence of zoonotic transmission from calves to humans.

Conclusion

Cryptosporidiosis presents an occupational risk to people with cattle contact, and may also be a risk to the human population in general. Thus increased public and medical awareness is warranted.  相似文献   

10.
Diarrheic fecal samples from 258 pre-weaned calves (1-30 day-old) from 9 dairy farms located in Banat region, Romania, were microscopically examined for the presence of Cryptosporidium oocysts. Overall, 65 (25%) samples were found positive. A higher percent of infection was recorded in calves aged between 8 and 14 days compared with other age categories (1-7, 8-14, 15-21 and 22-30 days; p<0.05). Genetic characterization was carried out on all Cryptosporidium-positive samples. After DNA extraction, Cryptosporidium species were determined by a nested PCR of the small subunit rRNA gene (18S) followed by RFLP analysis with SspI, VspI and MboII restriction enzymes. The restriction patterns showed that animals were infected with Cryptosporidium parvum. Subsequently, subtyping of 13 C. parvum isolates, based on sequence analysis of the 60 kDa glycoprotein (GP60) gene, showed 2 subtypes (IIaA15G2R1 and IIaA16G1R1) belonging to the subtype family IIa. This is the first molecular study of bovine Cryptosporidium infection in Romania.  相似文献   

11.
Over 250 individuals fell ill in five outbreaks caused by Cryptosporidium parvum in Finland, October–November 2012. The cases were connected by lunch meals at restaurants in four different cities. In two outbreaks, the same C. parvumIIdA17G1 subtype was found in patients’ stool samples which supports a single source of infection. Frisée salad was the only common food item served at the restaurants, and consumption of lunch salad containing the frisée salad was associated with the illness. Lunch customers who responded that they had eaten lunch salad were three times more likely to have become ill than those who had not answered whether they had eaten the salad or not (RR 2.66; 95% Cl 1.02–6.9, P‐value <0.01). Cryptosporidiosis should be considered as a causal agent in long‐lasting watery diarrhoea combined with abdominal cramps, and clinical samples should be tested for Cryptosporidium at the same time bacteria and viruses are tested. Measures to prevent contamination of ‘ready‐to‐eat vegetables’ with Cryptosporidium oocysts and methods to test frozen food samples should be developed.  相似文献   

12.
In a cross-sectional study of 633 pigs from 21 herds on Prince Edward Island, Canada (PEI), the prevalence of infection with Cryptosporidium and Giardia, and the genotypes and species of isolates were determined in order to establish the zoonotic potential of pigs in this region. As determined by direct immunofluorescence microscopy (DFA), 18 herds (86%) and 163 animals (26%; 95% CI: 22-29%) tested positive for Cryptosporidium, while just 3 herds (14%) and 6 animals (1%; 95% CI: 0.4-2%) tested positive for Giardia. Cryptosporidium spp. isolates were detected in 39% (95% CI: 34-44%) of weanlings (1-3 months of age) and 9% (95% CI: 6-13) of sows (>8 months of age). Molecular characterization using the 18S rDNA and HSP70 gene fragments revealed the presence of Cryptosporidium sp. pig genotype II, C. suis, C. parvum, and Cryptosporidium sp. mouse genotype. Among the 113 isolates of Cryptosporidium spp. successfully genotyped, pig genotype II (61%) predominated, with C. suis (36%) being the next most prominant isolate. C. parvum (2%; two isolates) and Cryptosporidium sp. mouse genotype (0.9%; one isolate) were only occasionally isolated. The only two Cryptosporidium-positive genotyped isolates from sows included one each of C. suis and Cryptosporidium sp. pig genotype II.All but one of the six Giardia positive isolates were detected in weanling pigs. None of the Giardia-positive isolates was amenable to PCR. This study demonstrates that Cryptosporidium spp. are highly prevalent in pigs on PEI, Canada, are found mostly in weanlings (1-3 months of age). Furthermore, the pigs are primarily infected by the host-specific genotypes and species, Cryptosporidium sp. pig genotype II and C. suis, whereas the zoonotic C. parvum is rare. Giardia duodenalis is only occasionally found in pigs. These findings suggest that domestic pigs on PEI, Canada, likely do not pose a significant health risk to humans from these parasites.  相似文献   

13.
The etiology of neonatal diarrhea is multifactorial and remains one of the greatest health problems in sheep livestock farming. Faecal samples from 559 neonatal lambs aged less than 30 days from 30 sheepfolds located in the north-center region of Algeria were screened with pathogen-specific antigen ELISA for Cryptosporidium parvum, Escherichia coli K99, rotavirus, and coronavirus. Of the 559 lambs, 312 (58.81 %), 155 (27.72 %), 72 (12.88 %) and 20 (3.57 %) were positives for C. parvum, E. coli K99, rotavirus and coronavirus antigens, respectively. The prevalence of C. parvum was the highest (p < 0.0001). C. parvum, E. coli K99, rotavirus and coronavirus were observed in 23 (76.66 %), 17 (56.66 %), 9 (30 %) and 3 (10 %) sheepfolds, respectively. Compared to age, the prevalence of C. parvum was highest during the second and third week of age (p < 0.001). In contrast, other pathogens were found to be more frequent in lambs aged ≤7 days (p < 0.001). The number of lambs with diarrhea was 280 (50.09 %) of which 280 (100 %), 127 (45.35 %), 52 (18.57 %) and 10 (3.57 %) were found to be infected with C. parvum, E. coli K99, rotavirus and coronavirus, respectively (p < 0.0001). In various combinations, mixed infections were detected only with C. parvum. This is the first report of C. parvum, E. coli K99, rotavirus, and coronavirus in ≤30-days old neonatal lambs in Algeria. Special attention should be given to the first colostrum feeding, hygiene of the farm, prevention and control measures for a better prevention of neonatal diarrhea in lambs.  相似文献   

14.
The objectives of this study were to determine the prevalence and assemblages of Giardia and species of Cryptosporidium on beef farms in Prince Edward Island (PEI), Canada, including the water sources associated with the farms, and to determine risk factors for infection of cattle with these parasites. Twenty beef farms were selected based on the presence of surface water < 500 m from the barn. Prevalence was determined by direct immunofluorescence microscopy, while genotyping and species determination were performed by nested-PCR and DNA sequencing. Giardia was detected in 42% (95% CI: 38-46%) of fecal samples from 100% farms while Cryptosporidium was detected in 17% (95% CI: 14-19%) of fecal samples from 80% of farms. The most predominant Giardia assemblage isolated was the livestock specific assemblage E (89%). The zoonotic assemblages A and B were found in 4 and 7% of the Giardia isolates that were genotyped, respectively. The Giardia assemblages were detected equally between the cows and calves examined. Overall, the most common Cryptosporidium species detected in this study was Cryptosporidium andersoni (49%), predominantly found in cattle >6 mo of age, while most Cryptosporidium bovis and Cryptosporidium pestis (previously Cryptosporidium parvum ‘bovine genotype’) isolates were detected in calves ≤ 6 mo of age. All Cryptosporidium ryanae isolates (four) were found in calves. Giardia cysts and Cryptosporidium oocysts were detected in 14 and 93% of surface water samples of 14 farms, respectively. Cryptosporidium oocysts were detected in three (15%) ground water samples of 20 farms. One Cryptosporidium-positive water sample, which was the only surface water sample amenable to genotyping, contained C. parvum. The farm-level risk factors investigated in this study, age of animals and location of the farm, were not associated with the risk of infection in cattle with either Cryptosporidium spp. or Giardia duodenalis.We conclude that beef cattle are a potential reservoir of Cryptosporidium spp. and G. duodenalis that could contaminate source water. There is the possibility of further transmission to humans on PEI if the source water is not properly treated prior to consumption.  相似文献   

15.
The prevalence of Cryptosporidium and Giardia was studied on 10 intensively reared sheep and goat farms in the province of East Flanders, Belgium. Random faecal samples were collected and examined using the Merifluor((R)) immunofluorescence assay. Cryptosporidium positive samples were withheld for molecular identification using primers targeting the 18S rDNA, 70 kDa heat shock protein and 60 kDa glycoprotein gene. For the molecular identification of Giardia the beta-giardin gene and a recently developed assemblage specific PCR based on the triose phosphate isomerase gene were used. The prevalence of Cryptosporidium in lambs was 13.1% (18/137), on 4 out of 10 farms. In goat kids the Cryptosporidium prevalence was 9.5% (14/148), on 6 out of 10 farms. The molecular characterisation of Cryptosporidium positive isolates indicated that in lambs (n=10) the cervine genotype was predominant, whereas in the goat kids (n=11) only C. parvum was identified, with subgenotypes IIaA15G2R1 and IIdA22G1. The Giardia prevalence was 25.5% (35/137) in lambs with all 10 farms being positive, and 35.8% (53/148) in goat kids with 8 out of the 10 farms being positive. Both in the goat kids and in the lambs the host specific assemblage E was most commonly identified. However, the zoonotic assemblage A was identified in 6 out of 28 goat kids and in 2 out of 8 lambs, based on the beta-giardin sequence alignment. Using the assemblage specific PCR, mixed assemblage A and E infections were additionally identified in 2 lambs and in 5 goat kids. The results of the present study indicate that both Cryptosporidium and Giardia are common parasites on intensively reared sheep and goat farms in the province of East Flanders, Belgium, and that they are a potential source for zoonotic infections.  相似文献   

16.
Cryptosporidium (C.) spp. are important zoonotic parasites causing widespread diarrhoeal disease in man and animals. The recent release of the complete genome sequences for C. parvum and C. hominis has facilitated the comprehensive global proteome analysis of these opportunistic pathogens. The well-known approach for mass spectrometry (MS) based data analysis using the BLAST tool (MS BLAST) is a database search protocol for identifying unknown proteins by sequence similarity to homologous proteins using peptide sequences produced by mass spectrometry. We have used several complementary approaches to explore the global sporozoite proteome of C. parvum with available proteomic tools. To optimize the output of the MS data, a sequence similarity-based MS BLAST strategy was employed for bioinformatic analysis. Most significantly, almost all the constituents of glycolysis and several mitochondrion-related proteins were identified. In addition, many hypothetical Cryptosporidium proteins were validated by the identification of their constituent peptides. The MS BLAST approach was found to be useful during the study and could provide valuable information towards a complete understanding of the unique biology of Cryptosporidium.  相似文献   

17.
Cryptosporidiosis acutely impacts the digestive and/or respiratory tract of the birds in many species of various orders. More importantly, it is also well known as a significant zoonotic disease, which can lead to diarrhea in humans and livestock. Regarding increasing demand for free-range products and increasing the number of free-range poultry farms, the present paper evaluated histopathological and molecular detection of Cryptosporidium baileyi and Cryptosporidium parvum in free-range and commercial broiler chickens in the north part of Iran. For this purpose, 100 fecal and tissue samples of the chickens in Guilan province were collected. After microscopic examination using Ziehl-Neelsen staining, molecular analyses of the fecal samples were processed by Nested-PCR targeting the 18S rRNA gene followed by sequencing of the amplicons and phylogenetic analyses. Eventually, the tissue samples were studied for histological lesions. Findings demonstrated the presence of Cryptosporidium baileyi and Cryptosporidium parvum in 6 % and 2 % of fecal samples, respectively. This is the first identification of C.parvum in avian hosts in Iran, and for the first time, C.baileyi and C.parvum are shown in native free-range chickens in Iran. All of the PCR positive birds with clinical symptoms showed gross lesions of respiratory infections. There was no significant difference between infection rate in free-range and commercial broiler chickens; however, the infection rate was significantly higher in chickens <25 days old. To conclude, we present here a notable Cryptosporidium infection rate in the free-range chicks in Iran, which notify the role of this host as a reservoir and should be more noted due to the economic and zoonotic importance.  相似文献   

18.
Despite the development of new technologies, new challenges still remain for large scale proteomic profiling when dealing with complex biological mixtures. Fractionation prior to liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis is usually the preferred method to reduce the complexity of any biological sample. In this study, a gel LC-MS/MS approach was used to explore the stage specific proteome of Cryptosporidium (C.) parvum. To accomplish this, the sporozoite protein of C. parvum was first fractionated using SDS-PAGE with subsequent LC-MS/MS analysis. A total of 135 protein hits were recorded from 20 gel slices (from same gel lane), with many hits occurring in more than one band. Excluding all non-Cryptosporidium entries and proteins with multiple hits, 33 separate C. parvum entries were identified during the study. The overall goal of this study was to reduce sample complexity by protein fractionation and increase the possibility of detecting proteins present in lower abundance in a complex protein mixture.  相似文献   

19.
Cryptosporidiosis is one of the major causes of diarrhea in calves. Cryptosporidium parvum is considered the most important calf diarrhea pathogen in the Cryptosporidium species. Not only could infected calves spread C. parvum, but infected adult cattle could also shed oocysts. The objectives of this study were (1) to investigate the prevalence of C. parvum in dairy herds in Taiwan, including calves, the dams in delivery enclosure, the floor, and the drinking water; (2) to clarify the relationship of diarrhea, management, and C. parvum infection. Twenty dairy herds in Taiwan were selected by random sampling, including 226 calves and 198 dams, and other environmental samples were collected. A questionnaire was filled out by the farm owners to collect information regarding the management of calves and the delivery enclosure. Hierarchical logistic regression was used to analyze the risk factors for C. parvum infection. The prevalence of C. parvum infection in calves was 26.5% (60/226), while in dams, it was 19.7% (39/198). The C. parvum infection in calves increased with environmental contamination of C. parvum and clinical signs of diarrhea, while it decreased with a yard provided in the delivery enclosure. In conclusion, the management of the delivery enclosure appears to be more important for preventing cryptosporidiosis in calves in Taiwan.  相似文献   

20.
Fecal samples of 2,056 dairy cattle from 14 farms were collected in three geographical regions of China and stained using a modified acid-fast staining technique to identify Cryptosporidium oocysts. A total of 387 (18.82%) positive samples were identified and further analyzed by polymerase chain reaction (PCR) using primers designed to amplify DNA fragments from the small subunit ribosomal RNA. The PCR products were sequenced and the sequences were deposited in the GenBank database under accession numbers EU369377-84 and GU070730-33. Phylogenetic analysis was performed and a distances matrix generated from these sequences confirmed the existence of Cryptosporidium (C.) parvum ''mouse'' genotype, C. bovis, C. andersoni, C. hominis, and C. serpentis in cattle. These results represent the first report on the prevalence and genetic identification of Cryptosporidium species, and may contribute to a better understanding of the epidemiology of Cryptosporidium in cattle in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号