首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
A short duration (24h) leaf-disc bioassay was used to determine the effects of teflubenzuron residues on the predation levels of two predators, Iphiseius degenerans (Berlese) and Orius laevigatus (Fieber), foraging on nymphs of two species of thrips, Frankliniella occidentalis (Pergande) and Heliothrips haemorrhoidalis (Bouche), on a range of different species of plant. Teflubenzuron did cause thrips mortality during the 24-h bioassay; it was more active against H haemorrhoidalis than F occidentalis. Teflubenzuron did not cause significant mortality to either species of predator, although on some plants the effectiveness of both predators was reduced in the presence of teflubenzuron.  相似文献   

2.
BACKGROUND: Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) and Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) are among the most serious pests of sweet peppers in greenhouses. Chemical control is difficult because of their high reproductive rates and insecticide resistance, and seasonal inoculative releases of Orius laevigatus (Fieber) and Amblyseius swirskii (Athias‐Henriot) are commonly used to reduce their populations. As chemical treatments are often needed in the crop against other pests, the side effects of methoxyfenozide (an insect growth regulator against lepidopteran pests) and flonicamid (a selective feeding inhibitor against sucking insects) were studied in both beneficial organisms in a commercial greenhouse. RESULTS: Orius laevigatus and A. swirskii were released at commercial rates (4–5 and 100 m?2), and a strong establishment and a very homogeneous distribution were reached. One pesticide treatment with the maximum field recommended concentration of methoxyfenozide and flonicamid (96 and 100 mg AI L?1) was done when they were well established, and their population levels were not affected either immediately or up to 30 days after treatment. CONCLUSION: The results are indicative of no impact of methoxyfenozide and flonicamid on the two natural enemies in the field, and both can be considered as potential alternatives to be included in IPM programmes in sweet pepper. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Certain bisacylhydrazine compounds such as tebufenozide (RH5992) have been shown to act as order‐specific insecticides. Their compatibility with predatory Heteroptera, which are used as biological control agents, has also been demonstrated. However, the molecular mode of action of these ecdysone agonists has not been explored in a heteropteran, much less one that is a significant agricultural pest, such as Nezara viridula. RESULTS: Alternatively spliced ligand‐binding regions of the N. viridula ecdysone receptor were expressed, purified and characterised by 2D gel analysis, mass spectrometry, homology modelling and competitive binding of a bisacylhydrazine insecticidal compound (RH5992) and various ecdysteroids. Ligand binding by the two splice isoforms was indistinguishable, and relative affinities were found to occur in the order muristerone A > ponasterone A > 20‐hydroxyecdysone > inokosterone > RH5992 > α‐ecdysone. CONCLUSION: The predicted difference in amino acid sequence between the ligand‐binding domains of the N. viridula ecdysone receptor splice variants was verified by mass spectrometry. Both splice variant isoforms exhibit a greater affinity for the bisacylhydrazine insecticide RH5992 than do the other hemipteran ecdysone receptors characterised to date. Their affinities for a range of ecdysteroids also distinguish them from the ecdysone receptors of other Hemiptera characterised thus far. Homology models of both N. viridula receptor isoforms provide further insight into the bisacylhydrazine‐ and ecdysteroid‐binding properties of these receptors, including their similar affinity for 20‐hydroxyecdysone and the postulated pentatomomorphan moulting hormone makisterone A. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
BACKGROUND: Olive fruit fly, Bactrocera oleae (Rossi), is a key pest in olive orchards, causing serious economic damage. To date, the pest has already developed resistance to the insecticides commonly applied to control it. Thus, in searching for new products for an accurate resistance management programme, targeting the ecdysone receptor (EcR) might provide alternative compounds for use in such programmes. RESULTS: Residual contact and oral exposure in the laboratory of B. oleae adults to the dibenzoylhydrazine‐based compounds methoxyfenozide, tebufenozide and RH‐5849 showed different results. Methoxyfenozide and tebufenozide did not provoke any negative effects on the adults, but RH‐5849 killed 98‐100% of the treated insects 15 days after treatment. The ligand‐binding domain (LBD) of the EcR of B. oleae (BoEcR‐LBD) was sequenced, and a homology protein model was constructed. Owing to a restricted extent of the ligand‐binding cavity of the BoEcR‐LBD, docking experiments with the three tested insecticides showed a severe steric clash in the case of methoxyfenozide and tebufenozide, while this was not the case with RH‐5849. CONCLUSION: IGR molecules similar to the RH‐5849 molecule, and different from methoxyfenozide and tebufenozide, might have potential in controlling this pest. Copyright © 2012 Society of Chemical Industry  相似文献   

5.
The contact toxicity of indoxacarb, abamectin, endosulfan, insecticide soap, S-kinoprene and dimethoate to Orius insidiosus (Say) and Aphidius colemani Viereck were studied in the laboratory. These beneficials are often used in the greenhouses to manage various insect pests. Indoxacarb is slow acting and therefore, to estimate lethal dosages, observations should be continued for several days until data stabilize. Seven days after treatment, the LC50 was 0.119 g AI litre(-1) for O insidiosus adults and 0.019 g AI litre(-1) for A colemani. At that time, the recommended field concentration was 0.479 times the LC50 for O insidiosus adults and three times the LC50 for A colemani. In contrast, indoxacarb had no adverse effect on the reproductive capacity of wasps surviving a treatment or the developing wasps in the aphid mummy. Among the other insecticides S-kinoprene was the most innocuous while dimethoate was the most toxic to the two beneficials. The other insecticides had overlapping toxicities.  相似文献   

6.
通过药剂水培法,研究比较了不同培养条件对7种新烟碱类杀虫剂在韭菜中的内吸性及其对韭菜迟眼蕈蚊Bradysia odoriphaga(Diptera:Sciaridae)4龄幼虫的毒力。结果表明:随着水培时间的延长,韭菜中7种杀虫剂对供试幼虫的毒力均呈增强的趋势,其中在100 mg/L下,噻虫胺和吡虫啉产生毒力作用较快,水培72 h时对幼虫的致死率分别为32.38%和36.50%,168 h时,呋虫胺的致死率最高,达96.35%;同一药剂在相同浓度下处理,内吸至韭菜叶部产生的致死作用快于内吸至假茎所产生的作用,并且致死率更高;水培温度及药液浓度越高,内吸后毒力产生越快,且致死率越高。表明新烟碱类杀虫剂可以通过韭菜根部处理防治咀嚼式口器害虫韭菜迟眼蕈蚊。  相似文献   

7.
8.
In this review an effort was made to summarize the up to date information on the knowledge on the action mechanism of diflubenzuron (DFB), a prototype chemical for the benzoylurea type insecticides, with respect to its molecular mechanism to inhibit insect chitin synthesis. The key problem in pinpointing the action site of this insecticide has been the lack of in vitro demonstration of its action to inhibit insect chitin synthesis under cell free conditions. This problem was solved when an approach using a intracellular vesicle preparation from the cuticle of newly molted Periplaneta americana was developed. Using this approach it has become possible to identify that DFB indeed inhibits the process of incorporation of N-acetylglucosamine into insect chitin. Recently there has been a breakthrough in this field, when a sulfonylurea receptor (SUR) was identified in Drosophila melanogaster. This information was instrumental in establishing that insect SUR in the above intracellular vesicular preparation from P. americana as well as Blattella germanica is likely the actual target site of DFB to cause inhibition of chitin synthesis. The role of SUR in this case has been determined, by using glibenclamide, a typical SUR specific inhibitor as an aid, to be helping the exocytotic movement of these vesicles as is the case of other members of the group of ABC-transporters to which insect SUR belongs. In this case both DFB and glibenclamide have been shown to cause the depolarization of the vesicle membrane through inhibition of the K+ channel, which leads to their inhibition of chitin synthesis.  相似文献   

9.
10.
为明确生产栽培小麦品种对玉米象Sitophilus zeamais(Motschulsky)的抗性机制,采用选择性和非选择性试验法系统评估了9个小麦品种对玉米象的抗性,并分析了小麦籽粒营养物质和次生物质含量与其抗性的关系。结果显示,不同小麦品种对玉米象的抗性存在显著差异,其中陕麦139和西农88的不选择性和抗生性较弱,小偃22、周麦16和周麦11较强;玉米象成虫对西农165选择性最强,虫口数为152.00头,而卵至子代成虫发育历期最长,为35.06 d,子代成虫数、重量损失率和敏感系数均较低,分别为19.67头、5.37%和8.30;对周麦18选择性最差,敏感性居中。玉米象成虫对不同小麦品种的选择性与各物质含量,以及总酚、蛋白质含量与各抗性指标均无显著相关性,但阿魏酸含量与子代成虫数、敏感系数及重量损失率显著负相关;可溶性糖含量与子代成虫数、敏感系数及重量损失率显著正相关,与卵至子代成虫发育历期显著负相关。表明小麦品种对玉米象的抗生性与其籽粒中阿魏酸和可溶性糖含量相关,阿魏酸含量越高、可溶性糖含量越低,小麦对玉米象的抗性越强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号