共查询到20条相似文献,搜索用时 15 毫秒
1.
The element sulfur has an outstanding role in the crop protection chemistry because it is used in its elemental form as a multisite fungicide, but is also part of agrochemicals in the form of aromatic or aliphatic sulfur-containing rings or sulfur-based functional groups. This review gives an exhaustive overview over the latter category. Several fundamental agrochemical compound classes are named after a sulfur-based functionality, such as the dithiocarbamate fungicides and sulfonylurea herbicides. Altogether, 16 different sulfur-based functional groups are presented with their typical synthesis approaches and most important representatives in crop protection. © 2023 Society of Chemical Industry. 相似文献
2.
本研究建立了分散固相萃取-超高效液相色谱-串联质谱法同时检测大豆中灭草松、三氟羧草醚、氯虫苯甲酰胺、甲氨基阿维菌素苯甲酸盐、吡唑醚菌酯、精喹禾灵及其代谢物喹禾灵酸的多残留分析方法,为监测大豆生产中的农药应用风险提供方法。该方法具有简单、快捷、准确、灵敏度高的特点。样品经1%甲酸-乙腈振荡提取后,分散固相萃取净化,流动相为甲酸铵-水溶液(含0.01% 甲酸)和甲酸铵-甲醇溶液(含0.01% 甲酸),采用苯基色谱柱进行分离,基质匹配标准曲线外标法定量分析。结果表明:目标农药及代谢物在0.001~1 mg/kg添加水平下平均回收率为78.1%~116.0%,相对标准偏差(RSD)为1.6%~20.5%,该方法在0.001~1 mg/kg范围内线性良好(R2≥0.991 1),定量限(LOQ)可达0.001 mg/kg。基于此方法对内蒙古产区的大豆样品进行测定,发现大豆中灭草松、氯虫苯甲酰胺、吡唑醚菌酯有检出,残留量在<0.001~0.024 mg/kg之间,喹禾灵酸、三氟羧草醚、甲氨基阿维菌素苯甲酸盐残留量均<0.002 mg/kg。采集的大豆样品中6种目标农药残留量均符合我国农药最大残留限量标准安全要求。 相似文献
3.
4.
Jeffery Perris 《Pest management science》1996,47(4):379-383
This paper discusses the experience of turfgrass advisory agronomists and research workers at the Sports Turf Research Institute—a long-established and independent organisation devoted purely to research and advice pertaining to turfgrasses and their culture. In the assessment of customer needs and market opportunities, strenuous efforts have been made to establish recent and current trends relating to pesticide sales, either from manufacturers and/or distributors. Because manufacturers were reluctant to divulge information about products, and distributors apparently had no access to such information, the only available data on pesticide use and sales are in the British Agrochemicals Association via their 1995 Annual Review and Handbook. 相似文献
5.
The effects of sublethal dosages of insecticides applied to Plutella xylostella L. (Lepidoptera: Yponomeutidae) and Lipaphis erysimi Kaltenbach (Homoptera: Aphidiidae) on the insecticide susceptibility of the surviving endoparasitoids, Cotesia plutellae Kurdjumov (Hymenoptera: Braconidae) and Diaeretiella rapae (M'Intosh) (Hymenoptera: Aphidiidae), were studied in Shangjie, Minhou, China. The susceptibility to methamidophos and the sensitivity of acetylcholinesterase (AChE) to methamidophos and dichlorvos in the adults of host insects were substantially lower than those in the two parasitoids. The host insects were treated with sublethal dosages of methamidophos in P. xylostella and of methamidophos and avermectin in L. erysimi. The cocoon formation in the two parasitoids decreased significantly, from 35.0% (control) to 13.0% (with methamidophos treatment) for C. plutellae; from 20.6% (control) to 9.0% (with methamidophos treatment) and from 24.3% (control) to 16.7% (with avermectin treatment) for D. rapae. The susceptibility to methamidophos of the resultant emerging adults of the two parasitoids was found to be significantly lower than that of the control when the parasitoids were left in contact with the same dosages of methamidophos. The average AChE activity inhibition by methamidophos and dichlorvos in 34-60 adults of the two parasitoids that emerged from the treatments (15.1% and 31.8% respectively for C. plutellae, and 21.1% and 26.9% for D. rapae) was also significantly lower than those of the controls (55.4% and 48.3% respectively for C. plutellae, and 42.9% and 51.7% for D. rapae). The bimolecular rate constant (k(i)) values of AChE to methamidophos and dichlorvos in the adults of parasitoids without the insecticide treatment were 1.78 and 1.56 times as high as those that emerged from the host insects treated with methamidophos for C. plutellae, and 1.91 and 1.66 times as high as those in the case of D. rapae. It is suggested that there is a difference in AChE sensitivity to insecticides between the resultant emerging parasitoids with and without insecticide pretreatment. Furthermore, the introduction of the insecticides to the host insects could be an important factor in the insecticide resistance development of the endoparasitoids. The natural selectivity would favour the parasitoids that had developed an insensitivity to the insecticide(s). 相似文献
6.
7.
8.
9.
BACKGROUND: Estimates of arthropod population size may paradoxically increase following insecticide applications. Research with ground beetles (Coleoptera: Carabidae) suggests that such unusual results reflect increased arthropod movement and capture in traps rather than real changes in population size. However, it is unclear whether direct (hyperactivity) or indirect (prey-mediated) mechanisms produce increased movement. RESULTS: Video tracking of Scarites quadriceps Chaudior indicated that brief exposure to lambda-cyhalothrin or tefluthrin increased total distance moved, maximum velocity and percentage of time moving. Repeated measurements on individual beetles indicated that movement decreased 240 min after initial lambda-cyhalothrin exposure, but increased again following a second exposure, suggesting hyperactivity could lead to increased trap captures in the field. Two field experiments in which ground beetles were collected after lambda-cyhalothrin or permethrin application attempted to detect increases in population size estimates as a result of hyperactivity. Field trials used mark-release-recapture methods in small plots and natural carabid populations in larger plots, but found no significant short-term (<6 day) increases in beetle trap captures. CONCLUSION: The disagreement between laboratory and field results suggests mechanisms other than hyperactivity may better explain unusual changes in population size estimates. When traps are used as a primary sampling tool, unexpected population-level effects should be interpreted carefully or with additional data less influenced by arthropod activity. 相似文献
10.
BACKGROUND: The effects of an insecticidal soap on the survival, fitness and behaviour of an aphid parasitoid wasp, Aphidius colemani (Viereck), were studied in the laboratory. The LC(50) (soap concentration causing 50% mortality 24 h after treatment) was determined. The survival of parasitoid larvae (% adult emergence), fitness (tibia length of adults) and number of eggs produced per female parasitoid that survived in third- and fourth-instar aphids treated with insecticidal soap LC(50) were also assessed. The LC(50) for third- and fourth-instar aphids was determined to be 3.25 g L(-1). Acceptance by female parasitoids of aphids that survived their LC(50) was also tested. RESULTS: The soap concentration causing 100% mortality in adult wasps 24 h after treatment was 17.5 g L(-1). The LC(50) was 2.75 g L(-1). Soap did not have any effect on the survival of parasitoid immatures or on the fitness or number of eggs produced per female parasitoid. Wasps that were in contact with treated aphids did not oviposit as much in them as in untreated aphids, indicating that female parasitoids detected aphids treated with insecticidal soap. CONCLUSION: These data suggest that aphid parasitoids released following treatment with insecticidal soap are likely to accept a lower proportion of the surviving aphids. Biological control programmes could be ameliorated by soap applications if the latter were made 1 day before the release of wasps in the greenhouse. 相似文献
11.
G Christopher Cutler Krilen Ramanaidu T Astatkie Murray B Isman 《Pest management science》2009,65(2):205-209
BACKGROUND: Resurgence of insect pests following insecticide applications is often attributed to natural enemy disturbance, but hormesis could be an alternative or additional mechanism. Green peach aphid, Myzus persicae (Sulzer), is an important insect pest of many crops worldwide that may be exposed to sublethal insecticide concentrations over time. Here, the hypothesis that exposure to low concentrations of imidacloprid and azadirachtin can induce hormetic responses in M. persicae is tested in the laboratory. RESULTS: When insects were exposed to potato leaf discs dipped in sublethal concentrations of insecticide, almost all measured endpoints—adult longevity, F1 production, F1 survival and F2 production—were affected, and a statistically significant (P < 0.05) stimulatory response was recorded for F2 production following exposure to imidacloprid. No other measures for hormesis were statistically significant, but other trends of hormetic response were consistently observed. CONCLUSIONS: Given that variable distribution and degradation of insecticides in the field would result in a wide range of concentrations over time and space, these laboratory experiments suggest that exposure to sublethal concentrations of imidacloprid and azadirachtin could stimulate reproduction in M. persicae. Copyright © 2008 Society of Chemical Industry 相似文献
12.
The acute and sublethal toxicities of novaluron, a novel chitin synthesis inhibitor, to a laboratory-reared insecticide-susceptible strain of Colorado potato beetle, Leptinotarsa decemlineata (Say), were determined. Novaluron exhibited excellent residual (120 h LC(50) = 0.42 mg litre(-1)) and good direct contact (120 h LC(50) = 27 mg litre(-1)) activity against second-instar larvae (L2). Hatch of eggs exposed by direct contact to novaluron solutions > or =100 mg litre(-1) was significantly reduced, as was the ability of emerged first-instar larvae to moult. L2 from eggs exposed to > or =100 mg litre(-1) novaluron weighed significantly less (P < 0.0001) than those from untreated eggs. However, L2 from eggs treated with 1 mg litre(-1) novaluron weighed significantly more (P < or = 0.05) than those from untreated eggs, suggesting novaluron can have a hormetic effect on L decemlineata larval development. Leptinotarsa decemlineata mating pairs fed foliage treated with novaluron at 25 or 75 g AI ha(-1) produced approximately 25% fewer egg masses and eggs per mass. Hatch of eggs on treated foliage was almost completely suppressed, and longevity of male beetles was reduced by approximately 50% when fed foliage treated with novaluron at 75 g AI ha(-1). 相似文献
13.
BACKGROUND: The diamondback moth (DBM), Plutella xylostella (L.), is the most important pest of cruciferous vegetables in the world. Chlorantraniliprole is a novel anthranilic diamide insecticide registered for the control of lepidopteran pests. The dose response, residual toxicity and sublethal effects of chlorantraniliprole applied for 48 h at LC10 (0.02 mg L?1) and LC25 (0.06 mg L?1) on P. xylostella were investigated. RESULTS: Leaf‐dip bioassays showed that chlorantraniliprole had a high level of toxicity against larvae of P. xylostella, and the 48 h LC50 values were 0.23 and 0.25 mg L?1 for a susceptible and field strain respectively. Chlorantraniliprole also had a long‐lasting effect when the larvae were exposed to chlorantraniliprole field sprayed on radish seedlings. Sublethal effects of chlorantraniliprole were indicated by reduced pupation, pupal weight and adult emergence rates. There was also an increase in the duration of female preoviposition period, decreased fecundity and egg hatch and decreased survival rates of the offspring. The mean values of the net reproductive rate (R0), intrinsic rate of increase (rm), finite rate of increase (λ) were significantly lower in the treatment than in control groups. CONCLUSIONS: These results indicate that chlorantraniliprole is effective against P. xylostella. The sublethal concentrations of chlorantraniliprole may reduce the population growth of P. xylostella by decreasing its survival and reproduction, and by delaying its development. Copyright © 2012 Society of Chemical Industry 相似文献
14.
15.
16.
Moloud Gholamzadeh-Chitgar Jalil Hajizadeh Mohammad Ghadamyari Azadeh Karimi-Malati Hassan Hoda 《国际虫害防治杂志》2013,59(3):204-211
Effects of three insecticides, diazinon, fenitrothion and chlorpyrifos on Andrallus spinidens Fabricius (Hemiptera: Pentatomidae), a predator of lepidopterous larvae in rice fields were investigated. The insecticides were applied topically at lethal dose (LD30) on the fifth instar nymphs of A. spinidens and evaluated on life table and some biochemical parameters of the predatory bugs. The results showed that pre-oviposition period, fecundity and longevity of treated bugs were significantly affected compared with the control. Analysis of life table parameters of A. spinidens revealed adverse effects of insecticides on net reproductive rate (R0), intrinsic rate of increase (r), finite rate of increase (λ), doubling time (DT) and mean generation time (T). Among the tested insecticides, fenitrothion was the most toxic insecticide. The lowest value of r was 0.060 day?1 in fenitrothion. Effects of insecticides on the detoxification enzymes showed that all compounds had inhibitory effect on esterases, acetylcholinesterases and glutathione S-transferases. According to this study, the insecticides cause harmful effects on demographic and biochemical parameters of A. spinidens and are not compatible with the predatory bug even at sublethal concentration. 相似文献
17.
Stanislav Pekr 《Pest management science》1999,55(11):1077-1082
Field experiments have revealed that some species of spiders are more sensitive to insecticides than others. Among many factors influencing their susceptibility, foraging mode seems to play an important role. Aspects of foraging mode that appear to be relevant are whether the spider is diurnal or nocturnal, a hunter or a web-maker. Six spider species, Araniella opisthographa, Clubiona neglecta, Dictyna uncinata, Pardosa agrestis, Philodromus cespitum and Theridion impressum were used in the study. P agrestis and P cespitum are diurnal hunters that may come into direct contact with insecticide. C neglecta is nocturnal and so is exposed to residues only. The remaining three species are web-makers building webs that vary in the extent to which they can protect the spider from direct spray. The effect of sprays was tested under laboratory conditions (Potter tower) with three commercial insecticides, an insect growth regulator (hexaflumuron), a selective organophosphorus (phosalone) and a non-selective pyrethroid insecticide (permethrin) using a four-day exposure period. Data were analysed using bootstrap method and randomization tests. The results obtained showed that hunting spiders were more susceptible to the insecticides tested than web-makers (in their webs). Diurnal hunting spiders (Philodromus and Pardosa) were severely affected only by permethrin. A high mortality was observed for the nocturnal hunter, Clubiona, after application of phosalone and permethrin. This species appears to be very sensitive to residues of both insecticides. Comparing the effect on web-making spiders, with and without webs, it was observed that the sparse orb-web of Araniella did not protect its owner at all, but the dense cribellate and frame-webs of Dictyna and Theridion, respectively, reduced the mortality caused by permethrin significantly in comparison with specimens without webs. Of other factors studied, posture (normal and upside-down position) did not influence the susceptibility. Mortality increased slightly with body size after permethrin application. © 1999 Society of Chemical Industry 相似文献
18.
BACKGROUND: Pest resurgence following a pesticide application may occur owing to a stimulatory (hormetic) response to sublethal insecticide concentrations. The objective of the present study was to examine the potential for a greenhouse‐derived red clone of Myzus persicae to exhibit resurgence owing to a hormetic response following a systemic imidacloprid treatment in a bell pepper greenhouse. RESULTS: No differences in mortality and fecundity were observed among apterous adults exposed to sublethal imidacloprid concentrations on excised pepper leaves fed aqueous solutions of imidacloprid. Survival of first‐generation progeny was negatively affected by imidacloprid exposure, yet surviving progeny exhibited no differences in development rates or fecundity from progeny of adults unexposed to imidacloprid. Aphid mortality declined most rapidly in clip cages on pepper leaves at the top of the pepper canopy as compared with leaves present at the middle or bottom of the pepper canopy. CONCLUSION: Imidacloprid decays rapidly in mature pepper plants, resulting in sublethal concentrations in the upper canopy in as little as 4 weeks. Sublethal insecticide concentrations have been implicated in the resurgence of pest populations; however, exposure to sublethal doses of imidacloprid are unlikely to result in pesticide‐induced resurgence of the M. persicae aphid clone examined in this study. Copyright © 2011 Society of Chemical Industry 相似文献
19.