首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Water conservation often is limited by soil conditions that cause runoff, even from small rainstorms. This study evaluated the influence of tillage-induced aggregates on infiltration into Pullman soil (Torrertic Paleustoll). Tillage methods were PLOW (plowing and disking), ROTO (rotary), SWEEP (sweep), or NOTILL (no-tillage). Aggregate sizes were <0.42, 0.42—0.84, 0.84—2.0, 2.0—6.4, and 6.4—18.3mm. Rainwater was applied until runoff and percolation became constant. Final infiltration (If) rates differed due to tillage, aggregate size, and interaction effects, but maximum difference was only 8.1 mm h−1, suggesting that If rate differences have little significance from a water conservation viewpoint during intense, short-duration rainstorms that occur in semiarid regions. Cumulative infiltration (Ic) apparently is of greater significance; it was greatest for large aggregates. The PLOW treatment resulted in most large aggregates and presumably would result in greatest Ic. However, under field conditions, Ic was similar for PLOW and SWEEP treatments. For the SWEEP treatment, tillage undercut the surface and retained more residues, thus negating the advantage of larger, but apparently less stable, aggregates with the PLOW treatment with respect to Ic.  相似文献   

2.
《Soil Technology》1994,7(3):209-220
The effects of selected soil management practices (conventional tillage, tied ridges and crop residue mulching) on soil moisture conservation in a semi-arid area of Kenya were studied during the short rains period, 1988, and long rains period, 1989. Three treatments, mulching, tied ridges and conventional tillage with three replications of each practice under a completely randomized block design, were used in the study. Nine experimental plots, each 4 m × 10 m were set up on a slope of 2%. During the study period, soil moisture was monitored on a weekly basis using the neutron probe at predetermined depths to a maximum depth of 120 cm. Calibration of the neutron probe was done for the soil at two depth ranges: 0–90 cm and 90–120 cm. The need to calibrate the probe for the 90–120 cm depth arose due to the presence of iron concretions within this depth range. The results obtained from this study showed that overall, crop residue mulching did result in more moisture down the profile throughout the two seasons within 2 years than the other two tillage practices. The tied ridged plots had the lowest amount of soil moisture in the soil profile during the two seasons. Thus the application of surface crop residue mulch seems to be the best soil management practice for increased soil moisture conservation and improved crop performance in rainfall marginal areas of Kenya.  相似文献   

3.
Understanding the influence of growth temperature and carbon dioxide (CO2) on seed quality in terms of seed composition, subsequent seedling emergence and early seedling vigour is important under present and future climates. The objective of this study was to determine the combined effects of elevated temperature and CO2 during seed-filling of parent plants on seed composition, subsequent seedling emergence and seedling vigour of red kidney bean ( Phaseolus vulgaris ). Plants of cultivar 'Montcalm', were grown at daytime maximum/nighttime minimum sinusoidal temperature regimes of 28/18 and 34/24 °C at ambient CO2 (350 μmol mol−1) and at elevated CO2 (700 μmol mol−1) from emergence to maturity. Seed size and seed composition at maturity and subsequent per cent emergence, early seedling vigour (rate of development) and seedling dry matter production were measured. Elevated CO2 did not influence seed composition, emergence, or seedling vigour of seeds produced either at 28/18 or 34/24 °C. Seed produced at 34/24 °C had smaller seed size, decreased glucose concentration, but significantly increased concentrations of sucrose and raffinose compared to 28/18 °C. Elevated growth temperatures during seed production decreased the subsequent per cent emergence and seedling vigour of the seeds and seedling dry matter production of seed produced either at ambient or elevated CO2.  相似文献   

4.
The management of straw residue can be a concern in non-inversion tillage systems where straw tends to be incorporated at shallow depths or left on the soil surface. This can lead to poor crop establishment because straw residue can impede or hinder crop emergence and growth. Small container-based experiments were undertaken using varying amounts of wheat straw residue either incorporated or placed on the soil surface. The effects on days to seedling emergence, percentage emergence, seedling dry-weight and soil temperature using sugar beet and oilseed rape were investigated because these crops often follow wheat in a cropping sequence.The position of the straw residue was found to be the primary factor in reducing crop emergence and growth. Increasing the amount of straw residue (from 3.3 t ha?1 to 6.7 t ha?1) did not show any consistent trends in reducing crop emergence or growth. However, in some instances, results indicated that an interaction between the position and the amount of straw residue occurred particularly when the straw and seed was placed on the soil surface. Straw placed on the soil surface significantly reduced mean day-time soil temperature by approximately 2.5 °C compared to no residue. When the seed and straw was placed on the soil surface a lack of seed-to-soil contact caused a reduction in emergence by approximately 30% because of the restriction in available moisture that limited the ability for seed imbibition. This trend was reversed when the seed was placed in the soil, but with straw residue still on the soil surface, because the surface straw was likely to reduce moisture evaporation and improved seed-to-soil contact that led to rapid emergence. In general, when straw was mixed in or placed on the soil surface along with the seed, sugar beet and oilseed rape emergence and early growth biomass was significantly restricted by approximately 50% compared to no residue.The consequences of placing seed with or near to straw residue have been shown to cause a restriction in crop establishment. In both oilseed rape and sugar beet, this could lead to a reduction in final crop densities, poor, uneven growth and potentially lower yields that could lower financial margins. Therefore, if farmers are planning to use non-inversion tillage methods for crop establishment, the management and removal of straw residue from near or above the seed is considered important for successful crop establishment.  相似文献   

5.
High-temperature Effects on Germination and Viability of Weed Seeds in Soil   总被引:2,自引:0,他引:2  
The control of weeds by solar heating of the soil using transparent polyethylene (PE) sheets was studied in the field during the summers of 1994 and 1995. The maximum soil temperature under plastic cover at 5 cm depth averaged 53°C. At 5 cm soil depth, solarization increased temperature by about 9°C. In the non-solarized soils, such high-temperature days were fewer. A temperature of 55°C at 5 cm soil depths was recorded both in irrigated and non-irrigated mulched soils. However, mulched soil recorded 70% of the treatment period compared with 43% in unirrigated and mulched soils. Lower depths of 10 and 15 cm did not attain a temperature 55°C or 60°C on any day during the experimental period.
Solarization treatment with PE sheets significantly increased NO3—N and NH+4—N in comparison with non-solarized plots. While uncovered plots showed significant increase in available phosphorus and marginally increased in potassium and electrical conductivity. Organic carbon content and pH did not vary under different treatments.
PE mulching for 30 days significantly reduced the number of weed seeds, specifically Avena fatua L. and Phalaris minor Retz., while Trianthema monogyna Linn, and Asphodelus tenuifolius Cav. were not affected much in comparison with the former. Melilotus indica (L.) All, was not at all affected by the solarization treatment studied. The solarization reduction index (SRI) was calculated for each weed species studied and it was concluded that weeds having a low SRI can be controlled more effectively than weeds with high SRI values. The heating effect from solarization decreased significantly with soil depth. The 30 days' soil solarization treatment in moist soil was more effective than the 10 and 20 days' heating treatment in moist and dry soils for weed control.  相似文献   

6.
Despite possible agronomic and environmental benefits, the diffusion of soil conservation tillage systems in Italy is currently rather low. The aim of this study was to compare the performance of different soil tillage techniques, in an effort to identify suitable soil management options for irrigated crops in Central Italy. An experiment was carried out on maize and soybean from April to October in two consecutive years (1993 and 1994) in Maccarese (a coastal location near Rome). The systems compared were: conventional mouldboard ploughing (CT), minimum tillage, ridge tillage and no-tillage (NT). In 1993, actual crop evapotranspiration was measured throughout the growing season on NT and CT soybean, using a micrometeorological technique.
No significant differences due to soil tillage were found for grain yield and yield irrigation water use efficiency (IWUEy), except for soybean in 1994, in which yields and IWUEy were 59 % higher on conservation tillage treatments compared with CT. In 1994 soybean yield water use efficiency was 10.1 and 9.5 kg ha−1 mm−1 for NT and CT respectively. The results suggest that the adoption of soil conservation tillage is feasible, for the specific cropping system, with equivalent or better performances as conventional tillage.  相似文献   

7.
Abstract Estimates of soil evaporation and available soil water of no‐tillage fields under farm conditions are important to assess soil water status at sowing of rainfed grain crops. The objective of this study was to predict stored soil water of no‐tillage fields during the fallow periods following soybean (Glycine max (L.) Merr.) and maize (Zea mays L.) crops by accounting for decreased soil evaporation as a result of the residues left on the soil surface. Three simple phenomenological models were used to simulate stored soil water under field conditions at seven locations in Argentina. Two models calculated decreased soil evaporation based on crop residue mass, and the third assumed a constant fractional decrease in bare soil evaporation. All models gave good estimates of soil water content during the fallow periods following a soybean crop. In cases with large quantities of maize residue, however, the models resulted in more water retention in the soil than observed as a consequence of underprediction of soil evaporation. These results indicate that full benefit of crop residue was not being achieved in these fields, probably due to a failure to finely chop and uniformly distribute the crop material on the soil surface.  相似文献   

8.
Tef [ Eragrostis tef (Zucc.) Trotter] is an annual C4 grass crop that originated in Ethiopia. It has potential as a grain crop in the Great Plains because of its tolerance to drought and high temperatures. In Ethiopia, tef seed is typically broadcast on the soil surface and lightly incorporated. Shallow planting depths are used because the seed is very small and emergence can be limited by soil crusting. If planting equipment is to be used, planting depth may be important for successful tef production. The objective of this study was to identify optimal depths and soil temperatures to aid in developing tef planting recommendations for the central Plains. Tef was planted at five depths (0, 0.6, 1.3, 2.5 and 5.0 cm) in pots filled with a silt loam soil, and pots were placed in growth chambers at four temperature regimes (day/night: 15/19 °C; 19/23 °C; 23/27 °C and 27/31 °C). No plants emerged from the 5.0-cm depth, so this depth was not included in the analysis. Emergence was greatest for planting depths of 0.6 and 1.3 cm and lower at 0 and 2.5 cm depths. Temperature did not affect final emergence, measured 21 days after planting (DAP), but did influence emergence rates during the first 9 DAP. Plant dry matter production increased as planting depth increased, but plant dry matter per pot was not different among planting depths greater than 0.9 cm, suggesting that compensation between plants across different plant densities began early in the plants' life cycles. Our results show that tef seed can emerge from depths between 0.6 and 1.3 cm and that soil temperatures below 19 °C can slow emergence but should not affect final stands.  相似文献   

9.
立式深旋耕作对马铃薯农田土壤温室气体排放的影响   总被引:1,自引:0,他引:1  
为明确立式深旋耕作(VRT)技术对马铃薯全生育期农田温室气体(CO2和N2O)排放的影响,采用静态暗箱-气相色谱法,设置立式深旋松覆膜种植马铃薯(VRT-P)、旋耕覆膜种植马铃薯(TT-P)、立式深旋松露地无作物(VRT-FL)和旋耕露地无作物(TT-FL)4个处理,测定土壤含水量、温度和温室气体排放通量等,研究VRT对温室气体排放的影响及其机制。结果表明,VRT能显著提高0~30cm土层的土壤含水量,在现蕾期、始花期、盛花期和淀粉累积期,VRT-P处理较TT-P处理分别增加了9.8%、8.4%、14.6%和18.9%,VRT-FL处理较TT-FL处理分别增加了12.3%、9.1%、10.7%和26.8%;0~25cm土层土壤温度在现蕾期显著增加。农田土壤温室气体N2O和CO2排放通量呈现夏秋高而冬春低的季节性分布规律,在马铃薯生育期内VRT-P处理的N2O和CO2排放通量较TT-P处理分别提高39.9%和26.1%,在休闲季节分别提高11.2%和35.9%;VRT-FL处理的N2O和CO2排放通量较TT-P处理分别增加62.8%和4.4%,在休闲季节分别增加了41.5%和4.8%。种植作物对温室气体排放有显著影响,VRT-P处理的N2O和CO2排放通量较VRT-FL处理分别提高了78.2%和41.9%,TT-P处理的N2O和CO2排放通量较TT-FL处理分别提高了107.3%和24.1%,均达到显著差异。VRT提高了土壤温度和湿度,可显著提高土壤温室气体(N2O和CO2)排放通量。  相似文献   

10.
《Soil Technology》1992,5(1):81-90
Eroded Kandhapludult soils occupy more than 40% of the Southern Piedmont region of the USA. The humid-thermic climate associated with the Ultisols permits double crop residue production ranging from 10 to 14 Mg ha−1 yr−1. Long-term conservation tillage into these crop residues is beneficial in ameliorating the effects of soil erosion. During the course of a five-year study, decomposition of these residues increased soil carbon significantly. Restoration processes were initiated by increasing average soil carbon, representing slight, moderate and severe soil erosion classes, from 0.97 to 2.37% in the 0 to 1.5-cm depth. Accompanying soil carbon responses were increases in soil N, water-stable aggregation and infiltration. Runoff coefficients on conservation tilled restored soils was only 6%, compared to 35% for those conventionally tilled. Rill and interrill soil loss rates were also reduced significantly with surface residue provided with conservation tillage.Restoring Ultisol landscapes with variable levels of soil erosion requires differential fertilization. All fertilizer requirements for severely eroded plots were 1.43 to 2.30-fold higher than those of moderately eroded plots. Because biological N fixation by the crimson clover (Trifolium incarnatum L.) cover crop appeared to be retarded on the severely eroded site, observed plant N stress developed on the irrigated/conservation tillage treatment. Cumulative grain yields of severely eroded site, ranged from 15.4 to 30.3 Mg ha−1 5yr−1, and were statistically equal to or exceeded those of the slightly eroded site. Conservation tillage grain yields were best optimized on the rainfed-moderately eroded site, probably because of the more desirable texture-organic properties of the 13-cm thick Ap horizon. Management of cool-season cover crops with conservation tillage appears essential to restore and sustain crop productivity on eroded Ultisols.  相似文献   

11.
Strip tillage is a conservative technique widespread overseas with recognized environmental, agronomical and economic benefits. In Europe it has been proposed only recently and is almost unknown by farmers of Italy and other Mediterranean countries, where its compliance with soil and climate environments needs to be evaluated. For this reason, a two-year field trial comparison was carried out between strip tillage, minimum tillage and no tillage for the cultivation of maize in the Po valley, as representative crop and environment for the Italian and Southern Europe intensive agriculture. The aim was to evaluate effects on seedbed quality, weed infestation, and maize performance from crop establishment to final harvest.The experiment was conducted on a sandy-loam soil with high chemical fertility and good water availability for the crop. Strip tillage was carried out by an original passive tool implement hitched to a pneumatic drill operating at a forward speed of around 6 km h−1. We determined soil penetration resistance, bulk density, water content, clod size distribution, ground residue cover, number of weeds along crop rows and between rows, maize drilling depth, crop emergence, biomass accumulation and grain yield.Strip tillage moved less soil and left higher ground residue cover than minimum tillage, while the seedbed prepared by the two techniques did not differ for suitability to drilling, root exploration and crop growth. In fact, maize grown after strip tillage emerged fast and regularly approximating the wished plant density, experienced a limited weed infestation, and showed high total biomass and grain yields, similar to those obtained with minimum tillage.  相似文献   

12.
Seedlings of a maize hybrid sensitive to chilling initially grew in the growth chamber of the phytotron at 20/ 17°C (day/night) and after the formation of the fourth leaf, the soil temperature was lowered to 5°C. Under such growth conditions the dynamics of dry weight change, gas exchange and the distribution of 14C-assimilates in seedlings were examined. The low soil temperature inhibited daily growth of dry weight of whole seedlings more than their photosynthesis. Simultaneously, it was also responsible for a greater increase in dissimilative losses.
During 37 hours (day-night-day), following exposure to 14CO2, dissimilation in seedlings in cool soil (5°C) and in non-chilling conditions amounted to 35.1 % and 23.4 % of assimilated 14C (AC), respectively. At lower soil temperature relatively high dissimilative losses were observed on the first day after exposure (23.5 %), lower at night (9.9 %) and the lowest on the following day - merely 1.7 % AC. Higher losses of 14C under chilling conditions occurring on the first day were a result of limited photosynthetic refixation of 14CO2 At night, however, they were associated with a prolonged period of intensive translocation of assimilates to the stem. It was assumed that an excessive accumulation of assimilates in leaf blades might be an additional factor responsible for increased dissimilative losses at low temperature during the first twenty-four hours. In the third period of measurements, as a result of a limited transport of 14C, dissimilative losses were lower than in previous ones and were not dependent upon soil temperature.  相似文献   

13.
Influence Of Tillage On Soil Aeration   总被引:2,自引:0,他引:2  
Air- porosity of soil can be altered by tillage. Therefore, it plays a significant role in protecting plants against deficient aeration during critical periods of their life cycle. The effect of five tillage treatments (mouldboard, cultivator, rotary tiller, wedge and zero tillage) and three mulch treatments (paddy straw, rice husk and bare) on the soil oxygen diffusion rate (ODR) during the various growth phases of peanut crop ( Arachis Hypogaea L.) were investigated on a lateritic sandy loam soil (utilsol). These experiments were conducted for two consecutive seasons. ODR values were higher in tilled plots. Among tillage treatments, the highest ODR was recorded under mouldboard (60.51 × 10-8 g cm-2 min-1), followed closely by cultivator (57.65 × 10-8g cm-2 min-1), and it was lowest under rotary tiller (46.29 × 10-8 g cm-2 min-1). During the later growth stages and also in lower soil depths, the differences between the values of ODR narrowed down. Among mulch treatments, plots with rice husk (53.98 × 10-8 g cm-2 min-1), had the higher ODR values. Bulk density was lower, whereas total and aeration porosity were higher, under mouldboard and cultivator. Soil temperatures were also higher under mouldboard and cultivator tilled plots.  相似文献   

14.
为研究山西省土壤热性质的时空分布,对各地区土壤热性质进行比较并讨论不同深度土壤层热性质的差异。利用山西省11个地市气象观测站2009年5—10月的浅层土壤温度资料,采用Gao方法研究山西省土壤热扩散率和液态水通量密度。结果表明:(1)山西省的土壤热扩散率k=0.01×10-6~5.09×10-6m2/s和液态水通量密度W=-13.28×10-6~26.92×10-6m/s。(2)山西省土壤热扩散率和液态水通量密度在垂直方向上不同性。(3)在0.025m层,大同市的k值和W值都是最小的,而晋城市的k值和W值都是最大的。液态水通量密度的最大值都出现在0.025m层。  相似文献   

15.
A Rapid Method for Measuring Freezing Resistance in Crop Plants   总被引:3,自引:0,他引:3  
The objective of this study was to develop a technique based on chlorophyll fluorescence to assess freezing injury and resistance of leaves. Optimization was done with faba bean leaves and applicability to other crops was examined at winter and spring with types of barley, oats, rape and faba beans. Selected leaves from young hardened beans were subjected to standardized freezing tests with different minimum temperatures ( T min) and fluorescence was monitored. After a dark period basic fluorescence ( F O was induced by 0.2 μmol m−2 s−1 pulsed red light and maximum fluorescence ( F m) was assayed at different light intensities. 1500 μmol m−2 s−1 rendered to give the maximum possible output of Fm and best differentiation of differently damaged leaves by F n= F m - F O. Leaf temperature during measurement and during a short storage (± 2 h) should be kept at about 0°C to avoid biases between differently damaged leaves. The measuring spot on the leaf must be standardized since fluorescence response differed at the tip and base of a leaflet, but not between the two leaflets of a faba bean leaf. The applicability of F rr (ratio of F r of stressed to unstressed leaves) as a measure of resistance was demonstrated by comparison of winter hardiness of cultivars with freezing resistance calculated from the relationship of F vr and the T min used in freezing tests.  相似文献   

16.
Seed tubers of the variety Ostara were raised in growth chambers of 16°C air temperature continuously. The vessels were placed in a water bath of automatic temperature regulation so that soil temperatures of 16°C and 28°C could be maintained. Four weeks after emergence the plants were treated with 14CO2 and 24 hours later the plants were harvested. Three more treatments and time harvests followed in two weeks intervals. C-14 activity was determined in soluble carbohydrates, in insoluble carbohydrates, and in non extractable residues respectively of the various plant parts in order to obtain information about the translocation of assimilates in the plant.
While the plants at 28°C soil temperature reduced the soluble sugar levels to 50% up to 70 days after emergence, the plants at 16° brought it down to 33% much faster. — The C-14 activity in insoluble carbohydrates amounted to only 50 % in the plants at 28°C while at 16°C it was more than 2/3 (Tables 1 and 2). — The C-14 activity in non extractable residues is much less at 28°C than at 16°C (Tables 3 and 4). — The starch weight reaches only 30% of the value obtained at lower temperature 70 days after emergence (Table 5). — At the higher temperature starch is also increasingly transferred to the tubers but to a much lesser extent and not from the stems and stolons (Table 6).
Possible causes, particularly the role of phytohormones, and consequences are discussed.  相似文献   

17.
免耕的固碳效应研究进展   总被引:1,自引:0,他引:1  
免耕是一种保护性耕作,可显著地增强土壤的固碳能力。土壤有机碳的获得或者损失取决于生物或有机质剩余的碳增加量与作物收割、微生物化或者分解过程中的碳丢失量这二者的比率。农田耕地的废除恰好可以使作物残茬分解速率降低、土壤有机碳增加。而与土壤耕地有关的几个因素加速了残茬的分解。秸秆还田的手段通过微生物分解的方式提高了对损失碳的利用。免耕提高了农业可持续性能力和抵消人为因素的温室气体排放。总CO2释放量的50%发生在夏季。研究中CO2平均年释放数据表明NT释放量低于常规耕种系统,表层碳积累量明显高于常规耕种系统。除了提高土壤的固碳能力以外,免耕对土壤质量参数产生好的影响,改善了土壤结构,提高了土壤渗透率,减少了流失和侵蚀,这些提高很大程度上是土壤表层有机质积累的结果。文中指出,中国应加土壤固碳能力的研究,并适度的推广免耕政策。  相似文献   

18.
《Soil Technology》1996,8(4):293-301
The role of crop residues as a surface mulch on evaporation has been widely studied. But information on evaporation and its reduction by crop residues mixed in surface soil to different depths particularly in relation to soil texture and evaporativity (Eo) is lacking. We studied the effect of four rates of paddy straw, viz. 0, 2, 4 and 8 Mg ha−1 used as mulch and mixed in top soil layer to two depths (2 and 5 cm) under two evaporativities (Eo's) viz. 2.0 ± 0.5 and 8.7 ± 1.5 mm day−1 in silty clay loam and sandy loam soil columns of 0.95 m length and 0.1 m diameter. Cumulative evaporation was predicted from water transmission properties of the soil and Eo as influenced by these variables. The otherwise short-lived benefit of evaporation reduction with mulch per se, which peaked after a few days, plateaued when residue was mixed with soil at peak reduction, and as a result the benefit was prolonged. The maximum reduction achieved was more and sustained for a longer period in finer textured soil, and a higher rate of mulch mixed to a greater depth. Mixing of residue in the surface soil layer not only reduced evaporation but also resulted in higher water content in the near surface soil after drying.  相似文献   

19.
The aim of the experiment was to verify whether changes in photosynthetic activity measured by means of chlorophyll fluorescence techniques and soluble carbohydrate level induced during pre-hardening and cold acclimation in androgenic forms of Festulolium are related to their winter hardiness and pathogen resistance. The study was performed on six androgenic genotypes of Festulolium, which differ in their degrees of winter hardiness. The chlorophyll fluorescence parameters and sugar content were measured in the control plants, pre-hardened at 12 °C and cold-acclimated at 2 °C. Cold acclimation at 2 °C, preceded by pre-hardening at 12 °C, induced a decline in maximum PSII quantum efficiency ( F v/ F m) and in non-photochemical quenching (NPQ). Exposure to 2 °C also resulted in reduced efficiency of energy conversion in photochemical processes ( q p). The soluble carbohydrate amount increased in the susceptible genotypes and was associated with a decline in NPQ and current quantum yield of PSII (φPSII). In resistant plants, a decrease in the sugar content was observed, which could be explained by their consumption in metabolic processes initiated during cold acclimation. The changes in sugar content were associated with a decline in NPQ and q p.  相似文献   

20.
Nomogram of germination of winter barley ( Hordeum vulgare L.) between dough stage and harvest, as influenced by temperature and rainfall
Winter barley, cv. Katja , was cultivated on loess soil near Göttingen in three seasons (1982–1984). After passing the dough stage, barley seeds were separated at regular intervals and incubated at 12 °C for germination.
For the germination (Y, in probits), the following regression equation was found: Y = 3.91 + 0.1186 X1– 0.0267 x2, where x1= daily mean temperature (°C), and x2= quantity of rainfall (mm) in the four days before the separation of the seeds.
The relationship among germination, temperature and rainfall was presented in the form of a nomogram which shows a convenient method to solve the regression equation graphically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号