首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
ABSTRACT The first characterization of alterations in whole-plant photosynthetic rate and carbon assimilation of bell peppers associated with infection by Pythium aphanidermatum is described. Relationships of root disease caused by P. aphanidermatum to whole-plant net carbon exchange rate (NCER), total carbon accumulation, dark respiration rates, water loss, and destructive growth parameters were quantified in vegetative, hydroponically grown pepper plants (Capsicum annuum 'Cubico'). Inoculated plants displayed lower whole-plant NCER. This translated into a loss of 28% in cumulative C gain during 7 days after inoculation and occurred before visible shoot symptoms developed. Leaf area and dry weight of shoots and roots were significantly decreased and the shoot/root ratio was higher in inoculated plants than in noninoculated plants. We propose that reduced NCER in inoculated plants was mainly due to restricted development of leaf area, because no differences in NCER and evapotranspiration were observed between control and inoculated plants when expressed based on leaf area and root dry mass, respectively. These findings indicate that Pythium infection did not affect the photosynthetic apparatus directly and that the reductions in photosynthesis and growth were not caused by inefficient water transport by diseased roots. These results enlarge on the understanding of physiological responses of host plants to early stages of root disease.  相似文献   

2.
An unusual root disease of cucumbers has affected an increasing number of hydroponic crops in the UK since 1993. Symptoms include upward growth of roots, root proliferation sufficient to distort the shape of rockwool cubes and slabs, thickened roots and occasionally reduced root production and an increase in bent fruit. Rhizogenic Agrobacterium biovar 1 has previously been associated with the problem. In a survey of 37 nurseries in 1997, rhizogenic Agrobacterium bv. 1 isolates were obtained from 17 of 22 nurseries with symptoms and only occasionally from nurseries without symptoms. Young cucumber plants inoculated with rhizogenic Agrobacterium bv. 1 isolates, previously obtained from cucumber roots with symptoms, developed typical symptoms. The survey data and pathogenicity test support rhizogenic Agrobacterium bv. 1 as the primary causal agent of root mat in the UK. Although Agrobacterium bv. 1 isolates that do not harbour an Ri-plasmid are considered avirulent, their abundance in rockwool slabs as potential vectors of the Ri-plasmid may be a major factor in the epidemiology of the disease.  相似文献   

3.
The fluorescent bacterium Pseudomonas viridiflava (Burkholder) Dowson was identified as the causal agent of bacterial leaf blight of melon, tomato, blite, eggplant and of pith necrosis of chrysanthemum plants. Koch's postulates were fulfilled on greenhouse-grown or on potted plants under controlled environmental conditions. Twenty seven cultivated and one weed species, when artificially inoculated, were found to be susceptible to a strain of the bacterium isolated from cucumber. In cross-inoculation tests on potted plants, each strain induced the disease symptoms, independently of the host of origin. To our knowledge, melon and blite have not been previously reported as natural hosts of P. viridiflava. Also this is the first record of the bacterium as a foliar pathogen of melon, tomato, eggplant and blite and as a stem pathogen of chrysanthemum in Greece.  相似文献   

4.
Fusarium species are soil-borne fungal pathogens that produce a variety of disease symptoms when attacking crop plants. The mode of root colonization of Eucalyptus viminalis seedlings by a pathogenic F. oxyporum strain (Foeu1) at the ultrastructural level and changes in cell wall pectin during host pathogen interactions are described. Root systems of E. viminalis plants were inoculated with F. oxysporum in an in vitro model system. Hyphae of F. oxysporum adhered to the outer epidermal cell walls through fibrillar material, and after penetration they spread into the internal tissues. They developed intercellularly and intracellularly in the root cortex and invaded vascular tissues. Papillae were induced, and the host plasma membrane ruptured in colonized cells, causing rapid host tissue and cell damage. Changes in distribution and occurrence of nonesterified and methyl-esterified pectins were evaluated after root colonization by F. oxysporum using two monoclonal antibodies, JIM 5 and JIM 7, respectively. Nonesterified pectin in control roots was mainly localized in the epidermal cell walls and middle lamellae in parenchymal cortex, whereas methyl-esterified pectin accumulated more in primary cell walls of the cortex and phloem. Decreases in immunodetected nonesterified and methyl-esterified pectins were associated with extensive plant tissue degradation after root colonization by the pathogenic fungus.  相似文献   

5.
An isolate of Trichoderma viride from the surface of an apparently healthy tomato root was found to be pathogenic to seedlings of cucumber, pepper and tomato in laboratory and greenhouse experiments. In laboratory experiments, when seeds of each host species were inoculated with conidia of the pathogen, the subsequent growth of seedlings was decreased and they developed light-brown water-soaked lesions on their roots and crowns. The pathogen could be re-isolated from lesions on the seedlings, and microscopic examination of inoculated seedlings demonstrated that the fungus invaded the vascular tissues of the young seedlings. Culture filtrates of T. viride were found to contain a heat-stable factor that caused a decrease in the growth of the roots of young cucumber, pepper and tomato seedlings. In greenhouse experiments, the fungus did not affect germination or seedling fresh weight of young cucumber seedlings in soil- peat- or rockwool-based germinating media, but 10% of seedlings germinated in rockwool showed signs of infection. This is the first report of T. viride being pathogenic on pepper and tomato.  相似文献   

6.
Some isolates of Verticillium dahliae can induce severe defoliation on cocoa plants and others lead to wilting then desiccation of the leaves, without defoliation. The underlying mechanisms that precede the occurrence of these two distinct responses were studied in root inoculated seedlings under glasshouse conditions.
Rapid decreases in total transpiration, stomatal conductance and midday leaf water potential were closely associated with the onset of foliar symptoms, indicating that water stress is a major cause of symptom development. Water stress was most pronounced when plants were inoculated with a'non-defoliating'isolate. In contrast, a'defoliating'isolate induced accumulation of ethylene in newly developed leaves, where the first symptoms generally appeared. This hormone appeared to be responsible for the accelerated senescence and defoliation, as demonstrated by reversal with the application of the ethylene inhibitor silver thiosulphate.
Increased symptoms, water stress and ethylene production occurred in upper leaves and coincided with more intensive colonization of this part of the plant by the pathogen. This unusual pattern reflects the vascular anatomy of the host.  相似文献   

7.
Abstract

An intensive survey of cultivated plants throughout the island of Montserrat resulted in the identification of a number of viruses. Squash mosaic virus was found in cantaloupe, pumpkin and squash. There were cases of multiple infection of pumpkin and squash by cucumber and squash mosaic viruses. Potato virus Y was recovered from pepper and tomato. Bean yellow mosaic and cowpea mosaic viruses were found in red kidney bean and string bean while cowpea mosaic virus was found in cowpea and broad bean (Jamaica bean). Other viruses that were previously identified on the basis of field symptomatology were confirmed by host range and serology. Viruses were not recovered from sea island cotton or from sweet potato, although field symptoms on the sweet potato are similar to those caused by sweet potato mosaic virus. The leaf tissues of crop plants were inoculated to a wide range of indicator plants. Some of those that reacted systemically were examined by electron microscopy for virus particles and the sap extracted from them was used in serodiagnostic assays for virus identification. This is the first attempt to identify positively the viruses of crop plants on the island.  相似文献   

8.
白粉寄生孢寄生黄瓜白粉菌的特性研究   总被引:1,自引:0,他引:1  
采用白粉寄生孢(Ampelomyces quisqualis Ces.AQ)接种离体条件下赛璐酚上黄瓜白粉菌[Sphaerotheca fuliginea (Schlecht)Poll.]和活体条件下黄瓜白粉菌后,通过棉兰染色和显微观察分析,初步明确了白粉寄生孢的侵染寄生过程。白粉寄生孢分生孢子产生芽管可入侵黄瓜白粉菌的分生孢子、菌丝、分生孢子梗;有时黄瓜白粉菌串生的分生孢子、分生孢子梗可被2~3条白粉寄生孢的菌丝寄生,随着寄生过程的进一步发展,黄瓜白粉菌的分生孢子梗基部膨大成无色的椭圆形或球形,其上逐渐产生由黄色至褐色的白粉寄生孢的分生孢子器,器内含有大量的分生孢子。  相似文献   

9.
Nonpathogenic isolates of Fusarium oxysporum can be successful antagonists of pathogenic forms of the same fungal species that commonly attacks crop plants. The characteristics that distinguish nonpathogenic from pathogenic forms are not well understood. In this study, the mode of root colonization of Eucalyptus viminalis seedlings by a nonpathogenic F. oxysporum strain is described at the ultrastructural level. Root systems of E. viminalis plants were inoculated with nonpathogenic F. oxysporum strain Fo47 in an in vitro model system. Changes in the occurrence of nonesterified and methyl-esterified pectins in colonized E. viminalis roots were evaluated by in situ immunolabeling using two monoclonal antibodies, JIM 5 and JIM 7. Modes of penetration and root colonization patterns in E. viminalis seedlings by the nonpathogenic fungus were similar to those described for pathogenic forms of F. oxysporum. However, root interactions differed in that the nonpathogenic fungus did not induce host tissue damage. No papilla-like appositions were observed in host cells in response to invading hyphae, which did not disrupt the host plasma membrane in many cases, suggesting that a biotrophic relationship was established. Root colonization by the nonpathogenic strain did not induce alteration in JIM 7 labeling of methyl-esterified pectin in E. viminalis cell walls, whereas nonesterified pectin was detected to a significantly greater extent in cell walls of roots colonized by the fungus. Pectin components decreased slightly only at points of hyphal contact with host cells. Because nonpathogenic strains utilize pectin in pure culture, host control over enzyme activity or production by the fungi may at least partly explain their compatible interactions with host tissues.  相似文献   

10.
ABSTRACT The potential of the endophytic bacterium Serratia plymuthica strain R1GC4 in stimulating defense reactions in cucumber (Cucumis sativus) seedlings inoculated with the soilborne pathogen Pythium ultimum was explored at the cellular level. Bacterial treatment prior to Pythium inoculation resulted in less seedling disease development as compared with that in nontreated control plants, in which typical root symptoms were visible by 3 days after inoculation with the pathogen. Histological investigations of root samples revealed striking differences in the extent of plant defense reactions between bacterized and nonbacterized plants. These observations were further confirmed at the ultrastructural level with the demonstration that restriction of fungal colonization to the outermost root tissues of bacterized seedlings correlated with the deposition of enlarged callose-enriched wall appositions at sites of potential pathogen penetration and the accumulation of an osmiophilic material in the colonized areas. Hyphae of the pathogen, surrounded by this electron-opaque material, exhibited considerable changes including cytoplasm disorganization and, in many cases, loss of the protoplasm. However, labeling with the beta-1,4-exoglucanase resulted in a regular labeling of Pythium cell walls, even at a time when these walls were entirely coated by the osmiophilic material. This material was also found to infiltrate into the invading hyphae to form either an internal coating of the cell wall or a network of polymorphic droplets in the area previously occupied by the cytoplasm. Cytochemical investigations revealed that callose, pectin, and cellulose appeared in the wall appositions. In addition, glucosides, lipids, and phenolics were detected in the electron-dense aggregates forming the core of most wall appositions. Finally, galactose residues were among the minor polysaccharidic compounds detected in the wall appositions. Evidence is provided in this study showing that treatment with S. plymuthica sensitizes susceptible cucumber plants to react more rapidly and more efficiently to Pythium attack through the formation of physical and chemical barriers at sites of potential fungal entry.  相似文献   

11.
Gnomonia fragariae has been occasionally listed among the fungi associated with diseased strawberry plants. However its pathogenicity has not been established. During the investigation on strawberry decline in Latvia and Sweden, a fungus was repeatedly recovered from discoloured root and crown tissues of severely stunted plants. Attempts to induce sporulation of the isolates grown on several agar media resulted in the formation of mature ascomata only on potato carrot agar and oatmeal agar. On morphological grounds and comparisons with reference herbarium specimens these isolates were identified as Gnomonia fragariae. The pathogenicity of the fungus was evaluated initially in the detached leaf assay and subsequently in three bioassays on strawberry plants. All the bioassays showed that G. fragariae was pathogenic on strawberry and capable of causing severe root rot and petiole blight. The symptoms that developed in the greenhouse experiments closely resembled those observed in the fields. The fungus did not cause rapid plant death but growth and development of inoculated strawberry plants was severely affected. To our knowledge this is the first time when pathogenicity of G. fragariae as a root rot pathogen has been clearly established. Our study shows that G. fragariae is one of the serious pathogens involved in the root rot complex of strawberry in Latvia and Sweden.  相似文献   

12.
Root rot symptoms were observed in fields of alfalfa in Chifeng city, Inner Mongolia, China in 2016. Disease incidences of seven alfalfa varieties planted in 2014 ranged from 56% to 95%, while incidence of Gongnong No. 1 planted in 2016 was 8%, 31% and 76% in 2016, 2017 and 2018, respectively. Paraphoma isolates were consistently recovered from black necrotic root tissues of diseased plants with a frequency of 77.1%. Based on morphological characters and phylogenetic analysis of rDNA internal transcribed spacer (ITS), elongation factor 1-α (EF1-α) and β-tubulin (TUB), this fungus was identified as Paraphoma radicina. Glasshouse pathogenicity experiments showed that P. radicina significantly reduced above- and below-ground biomass of alfalfa plants 2 months after inoculation. Paraphoma radicina infected 70% of the plants inoculated with a root dip in conidia, and these symptoms were consistent with the symptoms in the field. Paraphoma radicina was successfully reisolated from disease roots of the inoculated alfalfa plants. This is the first report of P. radicina as the causal agent of alfalfa root rot in China.  相似文献   

13.
The effect of the amendment of nutrient solutions with soluble potassium silicate on the response of cucumber (cv. Corona) root and hypocotyl tissues infected by Pythium ultimum was examined by light and electron microscopy, and by energy dispersive X-ray analysis (EDX). Plants were grown in 0 or 1·7 m Si-amended nutrient solutions, and root and hypocotyl samples were collected at different times after inoculation with P. ultimum. By 48 h after infection, striking differences in the expression of defence reactions were observed between Si-amended and Si-free cucumber plants. Treatment of plants with Si markedly stimulated the accumulation of an electron-dense, phenolic-like material in infected host tissues, and significantly increased the percentage of cells filled with this material. Fungal hyphae colonizing occluded host cells were seriously damaged, and were often reduced to empty hyphal shells. Additionally, Si-treated cucumber plants responded to P. ultimum infection by forming electron-dense layers along primary and secondary cell walls, as well as over pit membranes of xylem vessels. EDX analysis failed to reveal the presence of silica deposits in P. ultimum-infected plants grown in Si-supplemented media. Our results suggest that a relationship exists between Si treatment, resistance to P. ultimum attack, and expression of plant defence mechanisms.  相似文献   

14.
Sang MK  Kim KD 《Phytopathology》2011,101(6):732-740
We investigated direct and indirect effects of compost water extracts (CWEs) from Iljuk-3, Iljuk-7, Shinong-8, and Shinong-9 for the control of anthracnoses caused by Colletotrichum coccodes on pepper and C. orbiculare on cucumber. All tested CWEs significantly (P < 0.05) inhibited in vitro conidial germination and appressorium formation of the fungal pathogens; however, DL-β-amino-n-butyric acid (BABA) failed to inhibit the conidial development of the pathogens. Direct treatments of the CWEs and BABA on pepper and cucumber leaves at 1 and 3 days before or after inoculation significantly (P < 0.05) reduced anthracnose severities; Iljuk-3, Shinong-9, and BABA for pepper and Iljuk-7 for cucumber had more protective activities than curative activities. In addition, root treatment of CWEs suppressed anthracnoses on the plants by the pathogens; however, CWE treatment on lower leaves failed to reduce the diseases on the upper leaves of the plants. The CWE root treatments enhanced not only the expression of the pathogenesis-related (PR) genes CABPR1, CABGLU, CAChi2, CaPR-4, CAPO1, and CaPR-10 in pepper and PR1-1a, PR-2, PR-3, and APOX in cucumber but also the activity of β-1,3-glucanase, chitinase, and peroxidase and the generation of hydrogen peroxide in pepper and cucumber under pathogen-inoculated conditions. However, the CWE treatments failed to induce the plant responses under pathogen-free conditions. These results indicated that the CWEs had direct effects, reducing anthracnoses by C. coccodes on pepper leaves and C. orbiculare on cucumber leaves through protective and curative effects. In addition, CWE root treatments could induce systemic resistance in the primed state against pathogens on plant leaves that enhanced PR gene expression, defense-related enzyme production, and hydrogen peroxide generation rapidly and effectively immediately after pathogen infection. Thus, the CWEs might suppress anthracnoses on leaves of both pepper and cucumber through primed (priming-mediated) systemic resistance.  相似文献   

15.
采用室内筛选与田间试验相结合的方法,对哈茨木霉抑制黄瓜枯萎病菌的拮抗机制进行了研究.对峙培养结果显示木霉菌和病原菌之间形成了较明显的抑菌圈,其中菌株TN对枯萎病菌抑制作用较强.接种木霉菌植株显著提高了植株中肉桂醇脱氢酶(CAD)、多酚氧化酶(PPO)、愈创木酚过氧化物酶(G-POD)、咖啡酸过氧化物酶(CA-POD)和绿原酸过氧化物酶(CGA-POD)的活性及总酚、类黄酮、木质素的含量.接种木霉菌可诱导根系次生代谢相关基因的上调表达,C4H、CAD、CCOMT、G6PDH、PAL和PR-1的表达量分别为对照的 5.64、5.31、4.28、15.33、7.36 和 6.45 倍.表明木霉菌诱导的黄瓜根部对枯萎病的抗性与植物次生代谢密切相关.  相似文献   

16.
Assessment of resistance to Plasmodiophora brassicae in swedes   总被引:1,自引:1,他引:0  
A method is described in which swede seedlings inoculated with standardized concentrations of resting spores of specific populations of Plasmodiophora brassicae can be evaluated for resistance in different environments. Similar ranking for resistance of four swede cultivars inoculated with one pathogen population was obtained from seedling tests in a glasshouse, from young plants in a polythene tunnel, and from mature plants in field trials. Differential resistance of the four cultivars to two pathogen populations evident in glasshouse seedling tests was more clearly demonstrated in the field where there was a highly significant cuitivar × pathogen population interaction (p<0 001) for both root fresh weight and mean disease category.
The inclusion of uninoculated control plants in field trials enabled a direct comparison of yield with that from inoculated plants. Cultivars were defined as resistant in terms of yield if they did not suffer any crop loss in comparison with uninoculated plants, even though some plants showed restricted gall development. The distribution of fresh weight to galls, roots and shoots could be used to characterize the relative resistance of cultivars; in the most susceptible cultivars there was rapid gall development but little increase in root or shoot fresh weight between 6 and 12 weeks after inoculation. Differential response was determined during the 6 weeks following inoculation; the implications of this observation are discussed in relation to growth stage and rate of development of host and pathogen.  相似文献   

17.
Ralstonia solanacearum causes a lethal bacterial wilt disease in many plants by colonizing the vascular tissues of the hosts. Upon inoculation of tomato seedlings through either leaf or root, the wilting symptoms occur first at the apical region and then proceed downward along the shoot. The systemic order of the disease initiation and progression in the host, independent of the site of pathogen inoculation, is yet to be investigated. To understand the disease progression more clearly, we have carried out a systematic study of the pathogen localization by GUS staining of inoculated tomato seedlings, at 24-hour intervals from 0 days post-inoculation (dpi) to 5 dpi. In both inoculation methods, pathogen colonization was observed at 1 dpi at the apical meristem as well as the cotyledon leaves, where the disease initiates. As the disease progressed, colonization by the pathogen towards the lower region of the shoot was observed. Disease consistency and pathogenicity magnitude were observed to be higher using the leaf inoculation method than the root inoculation method. Several R. solanacearum transposon-induced mutants that were reduced in virulence by root inoculation but virulent by leaf inoculation were obtained. Using GUS staining, it was observed that these mutants were unable to localize in the shoot region when inoculated in the root. Our study indicates that the apical meristem and the cotyledon leaves are the first regions to be colonized in inoculated tomato seedlings, which might explain the disease initiation from this region.  相似文献   

18.
Tomatoes grown in soilless systems can be seriously damaged byFusarium oxysporum Schlect f.sp.radicis lycopersici (Forl) causing Fusarium crown and root rot (FCRR). FCRR suppression can be achieved through the use of chemicals, selected substrates, composts and artificially introduced antagonistic microorganisms. This study evaluated the natural capacity of a used rockwool to suppress FCRR infections. New and used rockwool, sampled from closed soilless systems, was either autoclaved or not, either artificially inoculated withForl or not and, finally, sown with tomato seeds cv. ‘Cuore di Bue’. The effects of autoclaved/non-autoclaved and used/new rockwool on FCRR incidence were assessed by evaluating the symptoms of crown rot on the root — shoot transition zone of tomato seedlings. Non-autoclaved and inoculated used rockwool significantly reduced FCRR incidence when compared with non-autoclaved and inoculated new rockwool. Autoclaved and inoculated used rockwool did not suppress FCRR, similarly to new and inoculated rockwool. These findings are in accordance with other research that, on a cucumber/Pythium host/pathogen complex in a closed rockwool soilless system, demonstrated the key role of resident microflora in suppressing the root rot disease. http://www.phytoparasitica.org posting Dec. 8, 2006.  相似文献   

19.
Clubroot of oilseed rape (OSR), caused by Plasmodiophora brassicae, is a disease of increasing economic importance worldwide. Previous studies indicated that OSR volunteers, Brassica crops and weeds play a critical role in the predisposition of the disease. To determine the effect of timing of foliar application of the herbicide glyphosate or mechanical destruction of OSR volunteers in reduction of clubroot severity and resting spore production, a series of studies was conducted under controlled conditions with a susceptible OSR cultivar and an isolate of P. brassicae. Plants were inoculated by injecting a spore suspension beside the root hairs at growth stage 11–12 (BBCH scale) and were terminated at 7 (early) or 21 (late) days post‐inoculation (dpi). Under controlled conditions, the first symptoms on roots were observed as early as 7 dpi. The early application of glyphosate as well as early mechanical destruction resulted in significant ( 0.05) reduction in the development of clubroot symptoms, root fresh weight and the number of resting spores?g root. Furthermore, the effect of volunteer management on clubroot severity in the succeeding OSR was studied by inoculating plants with the resting spores obtained from treated clubbed roots. Inoculated OSR exhibited root clubs similar to the initial symptoms after 35 dpi. Plants that were inoculated with spore suspension from early treated roots resulted in significant reductions in clubroot incidence and severity. Conversely, plants inoculated with the spore suspension from the late treated roots displayed levels of clubroot similar to the plants inoculated with the spore solutions of positive controls.  相似文献   

20.
Pseudomonas corrugata strain 13 and P. aureofaciens strain 63-28, applied to roots, induced systemic resistance against Pythium aphanidermatum in cucumber roots. Salicylic acid (SA) from bacterial culture or plant tissues was quantified by high performance liquid chromatography. Both strains produced SA in King's B broth and also induced cucumber root to accumulate endogenous SA one day after bacterial inoculation. Using a split root system, more SA accumulated in roots treated with bacteria than in distant roots on the opposite side of the root system in the first two days, but this difference disappeared after 3–4 days. SA levels were significantly higher in plants treated with bacteria compared to the split control, from one to five days after bacterization. SA did not inhibit mycelial growth of Pythium aphanidermatum at 100–200µgml–1 in vitro, but higher levels inhibited mycelial growth. Zoospore germination increased at concentrations of 10–500µgml–1, but decreased at 1000µgml–1 compared to lower concentrations. Exogenously applied SA failed to induce local or systemic resistance against a challenge infection by the pathogen in planta. The results of this study show that exogenous applied SA does not induce systemic resistance to cucumber root rot caused by P. aphanidermatum, but endogenous SA accumulation in cucumber roots may be involved in induced systemic resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号