共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Soil cultivation changes and usage of agricultural wastes can have profound impacts on greenhouse gas (GHG) emission from soil. In this study, the effects of soil cultivation and organic amendment on GHG emission were investigated using aerobic incubation. Surface soil (0–20 cm) from (1) rice–legume consecutive rotation (Rice) and (2) recently (<3 years) converted from rice field to plastic-covered intensive vegetable and flower production (VegC) were collected in Kunming, P.R. China. Rose (Rosa rugosa Thunb.) residues and cattle manure were applied at 5% by weight. Results indicated that N2O and CO2 fluxes were significantly influenced by soil cultivation, organic amendment, incubation time and their interaction (p <0.05). Applying cattle manure increased, while rose residue decreased, cumulative N2O emissions from soil (84 days). Rose residue application significantly increased cumulative CO2 emissions with peak values of 6371 (Rice) and 7481 mg kg?1 (VegC), followed by cattle manure addition figure of 2265 (VegC) and 3581 mg kg?1 (Rice). Both were significantly higher (p <0.05) than the un-amended Control at 709 (VegC) and 904 mg kg?1 (Rice). Our study demonstrates that a low C/N ratio in cattle manure is better than a high C/N ratio in rose residue in regard to reducing the global warming potential of agricultural soil. 相似文献
3.
施用钾肥对温室黄瓜光合特性及产量的影响 总被引:6,自引:0,他引:6
通过温室田间试验,研究施K2O 0、240、480、720、960 kg/hm2等5个钾肥处理对津春3号黄瓜光合特性、产量、效益和品质的影响。结果表明,施K2O 720 kg/hm2时,黄瓜的净光合速率最高;施K2O 240 kg/hm2,黄瓜的叶面积和叶数最大。随着钾肥施用量增加,黄瓜的光合作用呈现先增高后降低的过程,钾肥量与黄瓜叶片净光合速率(Pn)的关系式为y=-4.160+4.5307x-0.6693x2,r=0.9470**。施钾肥能够提高叶绿素含量,钾肥量与叶绿素含量增量SPAD值关系式为y=-6.66+7.406x 8-0.97x2,r=0.9836**。施用钾肥对黄瓜的前期结瓜作用明显,前期施用钾肥,结瓜数量和产量增加显著。施用钾肥黄瓜增产14.7%~53.5%;施K2O 720 kg/hm2时,黄瓜产量和经济效益最高。施用钾肥使黄瓜提前结果,并延长了黄瓜的结果期。施用钾肥改善黄瓜品质,在K2O 240~720kg/hm2范围内,随着K2O量增加,黄瓜果实中可溶性糖含量、Vc含量逐渐增加,硝酸盐含量降低。 相似文献
4.
Helena Lina Susilawati Prihasto Setyanto Miranti Ariani Anggri Hervani Kazuyuki Inubushi 《Soil Science and Plant Nutrition》2016,62(1):57-68
Recently, large areas of tropical peatland have been converted into agricultural fields. To be used for agricultural activities, peat soils need to be drained, limed and fertilized due to excess water, low nutrient content and high acidity. Water depth and amelioration have significant effects on greenhouse gas (GHG) production. Twenty-seven soil samples were collected from Jabiren, Central Kalimantan, Indonesia, in 2014 to examine the effect of water depth and amelioration on GHG emissions. Soil columns were formed in the peatland using polyvinyl chloride (PVC) pipe with a diameter of 21 cm and a length of 100 cm. The PVC pipe was inserted vertically into the soil to a depth of 100 cm and carefully pulled up with the soil inside after sealing the bottom. The treatments consisting of three static water depths (15, 35 and 55 cm from the soil surface) and three ameliorants (without ameliorant/control, biochar+compost and steel slag+compost) were arranged using a randomized block design with two factors and three replications. Fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the soil columns were measured weekly. There was a linear relationship between water depth and CO2 emissions. No significant difference was observed in the CH4 emissions in response to water depth and amelioration. The ameliorations influenced the CO2 and N2O emissions from the peat soil. The application of biochar+compost enhanced the CO2 and N2O emissions but reduced the CH4 emission. Moreover, the application of steel slag+compost increased the emissions of all three gases. The highest CO2 and N2O emissions occurred in response to the biochar+compost treatment followed by the steel slag-compost treatment and without ameliorant. Soil pH, redox potential (Eh) and temperature influenced the CO2, CH4 and N2O fluxes. Experiments for monitoring water depth and amelioration should be developed using peat soil as well as peat soil–crop systems. 相似文献
5.
Gianluigi Mazza Alessandro Elio Agnelli Maria Costanza Andrenelli Alessandra Lagomarsino 《Archives of Agronomy and Soil Science》2018,64(5):654-667
GHGs production and emission may vary depending on soil physical properties, water management and fertilization. Two paddy soils characterized by different texture were incubated to evaluate the impact of flooding (permanent or intermittent) and N addition on potential N2O, CH4 and CO2 production and release into atmosphere and soil solution. Relationships with volumetric water content (VWC) and water filled pore space (WFPS) were evaluated. Overall, the finer clayey soil (CL) produced 58% more CH4 than the coarser sandy soil (SA) and showed an earlier sink to source transition; the difference was lower with N addition. Permanent flooding favoured the amount of dissolved CH4. SA produced more N2O emissions than CL under permanent flooding (31.0 vs. 3.7%); an opposite pattern was observed for dissolved N2O (16.4 vs. 52.7%). Fertilization increased N2O emissions under dry conditions in CL and under flooding in SA.
Our findings showed that i) VWC had a larger influence on N2O and CH4 emissions than WFPS, ii) soil type influenced the gas release into atmosphere or soil solution and the timing of sink to source transition in CH4 emissions. Further investigation on timing of fertilization and drainage are needed to improve climate change mitigation strategies. 相似文献
6.
本文以黄瓜为材料,采用营养液培养方法,研究了不同亚磷酸盐浓度对黄瓜植株各部位氮、 磷养分含量, 干重及根冠比, 植株氮、 磷总量以及叶片光合特性的影响。结果表明,黄瓜果实、 叶片和根部氮含量随亚磷酸盐浓度的增加而增加,茎部氮含量没有显著差异; 果实和茎部磷含量随亚磷酸盐浓度的增加呈增加趋势,根部磷含量呈降低趋势,叶片磷含量没有显著差异; 亚磷酸盐浓度增加到一定浓度时,各部位干重显著降低,根冠比没有显著差异; 植株氮、 磷总量随亚磷酸盐浓度的增加有下降的趋势; 黄瓜叶片净光合速率(Pn)随亚磷酸盐浓度的增加呈下降趋势。本研究结果显示,随着亚磷酸盐浓度的增加,植株表现出缺磷效应,对植株养分元素的吸收及光合作用产生了不利影响。该文讨论了亚磷酸盐作为缓释磷肥的可行性。 相似文献
7.
钙和NO对NaCl胁迫下黄瓜幼苗生长和活性氧代谢的影响 总被引:1,自引:0,他引:1
采用营养液培养的方法,研究了Ca2+对外源一氧化氮(Nitric oxide,NO)所诱导的NaCl胁迫下黄瓜幼苗生长、活性氧代谢的影响。结果表明,添加外源NO或Ca2+显著缓解了NaCl胁迫对黄瓜幼苗生长的抑制,叶片和根系超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性较单独NaCl胁迫处理显著提高,丙二醛(MDA)和过氧化氢(H2O2)的含量、超氧阴离子(O.-2)产生速率明显下降;添加NO的同时添加Ca2+通道抑制剂La3+抑制了NO的这些调节作用。结果表明Ca2+对NO诱导的NaCl胁迫下黄瓜幼苗植株活性氧清除能力的提高起重要作用,NO的作用可能依赖于胞浆Ca2+。 相似文献
8.
空间电场对植物吸收CO2和生长速度的影响 总被引:1,自引:0,他引:1
为研究空间电场对植物吸收CO2和生长速度的影响,首先采用同位素示踪法,分析了不同空间电场调控营养液栽培的番茄秧吸收CO2气体和HCO-3阴离子的能力,证实了 14C—HCO-3是一种受控于空间电场变化的阴离子,且空间电场强度的变化方向调控着 14C—HCO-3阴离子流的流动方向。在此基础上以蕹菜(空心菜)为试验材料,采取空间电场与增施CO2浓度的参数组合,做对比生长试验,通过红外线CO2分析法揭示了空间电场的极性对植物吸收CO2的速度有显著影响,且正向空间电场能显著促进植物对CO2的吸收,并得到正向空间电场与足量的CO2浓度相配合能大幅度提高温室蔬菜生长速度,使作物产量倍增的结论,为建立空间电场促进植物生长技术提供理论依据。 相似文献
9.
Hans M. Hanslin Leiv M. Mortensen 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2013,63(5):437-449
Abstract Plant responses to elevated CO2 are governed by temperature, and at low temperatures the beneficial effects of CO2 may be lost. To document the responses of winter cereals grown under cold conditions at northern latitudes, autumn growth of winter wheat exposed to ambient and elevated levels of temperature (+2.5°C), CO2 (+150 µmol mol?1), and shade (?30%) was studied in open-top chambers under low light and at low temperatures. Throughout the experiment, temperature dominated plant responses, while the effects of CO2 were marginal, except for a positive effect on root biomass. Increased temperature resulted in increased leaf area, total biomass, total root biomass, total stem biomass, and number of tillers, but also a lower content of total sugars and a weaker tolerance to frost. The loss of frost tolerance was related to the larger size of plants grown at elevated temperature. The 30% light reduction under shading did not affect the growth, sugar content, or frost tolerance of winter wheat. At the low temperatures found at high latitudes during autumn, the atmospheric CO2 increase is unlikely to enhance autumn growth of winter wheat to any significant extent, while a temperature increase may have important and major effects on its development and growth. 相似文献
10.
补充单色光对日光温室黄瓜光合特性及光合产物分配的影响 总被引:4,自引:1,他引:4
为了研究红光与蓝光对日光温室结瓜期黄瓜光合速率及光合产物运输与分配的影响,采用室内张挂红光灯与蓝光灯等的方法,研究了补充红光与蓝光对结瓜期黄瓜叶片光合特性、叶绿体超微结构以及光合产物运输、分配的影响.结果表明:日光温室内补充红光黄瓜叶片光合速率较高,促进了黄瓜叶片14CO2的同化作用,光合产物较多,加速了光合产物向其它器官的运输:单位细胞内的叶绿体数增加,叶绿体内淀粉粒数与基粒数较少,基粒的厚度增加.蓝光下叶片光合速率较对照增加,但不如红光下增加的多,光合产物的向外运输减少,大部分保留在叶片中:单位细胞内的叶绿体数明显较对照减少,叶绿体内淀粉粒数较红光与对照多.日光温室内补充红光促进了结瓜期黄瓜叶片光合速率的增加,光合产物向其它器官的运输与分配增加,减少了光合产物在光合器官的积累,为产量的提高提供了一个潜在的基础. 相似文献
11.
Digestates vary in composition and studies regarding their impact on C and N dynamics in soils are scarce. The objective was to analyse the C and N dynamics of digestates originating from various substrates applied to a sandy Cambisol and a silty Anthrosol. In three laboratory experiments (4–6 weeks), the effects of digestate properties, N rate and water content were tested. Averaged over both soils, 21% of the C supplied was emitted as CO2. Potential NH3 emissions during the first week ranged between 6% and 12% of NH4+ present in the digestates. The emission factors in the sandy Cambisol were on average 1.2 and 2 times higher for CO2 and potential NH3, respectively, compared to the silty Anthrosol. Similarly, net nitrogen mineralization in the sandy Cambisol was approximately twice the N mineralized in the silty Anthrosol. Net nitrification was not influenced by soil texture or different digestates, but increased with increasing application rates and had highest values at 75% of water holding capacity. Our results indicate that the type of substrate input for anaerobic digestion influences the properties of the digestate and therefore the dynamics of C and N. However, soil texture can affect these dynamics markedly. 相似文献
12.
Here we present results from a field experiment in a sub-arctic wetland near Abisko, northern Sweden, where the permafrost is currently disintegrating with significant vegetation changes as a result. During one growing season we investigated the fluxes of CO2 and CH4 and how they were affected by ecosystem properties, i.e., composition of species that are currently expanding in the area (Carex rotundata, Eriophorum vaginatum and Eriophorum angustifolium), dissolved CH4 in the pore water, substrate availability for methane producing bacteria, water table depth, active layer, temperature, etc. We found that the measured gas fluxes over the season ranged between: CH4 0.2 and 36.1 mg CH4 m−2 h−1, Net Ecosystem Exchange (NEE) −1000 and 1250 mg CO2 m−2 h−1 (negative values meaning a sink of atmospheric CO2) and dark respiration 110 and 1700 mg CO2 m−2 h−1. We found that NEE, photosynthetic rate and CH4 emission were affected by the species composition. Multiple stepwise regressions indicated that the primary explanatory variables for NEE was photosynthetic rate and for respiration and photosynthesis biomass of green leaves. The primary explanatory variables for CH4 emissions were depth of the water table, concentration of organic acid carbon and biomass of green leaves. The negative correlations between pore water concentration and emission of CH4 and the concentrations of organic acid, amino acid and carbohydrate carbon indicated that these compounds or their fermentation by-products were substrates for CH4 formation. Furthermore, calculation of the radiative forcing of the species expanding in the area as a direct result of permafrost degradation and a change in hydrology indicate that the studied mire may act as an increasing source of radiative forcing in future. 相似文献
13.
Understanding the greenhouse gas(GHG)emission from rice paddy fields is essential to come up with appropriate countermeasure in response to global warming.However,GHG emissions from paddy fields in South Korea are not well characterized.The objectives of this study were to estimate the carbon dioxide(CO2)and methane(CH4)emissions from rice paddy fields in South Korea,under the Representative Concentration Pathway 8.5(RCP-8.5)climate change scenario using the DNDC(i.e.,DeNitrification-DeComposition)model at 1-km2resolution.The performance of the model was verified with field data collected using a closed chamber,which supports the application of the model to South Korea.Both the model predictions and field measurements showed that most(>95%)GHG emissions occur in the cropping period,between April and October.As a baseline(assuming no climate change),the national sums of the CO2and CH4emissions for the 2020 s and 2090 s were estimated to be 5.8×106and 6.0×106t CO2-equivalents(CO2-eq)year-1for CO2and 6.4×106and 6.6×106t CO2-eq year-1for CH4,respectively,indicating no significant changes over 80 years.Under RCP-8.5,in the 2090 s,CH4emissions were predicted to increase by 10.7×106and 14.9×106t CO2-eq year-1,for a 10-or 30-cm tillage depth,respectively.However,the CO2emissions gradually decreased with rising temperatures,due to reduced root respiration.Deep tillage increased the emissions of both GHGs,with a more pronounced effect for CH4than CO2.Intermittent drainage in the middle of the cropping season can attenuate the CH4emissions from paddy fields.The findings of this work will aid in developing nationwide policies on agricultural land management in the face of climate change. 相似文献
14.
Mitigation of agricultural N2O emissions via management requires quantitative information about the regulation of the underlying processes. In this laboratory study, short-term evolution of N2O from repacked soil was determined using an arable sandy loam soil adjusted to three water potentials (−15, −30 or −100 hPa) that were reached by adjustment of partly air-dried soil with nutrient solutions or water; a water retention curve of repacked soil had been determined prior to the incubation experiment. The amendments included a control treatment receiving water (CTL), and aqueous solutions of carbon in the form of glucose (C), ammonium sulfate (N), or both (CN). Rates of CO2 and N2O evolution were followed during 14 days. Soil inorganic N and phospholipid fatty acid (PLFA) composition were analyzed by the end of incubation. Across all nutrient treatments, the soil at the lower moisture content (−100 hPa) showed little or no N2O evolution irrespective of nutrient treatment. Adding glucose alone reduced N2O evolution relative to CTL. The addition of N alone had no effect on soil respiration, but significantly increased nitrate accumulation and N2O evolution. The CN treatment resulted in higher respiration than with C amendment alone, but less N2O evolution than with N alone, at least at −15 and −30 hPa. Whole-soil PLFA fingerprints at the end of incubation reflected the complex response of gaseous emissions. At −15 hPa growth of Gram negative bacteria, probably including denitrifiers, in the CN treatment was indicated by low cyclopropane-to-precursor ratios. At −100 hPa differentiation of branched-chain fatty acids was taken as evidence for an effect of C amendment on Gram positive bacteria. The highest potential for N2O evolution was observed at the intermediate soil wetness level; the corresponding gas diffusivities indicated that this parameter may be a better predictor of N2O emissions than water-filled pore space. 相似文献
15.
气候变化通过大气CO2浓度、温度和降雨的改变,直接或间接影响农田温室气体排放,研究未来气候情景下农田温室气体排放对实现农业碳减排具有重要意义。为探究气候变化背景下农田温室气体排放特征,该研究在长期田间定位试验基础上,利用当前大气CO2浓度与CO2浓度升高条件下旱作玉米农田温室气体排放通量的田间观测数据,采用“试错法”对DayCent模型进行校验,并利用校验后的模型,根据第六次国际耦合模式比较计划(Coupled Model Intercomparison Project phase 6,CMIP6)气候情景数据,预测未来SSP126与SSP245气候情景下旱地玉米农田温室气体排放通量。结果表明,DayCent模型对不同大气CO2浓度下N2O、CH4和CO2排放通量的模拟值与观测值高度一致,模拟效率(modeling efficiency,EF)分别为0.58~0.87、0.45~0.65和0.25~0.62,均方根误差(root mean square error,RMSE)分别为0.83~1.33、0.67~0.82和0.58~0.80 g/(hm2·d),决定系数(coefficient of determination,R2)分别为0.80~0.91、0.53~0.80和0.53~0.85。SSP126和SSP245气候情景下,在玉米单作种植模式下旱地农田N2O和CO2年排放量均呈现上升趋势,以2001—2020年农田温室气体排放通量为基准,到2060年N2O年排放量分别增加22.8%和24.9%,CO2年排放量分别增加6.7%和8.0%;旱地农田CH4年吸收量呈下降趋势,两个气候情景下分别减少13.6%和13.4%。未来气候情景下旱地农田仍是温室气体排放源,优化氮肥管理和农田耕作措施对实现温室气体减排具有重要意义,模拟结果可以为制定农业适应气候变化对策提供基础数据支持。 相似文献
16.
17.
利用环境生长室探讨不同CO2浓度和土壤水分亏缺处理下玉米植株生物量、气孔形态与分布特征、叶片气体交换参数、叶绿素荧光参数等生长及生理指标的变化规律。以‘郑单958’ 玉米品种为试材,利用环境生长室设置2个CO2浓度和4个土壤水分梯度对玉米进行CO2浓度和水分处理。结果表明:1)不同程度土壤水分亏缺均显著降低玉米地上生物量(P<0.05),但CO2浓度升高增加了轻度水分亏缺条件下玉米地上生物量(P<0.01)和总生物量(P<0.01)。2)大气CO2浓度升高导致轻度和中度水分亏缺条件下玉米的净光合速率(Pn)分别提高15.8%(P<0.05)和25.7%(P=0.001),而CO2浓度升高却降低了玉米叶片蒸腾速率(P<0.001)和气孔导度(P<0.001),最终导致玉米瞬时水分利用效率均显著提高(P<0.001)。3)不同水分处理对玉米叶片气孔密度和单个气孔形态特征均造成显著影响(P<0.01)。因此,大气CO2浓度升高可以增加轻度水分亏缺条件下玉米叶片氮含量、叶片非结构性碳水化合物含量和光合电子传递速率,从而提高玉米植株的生物量累积以及叶片碳同化能力和水分利用效率。研究结果将为深入理解气候变化背景下玉米对大气CO2浓度升高和土壤水分亏缺的生理生态响应机制提供科学依据。 相似文献
18.
利用开顶箱薰气室(open-top chamber),设置正常大气CO2浓度和高CO2浓度(700 μmol/mol)2个水平和不施氮(NN,0 g/m2)、常氮(MN,5 g/m2)和高氮(HN,15 g/m2)3个氮素水平,研究CO2浓度升高对三江平原草甸小叶章碳氮积累的影响.结果表明,CO2浓度升高条件下小叶章植株总固碳量增加,不同氮水平下小叶章总固碳量分别增加19.3%(NN),24.4%(MN)和24.6%(HN),且根固定碳量占植株总体碳库比例均有不同程度的提高.CO2浓度升高降低了小叶章各器官氮含量,其中叶、茎氮含量以抽穗期降幅最大(14.4%和19.5%),根氮含量以腊熟期降幅最大(17.4%).小叶章各器官N含量的降低是由于CO2浓度升高条件下植株生长加快引起的稀释效应所致. 相似文献
19.
有机肥无机肥配施对温室黄瓜生长、 产量和品质的影响 总被引:10,自引:0,他引:10
蔬菜生产过量使用有机肥也会影响蔬菜的生长、 降低蔬菜的品质。本项目在保护地栽培条件下,研究了一定养分量投入中,在黄瓜上有机肥和无机肥的最佳配比。试验采用泡沫槽栽培,所有供试肥料均以底肥形式一次性施入。结果表明,施有机肥30 t/hm2+无机肥0.9 t/hm2的处理和施有机肥45 t/hm2+无机肥0.45 t/hm2的处理严重抑制了黄瓜定植初期的生长,降低了前期单株产量和果实中Vc、 可溶性糖含量,增加了硝酸盐含量。单施有机肥60 t/hm2的处理肥害相对较轻,植株恢复生长较快。单施无机肥1.8 t/hm2的处理和施有机肥15 t/hm2+无机肥1.35 t/hm2的处理植株生长势强,前期单株产量、 果实中Vc、 可溶性蛋白和可溶性糖含量较高,硝酸盐积累量较低,但这两个处理在结果后期发生早衰,导致中后期产量下降。综合生长、 产量和品质指标,最优的底肥组合应该是施有机肥15 t/hm2+无机肥1.35 t/hm2的处理,但要注意生长中后期进行追肥,以满足果实生长的营养需求,以期获得较高的产量。 相似文献
20.
A lysimeter method using undisturbed soil columns was used to investigate the effect of water table depth and soil properties on soil organic matter decomposition and greenhouse gas (GHG) emissions from cultivated peat soils. The study was carried out using cultivated organic soils from two locations in Sweden: Örke, a typical cultivated fen peat with low pH and high organic matter content and Majnegården, a more uncommon fen peat type with high pH and low organic matter content. Even though carbon and nitrogen contents differ greatly between the sites, carbon and nitrogen density are quite similar. A drilling method with minimal soil disturbance was used to collect 12 undisturbed soil monoliths (50 cm high, Ø29.5 cm) per site. They were sown with ryegrass (Lolium perenne) after the original vegetation was removed. The lysimeter design allowed the introduction of water at depth so as to maintain a constant water table at either 40 cm or 80 cm below the soil surface. CO2, CH4 and N2O emissions from the lysimeters were measured weekly and complemented with incubation experiments with small undisturbed soil cores subjected to different tensions (5, 40, 80 and 600 cm water column). CO2 emissions were greater from the treatment with the high water table level (40 cm) compared with the low level (80 cm). N2O emissions peaked in springtime and CH4 emissions were very low or negative. Estimated GHG emissions during one year were between 2.70 and 3.55 kg CO2 equivalents m−2. The results from the incubation experiment were in agreement with emissions results from the lysimeter experiments. We attribute the observed differences in GHG emissions between the soils to the contrasting dry matter liability and soil physical properties. The properties of the different soil layers will determine the effect of water table regulation. Lowering the water table without exposing new layers with easily decomposable material would have a limited effect on emission rates. 相似文献