首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen is an essential nutrient for greenhouse-grown lettuce (Lactuca sativa L.); however, excessive nutrient availability causes disease and detrimental effects on the leaf and root development. In this study, nitrogen content of the lettuce leaves was estimated by determining the chlorophyll concentrations of the leaves using image processing technique. The Hoagland solution was used as a fertilizer in five different doses (control, quarter of the solution, half of the solution, standard solution, and two times more of the solution). Multilayer perceptron neural network (MLPNN) model was developed based on the red, green, and blue components of the color image captured to estimate chlorophyll content and chlorophyll concentration index (SPAD values). According to the obtained results, the MLPNN model was capable of estimating the lettuce leaf chlorophyll content with a reasonable accuracy. The coefficient of determination was 0.98, and mean square error was 0.006 in validation process.  相似文献   

2.
氮肥用量对药用菊花生长及其药用品质的影响   总被引:6,自引:2,他引:4  
本文采用盆栽试验研究了氮肥用量对药用菊花(药菊)生长及其药用品质的影响。结果表明,氮肥可促进植株生长、花芽分化和提前开花,提高菊花产量。当氮肥用量为0.5069 g/kg土时,药菊单株鲜花总产量最高,为542.01 g /株。菊花中绿原酸、总黄酮和可溶性糖的含量同氮肥用量成反比,高氮肥处理时上述成分最大下降幅度可分别达35.48%~45.26%、28.58%~35.58%和6.42%~9.51%。随着氮肥用量增加,药菊植株次生代谢关键酶苯丙氨酸解氨酶(PAL)活性和菊花中磷(P)、钾(K)、钙(Ca)元素含量大幅降低,而N/P、N/K和N/Ca比值和可溶性氨基酸含量升高。高氮处理因提高植株氮含量,降低PAL活性和可溶性糖含量,从而抑制植株绿原酸和黄酮等酚类物质合成而影响菊花的药用品质。试验还表明,当氮肥用量为0.4180~0.4598 g/kg土时,菊花中总黄酮和绿原酸的累积量最高。综合比较氮肥用量对菊花药材产量、外观品质、活性成分含量与累积量等因素的影响,建议菊花生育期内氮肥用量在0.30~0.40 g/kg土范围为适宜。  相似文献   

3.
Phosphorus (P) is essential macronutrient for soybean [Glycine max (L.) Merr.] growth and function. The objective of this study was to determine effect of phosphorus nutrition (including phosphorus nutrition level and interruption of phosphorus supply) on nitrogen accumulation, nodule nitrogen fixation and yield of soybean plants by 15N labeling with sand culture. The results showed that they all presented a single peak curve with improvement of phosphorus nutrition level, when phosphorus concentration of nutrient solution was about 31 mg/L, they all reached the maximum and effect of phosphorus nutrition level on nodule nitrogen fixation was lower than that on yield formation level. Interruption of phosphorus supply during soybean growth period, nitrogen accumulation and nodule nitrogen fixation were seriously inhibited, and yield was decreased significantly when interruption of phosphorus supply during V3-R1 and R1-R5 period, while interruption of phosphorus supply during R5-R7 period had no significant effect on nitrogen accumulation, nodule nitrogen fixation and yield. So soybean nitrogen metabolism and yield were sensitive to phosphorus nutrition in the V3-R5 period, those were not sensitive to phosphorus nutrition after R5 period.  相似文献   

4.
用杂交水稻中优679为试验材料,研究氮肥运筹对晚稻产量和氮素利用率的影响。结果表明,在目标产量7 500 kg/hm2,总施氮量150 kg/hm2条件下氮肥运筹不同处理中,以基蘖肥∶穗肥=6∶4且基肥采用碳铵深施方式,其实际产量、齐穗后干物质生产量、成熟期干物质积累量、氮素利用率等均为最高。  相似文献   

5.
ABSTRACT

Due to elevating costs of N fertilizer and growing apprehensions about nitrate, experiments evaluating nitrogen agronomic efficiency (NAE) is becoming increasingly important in crop production. NAE and seed yield potentiality of three cultivars of sesame (Shandwel–1, Giza–32 and Sohag–1) were evaluated under four N applications (0, 72, 108, and 144 kg N ha?1) in a field experiment. Results showed that Sohag–1 recorded the highest values of yield and yields traits surpassing the other two cultivars. Sesame plants received 144 or 108 kg N ha?1 produced the highest seed yield. In plots fertilized by 108 or 144 kg N ha?1, Sohag–1 was the potent cultivar for recording higher seed yield. N addition more or less than 108 kg N ha?1 caused suppression in NAE. Sohag–1 was the most effective and responsive cultivar in N use being exceeded the averages of each seed yield at zero N rate and seed yield response index (SYRI).  相似文献   

6.
水氮联合调控对小油菜生长、产量及品质的影响   总被引:3,自引:1,他引:3       下载免费PDF全文
采用温室盆栽试验,研究了水氮联合调控对小油菜生长、产量及品质的影响。结果表明,灌水水平与施氮量对叶片数、叶面积、叶绿素与产量均有显著或极显著影响,这些指标均随灌水水平的提高而增加,随施氮量的增加呈抛物线趋势,在低氮(0.1 g·kg~(-1))与中氮处理(0.2 g·kg~(-1))达到最大,且差异不显著。中水高氮(田间持水量的75%,0.3 g·kg~(-1))耦合能显著提高小油菜Vc含量;灌水、施氮及其交互作用对可溶性糖与硝酸盐含量影响极显著;增加灌水能减轻高量氮肥对小油菜可溶性糖合成的抑制作用;不施氮处理硝酸盐含量均极显著低于施氮处理,高水低氮(田间持水量的90%,0.1 g·kg~(-1))与中水(田间持水量的75%)下的各个施氮处理硝酸盐含量较低。降低施氮量,适当增加灌水能增加Vc、可溶性糖含量,降低硝酸盐积累。综合考虑小油菜生长、产量及品质,中水低氮(田间持水量的75%,0.1 g·kg~(-1))为最佳水氮处理。  相似文献   

7.
[目的]研究冠层光谱技术在蔬菜氮素营养诊断中应用的可行性和提高其准确性的方法,为推进蔬菜氮素营养管理与施肥推荐提供快速无损检测技术.[方法]以茎菜类蔬菜—莴苣(Lactuca sativa L.)为研究对象进行田间试验.设置5个化肥年施用梯度:0、108、162、216、270kg/hm2,在莴苣幼苗期、莲座期、茎形成...  相似文献   

8.
Abstract

A field experiment was conducted at Al Malak Valley Farm, El-Sharkeya Governorate-Egypt (30°–51° N; 32°–53° E) using 15 years old productive mango (Mangifera indica L.) trees cv. Zebda. The experiment was repeated for two successive seasons (2014/2015) and (2015/2016). The trees were planted 8×8 meters apart in sandy soil under drip irrigation system using the Nile water. Treatments included three concentrations of boron (0.0, 250, 500?mg L?1) and three concentrations of nitrogen (1000, 1250, 1500?g nitrogen/tree/year). Boron was applied as foliar spray of boric acid and nitrogen was applied to the soil as ammonium sulfate. Treatments were arranged in a factorial Completely Randomized Block Design with three replicates for each treatment. Results show that boron application has improved mango tree nutritional status. Leaf nitrogen, phosphorus, potassium and boron concentrations significantly increased as the boron application rate increased. In addition, boron application resulted in significant increase in leaf total chlorophyll, total carbohydrates, total sugars, carbon/nitrogen (C/N) ratio and decrease in total phenol content. Boron showed higher impact than nitrogen on all tested parameters. The interaction treatment of 250?mg L?1 boron and 1500?g/tree nitrogen proved to be the best treatment.  相似文献   

9.
Abstract

Maize response to deficit water and nitrogen for assessing phenological development and yield was studied under semi-arid conditions. Experiment consisting three drip irrigation levels, replenish 60 (DI60), 80 (DI80) and 100 percent (DI100) of cumulative pan evaporation, and four nitrogen doses 50 (RN50), 75 (RN75), 100 (RN100) and 125 (RN125) per cent of recommended nitrogen. A Furrow irrigated treatment was kept as control/check. Significant earliness in visibility of collar of 8th leaf, tasseling, silking and significant delay in dough stage and physiological maturity was recorded under well water treatment DI100 as compared to DI60. Days to collar of 8th leaf, tasseling and silking had significant negative correlation, and duration of yield formation phase and days to physiological maturity had significant positive correlation with grain yield. Higher DM production, longer yield formation phase and late physiological maturity led to significantly higher grain yield under DI100. In case of nitrogen levels, phonological characteristics like collar of 8th leaf, tasseling and silking were significantly delayed, and dough stage and physiological maturity were advanced under nitrogen deficit treatment RN50 as compared to RN100 and RN125. Significantly higher dry matter production and longer yield formation phase observed led to significant higher SCY under RN100 and RN125 as compared to RN50. Yield formation phase was significantly longer under drip irrigated crop as compared to control during 2nd year of study. Crop phenological development significantly affected by drip irrigation regimes and nitrogen levels, and there was significant correlation between phenological stages development and grain yield.  相似文献   

10.
不同氮效率油菜品种产量和品质对供氮水平的反应   总被引:2,自引:1,他引:2  
为探明不同氮效率油菜产量和品质对供氮水平的反应动态,揭示油菜氮效率与品质的关系,本文采用砂培试验,研究了两种氮效率油菜品种在06、3、6、12、15 mmol/L 5种不同氮水平下(用N1N5表示)的氮效率、子粒产量和品质的变化。结果表明, 随着供氮水平的提高,油菜子粒产量、油分产量和蛋白质含量增加,氮效率和油分含量下降; 而子粒脂肪酸组成变化较小,所测定的7种脂肪酸中,芥酸和花生烯酸含量随着氮水平的增加略有下降,棕榈酸、硬脂酸、油酸、亚油酸和亚麻酸含量则没有明显的变化; 与氮低效品种相比,氮高效品种的子粒产量、芥酸和花生烯酸含量随供氮水平的变化幅度更大,油分含量下降幅度更小。所有氮水平下,氮高效品种的子粒产量、油分含量和油分产量均高于氮低效品种,亚油酸含量略高于而亚麻酸含量略低于氮低效品种,子粒蛋白质、棕榈酸、硬脂酸、油酸含量两品种没有差异。总之,提高氮水平有利于增加油分产量,氮高效品种的增加幅度大于氮低效品种,但对脂肪酸组成的影响较小。因此,氮高效品种不会因高效吸收利用氮素而降低油分含量或使油菜品质变劣。  相似文献   

11.
东北黑土区大豆生长、结瘤及产量对氮、磷的响应   总被引:6,自引:0,他引:6  
氮肥和磷肥显著影响大豆的结瘤和产量。然而在土壤肥力较高、速效养分有效性差的东北地区,有关氮肥和磷肥施用量对大豆结瘤和产量影响的研究较少。本试验采用裂区田间试验,设置3个氮(N)水平(0、20 和 50 kg/hm2)和 3 个磷(P)水平(0、 20 和 40 kg/hm2),研究氮、 磷及其交互作用对大豆生长发育、 结瘤特征及产量的影响。结果表明, 单施氮肥大豆生物量和产量随着施氮量的增加而增加,而根瘤数量、 干重、 大小和结瘤指数呈逐渐下降的趋势。单施磷肥促进大豆生物量、 产量、 根瘤数量、 干重、 大小和结瘤指数的增加,但其增幅低于施氮处理下的增幅。氮磷对大豆生长和产量促进作用高于单施氮和单施磷处理,但差异不显著;氮磷处理下的根瘤数量、 干重、 大小和结瘤指数低于单施磷处理;氮磷处理下N2(N 50 kg/hm2)处理下的大豆根瘤数量、 干重、 大小和结瘤指数高于N1处理(N 20 kg/hm2)下的,随着施磷量的增加大豆根瘤数量、 干重、 大小和结瘤指数增加,施磷能够抵消氮对大豆根瘤产生和形成的抑制。氮、 磷及其交互作用对大豆根瘤的影响都是直接的,并且不是通过促进大豆生长间接促进的。因此氮和磷均是限制东北地区大豆结瘤和产量的因素,但氮是主导因素。若要获得大豆高产,氮肥施用量需要控制在50 kg/hm2,磷肥在40 kg/hm2;但若想最大的发挥大豆的结瘤固氮功能,那么应该不施或者减少氮肥的施用量到20 kg/hm2,磷肥仍在40 kg/hm2。  相似文献   

12.
研究了氮源和施氮量对烤烟叶绿素动态、株高、叶面积系数、产量和产值的影响,发现:不管何种氮肥形态,烟叶内叶绿素含量均随施氮量的增加而增加;铵态氮对旱地烤烟的叶绿素含量的增加效果优于硝态氮。虽然硝态氮和铵态氮均能促进烟株株高和叶面积系数,但铵态氮的效果要比硝态氮的效果好;田烟和地烟的最高产量产生在铵态氮的最高处理180和150kg/hm2,就产值而言,地烟在两种氮源下均为75kg/hm2的氮量下的产值达到最高,但铵态氮处理的产值较硝态氮高0.34×104元/hm2;而田烟的最高产值却出现在高氮处理中。  相似文献   

13.
氮肥对水田与旱地烤烟叶绿素动态、生长及产量的影响   总被引:6,自引:0,他引:6  
《土壤肥料》2005,(6):33-35
  相似文献   

14.
15.
During the last two decades, high-yielding cultivars for multipurpose use of rice have been bred and released in Japan. Some of them have repeatedly recorded high yields of over 9?t?ha?1 of brown rice (about 11.25?t?ha?1 of rough rice). Here, characteristic features of nitrogen (N) acquisition and its relation to formation of yield components, dry matter production and grain yield at yield levels over 9?t?ha?1 of brown rice in recent high-yielding cultivars, a large grain type of japonica variety, “Akita 63,” extra-panicle weight types of indica variety, “Takanari” and “Saikai 198,” and a panicle weight type of japonica variety, “Fukuhibiki,” are described as compared with those in the standard japonica cultivars, “Toyonishiki” and “Nipponbare.” The grain yield of the recent high-yielding cultivars was 9.4 to 11.6?t?ha?1 of brown rice; that is 1.2?1.7 times greater than those of the standard cultivars. Sink capacity (1000-grain weight?×?spikelet number per unit land area) was 47?62% greater in the recent high-yielding cultivars, largely due to their 1.3?1.5 times greater N-use efficiency for sink formation (sink capacity per unit amount of total plant N in the aboveground part at maturity), although major component(s) responsible for their greater sink capacity differ among the cultivars. The ratio of grain yield to total dry matter was 1.1?1.4 times greater in the recent high-yielding cultivars than in the standard cultivars, indicating that the former efficiently translocate dry matter into spikelets during the grain-filling period. N-use efficiency for dry matter production (total dry matter per unit amount of total plant N) was comparable between “Akita 63,” “Fukuhibiki” and “Toyonishiki,” and slightly greater in “Takanari” and “Saikai 198” than in “Nipponbare.”

These results indicate that greater N-use efficiency for sink formation and efficient translocation of dry matter into spikelets contribute greatly to the high-yielding potential of the recent high-yielding cultivars.  相似文献   

16.
Growing cotton (Gossypium hirsutum L.) after wheat (Triticum aestivum L.) is an important cropping system in Pakistan. However, numerous tillage practices commonly applied for cotton production are not productive. Conservation tillage may optimize cotton yield and quality if nitrogen (N) is not a limiting factor. Field experiments were conducted on silty clay soil (Hyperthermic, and Typic Torrifluvents) of Dera Ismail Khan, Pakistan to study the impact of tillage techniques (zero (ZT), reduced (RT), and conventional tillage (CT)) and nitrogen, namely 0, 50, 100, 150, and 200 kg ha–1 on cotton yield and quality. Mean values for N revealed that bolls plant–1, boll weight, seed cotton yield, ginning out turn (GOT), fiber length, strength, and micronaire were highest at 150–200 kg N ha–1. Averaged over years, tillage × nitrogen revealed that RT had higher bolls plant–1, boll weight, GOT, fiber length, and strength at 150–200 kg N ha–1 compared to other tillage system. The micronaire revealed that RT had no adverse effect on fiber fineness compared to ZT/CT. RT had accumulated higher soil organic matter and total soil N compared to CT. RT with 150–200 kg N ha–1 may be a sustainable and environmentally safe strategy to enhance cotton yield and quality.  相似文献   

17.
设施土壤有机氮组分及番茄产量对水氮调控的响应   总被引:2,自引:0,他引:2  
【目的】酸解铵态氮和酸解氨基酸氮是土壤有机氮的主要组分,可表征土壤的供氮能力,并在氮素矿化、固定、迁移以及为植物生长供氮过程中起到至关重要的作用。研究水、氮调控下设施土壤有机氮组分和番茄产量的相互关系,为评价设施土壤肥力变化和制定科学合理的水、氮管理措施提供科学依据。【方法】田间定位试验在沈阳农业大学的温室内进行了5年,供试作物为番茄,栽培垄上覆盖薄膜,打孔移栽番茄幼苗,膜下滴灌。定位试验三个氮肥处理为施N75、300、525kg/hm^2,记为N1、N2和N3;三个灌水量为25、35和45kPa灌水下限(灌水始点土壤水吸力),记为W1、W2和W3,共9个肥水处理组合。在试验第五年番茄生长期(2016年4—8月)调查了番茄产量及其构成,在休闲期(2016年9月)测定0—10、10—20和20—30cm土层土壤有机氮组分、有机碳和全氮含量。【结果】9个处理中,土壤全氮、有机碳和除酸解氨基糖氮外的有机氮组分含量均随土层深度的增加而降低,且0—10、10—20和20—30cm土层间含量差异显著(P<0.05)。三个土层中酸解总氮占土壤全氮的66.0%、64.6%和55.2%,是土壤有机氮的主要存在形态。土壤酸解总氮中各组分含量及其所占比例的大小顺序为酸解氨基酸氮、酸解铵态氮>酸解未知态氮>酸解氨基糖氮。灌水下限和施氮量对番茄产量及单果重的影响均达极显著水平(P<0.01),水氮交互效应也达显著水平(P<0.05)。休闲期土壤酸解铵态氮与番茄产量间显著负相关(P<0.05)。番茄产量W1N2(25kPa+N300kg/hm^2)、W2N1(35kPa+N75kg/hm^2)和W1N1(25kPa+75kg/hm^2)处理间差异不显著。【结论】灌水和施氮量及其交互效应对各土层土壤全氮、酸解总氮、酸解铵态氮和酸解氨基酸氮的影响均达到极显著水平(P<0.01),而对土壤有机碳的影响不显著(P>0.05)。相同施氮量下,0—30cm土层酸解铵态氮和0—20cm土层酸解氨基酸氮含量均在土壤水吸力维持在35~6kPa范围内达最高值,此土壤水分含量下的0—20cm土层酸解氨基酸氮含量在施N75kg/hm^2时达到最大值。从节水减氮和番茄产量的角度考虑,控制土壤水吸力不低于35kPa、每季随水施N75kg/hm^2为供试番茄生产条件下最佳的水、氮组合量。  相似文献   

18.
不同氮肥水平对日光温室黄瓜品质和产量的影响   总被引:14,自引:0,他引:14  
为合理施肥,实现设施栽培蔬菜的优质高产,该文就5种氮肥水平(不施肥、只施基肥膨化于鸡粪22.5t/hm^2、基肥+追肥N540、1080、2160kg/hm^2)对日光温室黄瓜品质和产量的影响进行了研究。结果表明:随施肥量的增加黄瓜果实的维生素C、可溶性蛋白、游离氨基酸、可溶性糖和有机酸含量均有增加的趋势,风味也有改善,味甜、香气浓,但黄瓜硝酸盐含量呈直线上升。施肥过量还会导致黄瓜脆度下降,商品瓜率和总产量显著降低。综合考虑产量和品质两个因素,在中等使用年限,中等土壤肥力的日光温室黄瓜冬春茬栽培中,每公顷施用于鸡粪22.5t作为基肥,配施化学肥料N540kg做为追肥,能获得较高的产量和较好的品质;过少或过量的施肥均不利于黄瓜产量和品质的形成。  相似文献   

19.
This study investigated management strategies to increase deep root growth and crop nitrogen (N) uptake by rocket grown as baby leaf in coarse sandy soil. Stage I (sowing to first harvest) measured the effects of two sowing densities and two N fertilizer rates on root growth and total N uptake. In Stage II (first to second harvest), effects of leaf harvesting and late season N fertilizer application on root growth, total N uptake and deep 15N uptake were measured. At the end of Stage I, root depth was 0.68–0.90 m, and the large fertilizer application increased N uptake. Plant density increased root depth, N uptake and nitrogen use efficiency (NUE) early in this stage and biomass production at harvest. Leaf harvesting in Stage II affected root density but not root depth that reached 1.4 m. The ability for N uptake was greater from 0.6 m due to more roots and larger N inflow than from 1.1 m depth. Late season fertilizer increased N concentration and uptake but did not affect NUE and deep N uptake. During the growing season, 330–349 kg Ninorg/ha was lost from 0 to 1.0 m depth most likely by leaching. Management practices that increased root growth and N uptake were found to increase NUE in rocket production early in the season. The production system used N inefficiently and smaller applications, plant density, leaf harvesting and other changes of management are required to reduce leaching.  相似文献   

20.
Purpose: Due to environmental concerns, efforts are made to replace the use of peat in horticultural growth media by organic wastes. Four growth media were prepared with the purpose of achieving adequate physical and chemical properties for plant production. Materials and methods: Growth media prepared from mixtures of coir (C) and paper sludge (P), respectively, with two biogas digestates from food waste (D1 and D2), were tested. These mixtures, 20% D1 or D2?+?80% C or P (v/v), were evaluated as growth media for tomato (Solanum lycopersicum L.) and lettuce (Lactuca sativa L.). Results and conclusion: The growth media were all physically stable during the growing period, provided all the macronutrients and most of the micronutrients necessary for plant growth, adequate pH conditions, as well as an adequate electrical conductivity. The mixture of D2 and P produced the highest biomass compared to a mineral fertilised peat (control), with a biomass production of 76% of the control for lettuce and 54% for tomato. Causes for the biomass reduction relative to the control may be related to ammonium toxicity effects, and/or limited plant-available water. The digestates, particularly D1, seemed also to have a phytotoxic effect on the germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号