首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scots pine sapwood was treated with glutaraldehyde (GA) in aqueous solution using magnesium chloride as a catalyst in order to evaluate the durability towards weathering. Infrared spectroscopy suggested that GA treatment increased the photo-stability of lignin during artificial weathering of micro-veneers in a QUV over 168?h; photo-protection increased with increasing GA concentration. In comparison with the unmodified controls, GA-modified pine micro-veneer strips exhibited a lower tensile strength loss measured in a zero-span mode in the course of weathering. During 18?months of outdoor exposure, GA-modified pine wood boards exhibited a lower moisture content and water uptake than the unmodified ones. GA treatment also clearly restricted the penetration of blue stain fungi into deeper layers of wood. On the macroscopic scale, the surface of the GA-modified boards was significantly smoother due to less erosion, cracking and minor peeling of tracheids. Scanning electron microscopy further revealed that individual tracheids were detached from the cell compound and then washed away from the unmodified wood surface, whereas tracheids on surfaces of GA-modified wood remained in the tissue compound but displayed many axial and transversal cracks.  相似文献   

2.
Quality assessment of thermally modified spruce (Picea abies (L.) Karst) and beech (Fagus sylvatica L.) wood and of the corresponding reference samples was carried out by means of non-destructive FT-NIR spectroscopic measurements and PLS regression. Oven-dry and basic density as well as MOE and MOR determined by 3-point bending tests were evaluated. The focus was put on specimens produced from material that had been thermally modified in an industrial scale kiln. Modelling results range from poor to very good. The results of the spectra taken from the spruce samples resulted in better prediction results than the spectra of the beech samples. This could be due to different proveniences or variation in the industrial modification process. The results indicate that FT-NIR surface measurements of sound thermally modified wood samples could be applied to evaluate several characteristics before and after the modification process. The method could be used for screening during pre-sorting of thermally modified wood.  相似文献   

3.
The aim of this experiment was to impregnate thermally modified wood using an easy and cost-effective method. Industrially processed thermally modified European aspen (Populus tremula L.) and birch (Betula pubescens Ehrh.) were collected and secondarily treated at the laboratory scale with the preservatives tung oil, pine tar and Elit Träskydd (Beckers) using a simple and effective method. Preservative uptake and distribution in sample boards were evaluated using computed tomography (CT) and scanning electron microscopy (SEM) techniques. Preservative uptake and treatability in terms of void volume filled were found the highest in Beckers and the lowest in tung oil-treated samples. Thermally modified samples had lower treatability than their counterpart control samples. More structural changes after thermal modification, especially in birch, significantly reduced the preservative uptake and distribution. The differences of preservatives uptake near the end grain were high and then decreased near the mid position of the samples length as compared with similar type of wood sample. Non-destructive evaluation by CT scanning provided a very useful method to locate the preservative gradients throughout the sample length. SEM analysis enabled the visualization of the preservative deposits in wood cells at the microstructural level.  相似文献   

4.
A procedure for rapidly modifying beech wood using a thermally initiated solvent-free grafting system was examined. In the modification, butyl acrylate and butyl methacrylate were used as vinyl monomers. Free radicals were generated from 2,2′-azobis(2-methylpropionitrile) or benzoyl peroxide at 103 and 180 °C by contact heating of the modified material. Chemical changes in the material were investigated by FTIR and X-ray photoelectron spectroscopies. The modification resulted in decreased surface wetting of the material manifested by increased water contact angles. The hardness of the resultant material decreased, while its color changed by the effect of temperature. It was shown that the approach allowed for efficient thermal-initiated modification of wood with rapid contact heating.  相似文献   

5.
Abstract

One of the main disadvantages of wood is hygroscopicity resulting from its polar character. The sorption–desorption of water causes unwanted swelling and shrinkage in wood. Thermal modification substantially reduces this inconvenient feature. Unfortunately, the same chemical changes that reduce water sorption alter the polar character of the material and result in poorer wetting of thermally treated wood by waterborne adhesives. Gluability of thermally modified beech (Fagus silvatica L.) and birch (Betula pubescens Ehrh.) wood with two commercial amino resins, melamine–urea–formaldehyde (MUF) and melamine–formaldehyde (MF), and a two-component polyurethane (PUR) adhesive was investigated. Both wood species were modified according to two temperature regimes: 160°C and 190°C. Shear strengths of the joints were then determined according to EN 205:2003 standard. The results showed that thermally modified beech and birch wood can be effectively glued not only with commercially available PUR adhesives, but also with aqueous MF and MUF resins. The resultant shear strengths of the joints were limited by the strength of the thermally modified substrate.  相似文献   

6.
Abstract

One of the main objectives of thermal modification is to increase the biological durability of wood. In this study the fungal resistance of Norway spruce and Scots pine, thermally modified at 195°C and 210°C, was studied with a lap-joint field test. Untreated pine and spruce and pine impregnated with tributyl tin oxide (TBTO) and copper, chromium and arsenic (CCA) were selected as reference materials. The evaluations were carried out after 1, 2 and 9 years of exposure. After 1 and 2 years of exposure mainly discoloration was detected. Only the untreated pine was slightly affected by decay fungi. There were significant differences in the decay ratings of untreated and thermally modified wood materials after 9 years in the field. While the untreated wood materials were severely attacked by decay fungi or reached failure rating, only small areas of incipient decay were detected in the thermally modified samples. Thermally modified pine was slightly more decayed than thermally modified spruce. The only wood material without any signs of decay was CCA-treated pine, since some of the TBTO-treated pine samples were also moderately attacked by fungal decay. The results of the lap-joint test had a good correlation with mass losses in a laboratory test with brown-rot fungi.  相似文献   

7.
m0DUrn0NStUapngthemachinevislonsystemistOraiseautomahonlevelOfdefectsinspechonandtOimProvePredctsquality.Inthispaper,themainfunhonOfthisknOwledge-basedmachinevisionsystemistodetectUndsirable"defecs"thatcanamparonthesutheeoftheroughwoodlumbers.F0ramachinevisionsystemtohandieacomPlexProblem,alotofaPriorknOwedgemustbeembeddedideitinanorsanibomanner.Itisimportanttokeepdomain-specificknOWedgeseparatefrOmageneralknOwedgeaboutthenetWrkinSpechonPrObIeminordertOmakeasystemeasilyadaPtabletodi…  相似文献   

8.
我国每年产生大量的废弃人造板,造成废物处理、环境危害等方面的问题。对废弃人造板进行再利用,既可以有效减少环境污染,又可以节约木材资源、创造经济价值。研究资料发现,目前废弃人造板再利用可分为两大类——物质方面再利用和能源方面再利用。其中,物质方面再利用包括制备再生刨花板、木质复合材料、活性炭、液化产品等,能源方面再利用包括制备颗粒燃料和热裂解炼制。  相似文献   

9.
就不同的细料(锯屑)掺入量对快速固化水泥刨花板的性能的影响作了探讨,结果表明:锯屑的掺入对水泥刨花板的密度、静曲强度、内结合强度和厚度膨胀率均有一定的影响,当锯屑的掺入量占木质原料总量的20% ~ 30%时,既可以改善板的性能,又可以提高木质原料的利用率.  相似文献   

10.
This study was aimed at evaluating the effect of thermal modification temperature on the mechanical properties, dimensional stability, and biological durability of Picea mariana. The boards were thermally modified at different temperatures 190, 200 and 210 °C. The results indicated that the thermal modification of wood caused a significant decrease in the modulus of rupture (MOR) after 190 °C, while the modulus of elasticity (MOE) seemed less affected with a slight increase up to 200 °C and slight decrease with further increase in temperature. The hardness of the thermally modified wood increased in the axial direction. This increase was also observed in tangential and axial directions but at a lesser extent. The final value was slightly higher in axial direction and lower in radial and tangential directions compared to those of the untreated wood. Dimensional stability improved with thermal modification in the three directions compared to the dimensional stability of unmodified wood. The fungal degradation results showed that the decay resistance of thermally modified wood against the wood-rotting fungi Trametes versicolor and Gloephyllum trabeum improved compared to that of the untreated wood. By contrast, the thermal modification of P. mariana had a limited effect on the degradation caused by the fungus Poria placenta.  相似文献   

11.
薄木饰面MDF湿贴与干贴工艺探析   总被引:2,自引:0,他引:2  
对薄木饰面MDF的湿法贴面与干法贴面2种工艺进行比较分析,结果表明:对天然薄木进行贴面生产MDF饰面板,在生产工艺、原材料消耗、生产效益及产品质量等方面,湿法贴面具有一定的优势。  相似文献   

12.
In order to improve the dimensional stability of wood-polymer composites, wood flour pre-treated by polyethylene glyco1 (PEG) at two different concentrations and then thermally treated at 140°C, was used as raw material to produce wood flour/polypropylene (PP) composites at a wood content of 40%. The structure of modified wood flour was analyzed with a scanning electron microscope (SEM) and its effect on the physical and mechanical properties of wood flour/PP composites was evaluated. The SEM results indicated the "bulking" effect of PEG on wood flour, which resulted in reduced water uptake. The combination of PEG and heat treatment further improved the moisture resistance of the composites. However, PEG modification had a negative effect on the flexural modulus of rupture (MOR) and the modulus of elasticity (MOE); whereas heat treatment partly compensated for this reduction. For dynamic mechanical properties, PEG treatment decreased the storage modulus (E′). However, the heat treatment resulted in an increase of E′ of the wood flour/PP composites, with the temperature of loss factor peaks shifting to a higher temperature.  相似文献   

13.
广宁县竹香骨下脚料制备竹碎料刨花板及其复合改性研究   总被引:1,自引:0,他引:1  
采用竹香骨下脚料为原料,以脲醛树脂和三聚氰胺改性脲醛树脂胶粘剂制备竹碎料刨花板,并与木纤维复合改性,检测并分析了内结合强度、静曲强度、弹性模量和吸水性。结果表明,在热压温度为160℃时,竹碎料板和竹木复合碎料板的物理力学性能均满足国标规定在干燥状态下使用的普通用板要求。当木纤维与竹碎料复合后,复合板材的静曲强度和弹性模量有一定程度提高,但内结合强度降低。  相似文献   

14.
浅谈人造薄木生产中单板的漂白   总被引:2,自引:0,他引:2  
详细阐述了木材颜色的成因及漂白机理,重点介绍了人造薄木生产过程中单板漂白工艺。研究表明,经漂白处理的单板,颜色明显变浅,色调也比较均匀,而且还消除了板面污染,对单板的染色十分有利。  相似文献   

15.
This paper investigates the basic hygroscopic properties and formaldehyde content (FC) of particleboards produced with wood biomass from fruit tree branches and evergreen hardwood shrubs as substitute raw materials for fir particles. One-layer laboratory particleboards with two distinct target densities (0.63 g/cm3 and 0.69 g/cm3) were produced using various mixtures of the above materials. Industrially produced wood particles were also used for comparison purposes. The results showed that the replacement of fir wood (FW) by evergreen hardwood material significantly upgraded board's quality in terms of thickness swelling (TS) and water absorption (WA) (except boards with density of 0.63 g/cm3) after immersion in water for 24 h and residual swelling (RS) after reconditioning. The contribution of branch-wood (BW) particles in the production of FW boards with density of 0.63 g/cm3 induced increase of TS, WA, and RS while for boards with density of 0.69 g/cm3 did not result to significant changes except for RS. In terms of FC, boards made of BW and evergreen hardwood showed significantly lower FC compared to those produced by FW and industrial particles.  相似文献   

16.
Abstract

Heat treatment of wood is an effective method by which to improve the dimensional stability and biological durability, but the mechanical strength is decreased at the same time. Besides chemical modification of cell-wall constituents, physical weakening of the microstructure owing to heat-induced defects may also contribute to strength loss. Therefore, anatomical properties of heat-treated beech (Fagus sylvatica L.) and spruce (Picea abies Karst.), studied by light microscopic and scanning electron microscopic analysis, and their interrelation with strength properties and structural integrity were investigated. For determination of structural integrity, the high-energy–multiple-impact (HEMI) test was applied. Microscopic analyses showed frequent formation of radial cracks in heat-treated beech close to the rays as well as tangential cracks in the latewood of spruce. In addition, the modulus of rupture was more affected by the heat treatments than the resistance to impact milling (RIM) determined by the HEMI test, because RIM is based on multiple fractures on the microlevel that are not affected by the formation of intercellular cracks or other defects due to the heat treatment. It was concluded that heat-induced defects in the wood microstructure contribute to the substantial strength loss of thermally modified timber.  相似文献   

17.
杉木热处理材结晶度及力学性能的研究   总被引:1,自引:0,他引:1  
热处理对木材力学性能的影响是多样的,这与热处理条件下木材的物理化学变化密切相关。本次研究将杉木板材在160℃、180℃和220℃常压蒸汽条件下进行热处理,考察处理材的结晶度、抗弯弹性模量、抗弯强度及相互可能的关联。结果表明,热处理使试材结晶度增加,有助于提高木材的刚性,使热处理材的抗弯弹性模量高于常规对照材;结晶度的提高对抗弯强度没有改善作用,热处理后试材的抗弯强度明显下降。  相似文献   

18.
随着纸及纸板生产与消费数量的不断提高,我国造纸工业结构调整的发展对木材原料的需求将持续增加。我国木材市场数据显示,以原木、锯材等为代表的木材原料,以木浆、木片为代表的造纸原料进口均呈平稳增长趋势,木材市场供需矛盾突出。造纸工业竞争的核心是木材原料的争夺,而我国木材市场自有木材供给的严重不足性和进口总量的绝对依赖性特征决定了造纸工业木材原料未来仍将依靠进口。  相似文献   

19.
In the present study, durability of untreated and thermally modified sapwood and heartwood of Scots pine and Norway spruce was examined using a modified double layer test. Base layer samples were partly on contact with ground where exposure conditions were harder than that in a double layer test above the ground. The base layer on ground contact gave results already after one year of exposure in Finnish climate, but the top layer of a double layer test element simulated more the situation of decking exposure.

Significant differences in durability and moisture content (MC) between the wood materials were detected after six years of exposure in the field. Thermally modified pine heartwood performed very well in all layers of the test element and only minor signs of decay were found in some of the base samples. Both sapwood and heartwood of thermally modified spruce were suffering only slight amounts of decay while thermally modified pine sapwood was slightly or moderately decayed. Untreated sapwood samples of pine and spruce were severely decayed or reached failure rating after six years in the field. Untreated heartwood samples performed clearly better. The highest MCs were measured from untreated and thermally modified pine samples. Thermal modification increased significantly the durability and decreased the MC values of all wood materials.  相似文献   

20.
The interrelationships between microstructural characteristics and anisotropic elastic properties of strand-based engineered wood products are highly relevant in order to produce custom-designed strand products with tailored properties. A model providing a link between these characteristics and the resulting elastic behavior of the strand products is a very valuable tool to study these relationships. Here, the development, the experimental validation, and several applications of a multiscale model for strand products are presented. In a first homogenization step, the elastic properties of homogeneous strand boards are estimated by means of continuum micromechanics from strand shape, strand orientation, elastic properties of the used raw material, and mean board density. In a second homogenization step, the effective stiffness of multi-layer strand boards is determined by means of lamination theory, where the vertical density profile and different layer assemblies are taken into account. On the whole, this model enables to predict the macroscopic mechanical performance of strand-based panels from microscopic mechanical and morphological characteristics and, thus, constitutes a valuable tool for product development and optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号