首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate the response of some selected wheat cultivars to silicon application at different growth stages under drought stress, an experiment was carried out in the greenhouse of College of Agriculture, Shiraz University, Iran, during 2012 using a completely randomized factorial design with four replications. Experimental treatments included drought stress (100% F.C. as control and 40% F.C. as drought) and foliar application of 6 mM sodium silicate (control, application at mid tillering stage, at anthesis stage, and application at tillering + anthesis stages) and wheat cultivars (Sirvan and Chamran, relatively drought-tolerant, and Shiraz and Marvdasht, drought-sensitive cultivars). Drought stress significantly reduced chlorophyll content, leaf area, relative water content, grains per spike, 1000-grain weight, grain yield and biomass of all wheat cultivars. Furthermore, drought stress increased electrolyte leakage of the flag leaves of all cultivars. In contrast, foliar-applied silicon significantly increased these parameters and reduced electrolyte leakage. Furthermore, highest positive influence of silicon application was observed at combined use of silicon both at the tillering + anthesis stages in wheat plants under both stress and non-stress conditions. Significant differences were found in physiological responses among wheat cultivars. The drought tolerant cultivars (Sirvan and Chamran) had significantly higher growth and yield than those of drought sensitive cvs. Shiraz and Marvdasht under drought stress. In conclusion, foliar application of silicon especially at the tillering + anthesis stages was very effective in promoting resistance in wheat plants to drought conditions by maintaining cellular membrane integrity and relative water content, and increasing chlorophyll content.  相似文献   

2.
Role of exogenously-applied silicon (Si) on antioxidant enzyme activities was investigated in wheat under drought stress using a completely randomized factorial design with four replications. Drought stress significantly enhanced activities of ascorbate peroxidase, peroxidase, superoxide dismutase and catalase, and elevated accumulation of osmotically active molecules, soluble sugars and proline. Si application further enhanced activities of enzymes involved in oxidative defense system and accumulation of osmotically active molecules in drought-stressed plants. Under drought stress conditions, water shortage decreased protein content in all cultivars; however, application of Si increased it. Pollen area ratio was lower than 1 for cvs. Shiraz and Marvdasht under drought, but greater than 1 for cvs. Chamran and Sirvan. Water-limited regimes resulted in decreased leaf Ψw in all cultivars, but Si supply was effective in improving Ψw under water-limited regimes. Water shortage increased leaf K, Mg, and Ca concentrations. Under drought stress, Si-treated plants had higher K concentration than the none-treated plants.  相似文献   

3.
硅对干旱胁迫下小麦幼苗生长及光合参数的影响   总被引:9,自引:1,他引:9  
采用溶液培养试验,以两个抗旱性不同的小麦品种:低抗的扬麦9号(Yangmai.9)和高抗的豫麦18(Yumai.18)为材料,用PEG6000(聚乙二醇6000,渗透势约为-0.589MPa)模拟干旱胁迫条件,研究了硅对干旱胁迫下小麦幼苗生长、光合作用及可溶性糖含量的影响。结果表明,干旱胁迫条件下,小麦幼苗的生长和光合作用显著受到抑制,加硅处理能有效地提高干旱胁迫条件下小麦幼苗的生长状况及光合作用,且1.0.mmol/L.Si处理的效果优于0.1mmol/L.Si处理。与不加硅处理相比,干旱胁迫条件下加硅处理后,小麦幼苗的鲜干重、叶片可溶性蛋白含量、净光合速率(Pn)、蒸腾速率(Tr)、水分利用率(WUE)和气孔限制值(Ls)均显著升高,叶绿素含量也有一定程度的升高;而气孔导度(Gs)和细胞间隙CO2浓度(Ci)显著下降,可溶性糖积累量也降低。因此,硅可显著提高小麦对干旱胁迫的抗性。  相似文献   

4.
Abstract: Understanding plant responses to drought stress is essential, and there is a need to know possible physiological mechanisms of damage and drought avoidance for the genetic improvement of crops. Therefore, we investigated the effects of silicon (Si) on shoot and root growth, leaf relative water content (RWC), stomatal resistance (SR), lipid peroxidation (MDA), membrane permeability (MP), proline and hydrogen peroxide (H2O2) accumulation, nonenzymatic antioxidant activity, and the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) of 12 sunflower cultivars grown under drought conditions. Silicon applied to the soil counteracted the deleterious effects of drought in 6 of the 12 sunflower cultivars. In general, SR and H2O2, proline, and MDA content were increased in all the cultivars under drought stress. However, application of Si decreased their levels and alleviated membrane damage (MP) significantly by increasing leaf RWC. The CAT activity was significantly decreased by drought stress, but supplemental Si increased it. In general, SOD and APX activities of the cultivars were increased by drought and decreased by application of Si. The nonenzymatic antioxidant activity of the cultivars was significantly increased by Si under drought stress. Based on the present work, it can be concluded that applied Si alleviates drought stress in sunflower cultivars by preventing membrane damage, although the cultivars showed genotypic variation in response to applied Si.  相似文献   

5.
为了比较不同烤烟品种的苗期耐旱性差异,选用河南烟区主栽烤烟品种‘豫烟6号’、‘豫烟10号’、‘豫烟12号’和‘中烟100’为供试材料,利用浓度为15%的聚乙二醇(PEG-6000)模拟中度干旱环境,研究不同烤烟品种幼苗生物量、根系形态、叶片气孔特征、叶绿体超微结构和光合参数等指标对干旱胁迫响应机制的差异。结果表明:(1)干旱刺激了幼苗根系生长,抑制了地上种幼苗根冠比均显著提高;‘豫烟6号’和‘豫烟12号’幼苗根系生物量、总根长、根系表面积和根系体积均显著增加,但根系平均直径与对照无显著性差异;而‘豫烟10号’和‘中烟100’根系形态指标增加幅度较小,仅有‘豫烟10号’根系表面积显著增加,而根系平均直径均显著下降。(2)干旱引起‘中烟100’叶片气孔总面积比对照显著增加,‘豫烟12号’仅有气孔长度比其对照增加显著。(3)干旱处理后,‘豫烟6号’和‘豫烟12号’叶绿体整体结构变化不大,而‘豫烟10号’和‘中烟100’中叶肉细胞叶绿体被膜分解,与细胞壁分离;其中‘中烟100’叶绿体平均长度、长宽比和面积均显著降低。(4)与对照相比,干旱组叶片光合作用被抑制,其中‘豫烟10号’和‘中烟100’叶片净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)均显著下降,而胞间CO2浓度(Ci)显著上升,说明干旱胁迫下烤烟光合速率下降是非气孔因素所致。(5)干旱胁迫后‘豫烟6号’和‘豫烟12号’叶片叶绿素总量显著增加,而‘豫烟10号’和‘中烟100’却呈下降趋势。结果表明,‘豫烟6号’和‘豫烟12号’是耐旱型品种,而‘豫烟10号’和‘中烟100’抗旱性较差,抗旱能力排序为‘豫烟6号’‘豫烟12号’‘豫烟10号’‘中烟100’。  相似文献   

6.
To investigate the effects of irrigation regimes on assimilate remobilization, water use efficiency (WUE), relative water content (RWC), photosynthesis and yield of five wheat cultivars, a field experiment was conducted at Shiraz University during the 2008 and 2009 growing seasons. The experimental design was a randomized complete block and treatments were arranged as split-plot in three replicates. There were four levels of water regime including well-watered [irrigation based on 100% field capacity (FC)], excess watered (125% FC), mild drought (75% FC) and severe drought (50% FC) stress, and four bread wheat cultivars (Shiraz, Bahar, Pishtaz and Sistan) and a durum wheat (Yavaros). In all cultivars, progressed leaf senescence at 30 days after anthesis (DAA), was associated with a reduction in chlorophyll content. The reduction was more pronounced in Shiraz and Yavaros than Pishtaz and Sistan. With increasing temperature and remobilization of assimilate to grain, net photosynthesis and stomatal conductance were decreased significantly at 18 DAA compared with 8 DAA. Sistan and Pishtaz cultivars maintained higher RWC than sensitive cultivars of Shiraz and Yavaros under drought stress. The higher WUE in Pishtaz and Sistan was attributed to the effectiveness of a small amount of water in alleviating severe stress during the sensitive stages of growth. Under mild drought stress, controlled soil drying could enhance remobilization efficiency of assimilates in Pishtaz and Sistan and under severe drought, these cultivars had the highest grain yield compared with the other cultivars. Reduction of assimilates remobilization to the grain and 1000-grain weight, caused lower grain yield in Shiraz under severe drought. Overall, controlled soil drying in Sistan and Pishtaz might result in better mobilization of pre-stored assimilates to the grain in arid areas, where a rapid depletion of water resources is threatening crop production.  相似文献   

7.
A study on the effects of silicon supply on the resistance to drought in cucumber plants was conducted in pot experiments. The results suggested that in the absence of stress, silicon slightly enhanced the net photosynthetic rate, but significantly decreased the transpiration rate and stomatal conductance in cucumber plants. Silicon enhanced the net photosynthetic rate of cucumber plants under drought stress. Since silicon decreased the stomatal conductance, enhanced the capacity of holding water, and kept the transpiration rate at a relatively steady rate during drought stress, the photosynthesis of the cucumber plants was sustained. And under drought stress, silicon increased the biomass and water content of leaves in cucumber plants. Silicon decreased the decomposition of chlorophyll in cucumber plants under drought stress, limited the increase of the plasma membrane permeability and malondialdehyde (MDA) content in leaves, alleviated the physiological response of peroxidase (POD) to drought stress, maintained the superoxide dismutase (SOD) normal adaptation, and increased the activity of catalase (CAT). Under severe stress, these physiological biochemical reactions showed positive correlations with the amount of silicon supply. These findings demonstrated that silicon enhanced the resistance of the cucumber plants to drought. Statistical analysis indicated that under drought stress the cumulative value of biomass showed a highly significant correlation with the cumulative value of diurnal photosynthesis (r = 0.9812, p < 0.01), and was significantly correlated with the water content of leaves (r = 0.8650, p < 0.05). These results demonstrated that under drought stress the first factor responsible for the effects of silicon application on the cumulative value of biomass was the increase of photosynthesis, and the second factor was the enhancement of the water holding capacity. Based on these facts, it was concluded that silicon enhanced the resistance to drought mainly by taking part in the metabolism of plants.  相似文献   

8.
ABSTRACT

To characterize the effect of silicon (Si) on decreasing transpiration rate in maize (Zea mays L.) plants, the transpiration rate and conductance from both leaves and cuticula of maize plants were measured directly. Plants were grown in nutrient solutions with and without Si under both normal water conditions and drought stress [20% polyethylene glycol (PEG) concentration in nutrient solution] treatments. Silicon application of 2 mmol L?1 significantly decreased transpiration rate and conductance for both adaxial and abaxial leaf surface, but had no effect on transpiration rate and conductance from the cuticle. These results indicate that the role of Si in decreasing transpiration rate must be largely attributed to the reduction in transpiration rate from stomata rather than cuticula. Stomatal structure, element deposition, and stomatal density on both adaxial and abaxial leaf surfaces were observed with scanning electron microscopy (SEM) and a light microscope. Results showed that changes in neither stomatal morphology nor stomatal density could explain the role of Si in decreasing stomatal transpiration of maize plants. Silicon application with H4SiO4 significantly increased Si concentration in shoots and roots of maize plants. Silicon concentration in shoots of maize plants was higher than in roots, whether or not Si was applied. Silicon deposits in cell walls of the leaf epidermis were mostly in the form of polymerized SiO2.  相似文献   

9.
Ameliorative effect of silicon (Si) (2 mM as sodium silicate (Na2SiO3)) was studied in tobacco (Nicotiana rustica L.) plants grown under control at 100% field capacity (FC), mild drought (60% FC), and severe drought (30% FC) conditions. Si-treated plants had higher biomass of particularly above-ground parts both under drought and control conditions. Plants with Si supply had significantly higher net assimilation rates but lower transpiration rates. Silicon supply enhanced osmotic potentials only in the leaves, but not in the roots. A considerable rise in the concentrations of soluble sugars was observed particularly in the leaves under both drought and Si treatments. Soluble proteins, free α-amino acids, and proline concentrations increased in Si-treated plants under all watering treatments. Si enhanced the activity of antioxidative enzymes and decreased hydrogen peroxide (H2O2) concentrations. Results indicate that Si supplementation alleviates drought stress via improvement of water relation parameters, enhancement of photosynthesis, and elevation of antioxidant defenses.  相似文献   

10.
Potassium (K) deficiency reduces photosynthesis and biomass production of crop plants and also renders them vulnerable to drought stress, whereas elevated carbon dioxide (CO2) has a positive effect on photosynthesis and yield and ameliorates the adverse effects of drought stress. This study aimed to characterize the physiological responses of wheat (Triticum aestivum L.) stressed with K deficiency under elevated CO2 and drought conditions. Increased biomass production caused by elevated CO2 as a consequence of increased photosynthesis and water use efficiency was absent in young K‐deficient wheat plants. Shoot K concentration was negatively affected by elevated CO2 particularly under K‐deficient conditions, whereas K content per plant was greatest in plants supplied with adequate K and adequate water. Specific leaf weight was increased as a consequence of carbohydrate accumulation in the source leaves of K‐deficient plants particularly under elevated CO2 and drought stress. Potassium deficiency clearly impeded the impact of elevated CO2 in both well watered as well as drought‐stressed plants. Adequate K fertilization is a prerequisite for efficient harvesting of atmospheric CO2 through increased photosynthesis, decreased transpiration, and increased biomass production under changing atmospheric CO2 and soil moisture conditions.  相似文献   

11.
Effects of silicon (Si) application on photosynthesis of solution-cultured cucumber seedlings were investigated under osmotic stress and unstressed conditions. In unstressed conditions, silicon application had no effect on growth and photosynthetic parameters. The responses of the photosynthetic parameters to abruptly imposed osmotic stress did not differ between silicon treatments. After 1 week exposure to osmotic stress, growth reduction was observed, but it was less severe in seedlings grown with silicon than in those without silicon. Although there were no differences between silicon treatments in stomatal conductance, transpiration rate, cuticular transpiration, or xylem sap exudation rate under osmotic stress, leaf intercellular carbon dioxide (CO2) concentration was significantly lower and photosynthetic rate tended to be higher in seedlings supplied with silicon. These results suggested that the silicon-induced alleviation of growth reduction under osmotic stress in cucumber was due to amelioration of stress-induced damage of leaf tissues rather than to improvement of leaf water status.  相似文献   

12.
Abstract: There is no information regarding genotypic variation in essential and nonessential nutrient accumulation of sunflower grown under drought stress with the presence or absence of supplemental silicon (Si) despite the role of this element in improving growth of some cultivars under drought conditions. Accumulation of elements in sunflower cultivars might be important for the genetic improvement of the crop's response to drought. An experiment under controlled conditions was carried out to study the genotypic response of 12 sunflower (Helianthus annuus L.) cultivars to drought and Si and the relationship to the uptake of elements [phosphorus (P), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), chloride (Cl), molybdenum (Mo), Si, sodium (Na), vanadium (V), aluminum (Al), strontium (Sr), rubidium (Rb), titanium (Ti), chromium (Cr), nickel (Ni), bromine (Br), and barium (Ba)]. This was determined by polarized energy‐dispersive X‐ray fluorescence (PEDXRF). It was observed that uptake of nutrient and nonessential elements by sunflower cultivars were differentiated in response to applied Si and drought stress. Drought stress decreased mineral uptake of all the cultivars, and generally, application of Si under drought stress significantly improved Si, K, S, Mg, Fe, Cu, Mn, Na, Cl, V, Al, Sr, Rb, Ti, Cr, and Ba uptake whereas Zn, Mo, Ni, and Br uptake were not affected.  相似文献   

13.
The purpose of this study was to analyze the effects of silicon (Si) nutrition on sorghum growth under drought. The present study investigated the distribution of Si in plant parts under stress conditions and its effects on physiological and growth traits. The study was conducted during 2 years (2007–2009) at PMAS Arid Agriculture University, Rawalpindi, Pakistan. Polyethylene glycol (PEG) 6000 (–4.0, –6.0, –8.0, and –10.0 Mpa) solution was used to screen drought-tolerant (Johar1) and drought-susceptible (SPV462) sorghum (Sorghum bicolor L.) cultivars, which were replicated three times with Si sources of potassium silicate (K2SiO3) (Si300: 300 ml L?1) and control (Si0) treatments. The results showed that drought-tolerant cultivars accumulated maximum Si under Si treatment versus Si absence, which resulted increased leaf water potential, leaf area index, Soil Plant Analysis Development (SPAD) chlorophyll, net assimilation, and relative growth rate over SPV462. Similarly, Si accumulation in leaves conserved transpiration and leaf water potential, verifying Si nutrition as a defense for plants under drought.  相似文献   

14.
We investigated the effects of silicon (Si) and the levels and sources of salinity on the growth and some physiological properties of wheat (Triticum aestivum cv. Chamran) in a sandy loam soil under greenhouse conditions. Treatments comprised four Si levels (8, 50, 100 and 150 mg kg?1 soil), four salinity levels (0.46, 4, 8 and 12 dS m?1) and two salinity sources (sodium chloride (NaCl) and four-salt combination). Salts combination included NaCl, sodium sulfate (Na2SO4), calcium chloride (CaCl2) and magnesium sulfate (MgSO4) at a molar ratio of 4:2:2:1. The experiment was arranged as a completely randomized design in a factorial manner, with three replications. Increasing salinity level resulted in a significant decrease in shoot dry weight, chlorophyll content and catalase (CAT) activity, and it caused a marked increase in proline and glycine betaine (GB) concentrations and superoxide dismutase (SOD) enzyme activity. The stimulating effect on GB accumulation and SOD activity was more intense in NaCl-treated plants. However, the source of salinity had no significant effect on shoot dry weight, chlorophyll and proline concentrations, and CAT activity. Si application enhanced all the above-mentioned parameters, except for proline. The suppressing effect of salinity on shoot dry weight, chlorophyll concentration and CAT activity was alleviated by Si supplementation. The stimulating effects of Si fertilization on shoot dry weight and chlorophyll concentration became more pronounced at higher salinity levels. It could be concluded that a decrease in soil osmotic potential, nutrient imbalance and increasing reactive oxygen species (ROS) in salt-treated plants caused growth suppression, while Si supply decreased the deleterious effects of excess salt on wheat growth. Consequently, it appears that when wheat plants are to be grown in salt-affected soils, it is highly recommended to supply them with adequate available silicon (Si).  相似文献   

15.
干旱胁迫和复水对夏蜡梅幼苗光合生理特性的影响   总被引:9,自引:0,他引:9  
以盆栽二年生夏蜡梅(Sinocalycanthus.chinensis)实生苗为材料,分对照、轻度胁迫、中度胁迫和重度胁迫4组,研究了不同程度干旱胁迫和复水对夏蜡梅光合特性的影响。结果表明,在干旱胁迫下,夏蜡梅的光合日变化曲线由典型的双峰型转变为峰值很小的单峰型。在较高强度的干旱胁迫下,夏蜡梅光补偿点、CO2补偿点和气孔阻力升高,光饱和点、表观量子效率、最大净光合速率、羧化效率、Fv/Fm和蒸腾速率下降;而暗呼吸速率先升后降、胞间CO2浓度先降后升。轻度和中度干旱胁迫下光合能力的下降主要由气孔限制引起,而在重度胁迫下则由非气孔限制起主要作用。重度胁迫复水3d后,夏蜡梅的光合能力恢复很弱。过分干旱胁迫对夏蜡梅造成一定伤害。  相似文献   

16.
In this study, impact of silicon (Si) application on wheat performance under drought stress is studied. Experimental soil was sandy clay loam with an average pH of 8.01, electrical conductivity (EC) of 2.36 dSm?1, and calcium carbonate (CaCO3) content of 2.16%. Soil was severely deficient in organic matter (<1%). Average extractable phosphorus (P) and potassium (K) concentration was 230 and 5.21 mg kg?1, respectively. Silicon potassium metasilicate (K2SiO3) was applied at the rate of 0 and 12 kg/ha with three canal water irrigation frequencies including two, three, and four under randomized complete block design (RCBD) factorial fashion with three replications. Results indicated that drought stress significantly reduced plant height, spike length, shoot fresh weight, and number of spikelets/spike, eventually enhancing wheat yield. Concentration of K+ in shoot (28.65 mg g?1) and grains (3.51 mg g?1) increased with Si application, which helped to maintain water potential in plant even under reduced moisture level in plants and soil, ultimately producing more yield and biomass under drought stress conditions.  相似文献   

17.
The aim of this study was to investigate the potential of silicon (Si) for alleviating Ultraviolet-B (UV-B) radiation stress based on changes in biomass, physiological attributes and photosynthetic characteristics of two soybean (Glycine max L.) cultivars, Kenjiandou 43 (‘K 43’) and Zhonghuang 35 (‘ZH 35’). The cultivars were raised with and without Si in the greenhouse, and then subjected to ambient, ambient + 2.7 kJ m?2d?1and ambient + 5.4 kJ m?2d?1of UV-B radiation. Depending on cultivar, plants suffered severe growth limitations under UV-B radiation, but the application of Si alleviated the adverse effects on growth and development by increasing the stem length, net photosynthetic rate (PN) and leaf chlorophyll content. Concurrently, it decreased the stomatal conductance (Sc) and intercellular carbon dioxide (CO2) concentration (Ci). In response to the UV-B radiation stress, the antioxidant enzyme activities of superoxide dismutase (SOD) increased by 41.2–72.7%, peroxidases (POD) by 49.5–85.7%, malodialdehyde (MDA) by 6.7–20.4% and soluble protein by 4.2–7.6%. The overall results indicated that media treatment with Si might improve soybean growth under elevated UV-B radiation through positive changes in biomass and some physiological attributes that were dependent on cultivar.  相似文献   

18.
To investigate the effect of exogenous application of silicon and potassium on some physiological responses, yield, and yield components of two wheat cultivars (Pishgam and Alvand) grown under salt-stress conditions, a field experiment was conducted at the Agricultural and Natural Resources Research Centre in East Azerbaijan, Iran, during 2012 and 2013 growing seasons. The experiment was arranged in factorial design based on randomized complete blocks design with three replications in each year. Wheat seeds were sown in saline soil (10 dS m?1) and irrigated with saline water (4 dS m?1). The plants were sprayed with silicon and potassium solutions at 0, 2, and 4 mM and 0, 100, 200, and 300 mM concentrations, respectively. The results demonstrated that silicon and potassium application improved antioxidant enzyme activity, chlorophyll content, photosynthesis rate, potassium uptake, yield, and yield components in both wheat cultivars. Although silicon and potassium had significant effects on all studied traits, there was a great interactive effect between them. When these two elements were applied on plants, the positive effect was more pronounced. Among all treatments, the most effective treatment was 4 mM silicon and 300 mM potassium. The greatest enzyme activity, chlorophyll content, photosynthesis rate, potassium uptake, yield, and yield components and the lowest proline, malondialdehyde, and sodium accumulations were observed in this treatment.  相似文献   

19.
Abstract

Silicon (Si) can increase plant stress tolerance. Mercury (Hg) is one of the major elements of heavy metal pollution. However, little attention has been paid to the possible effect of Si on Hg toxicity in plants. Here, the effects of Si on growth, photosynthesis, Hg accumulation and antioxidant defense were investigated in garlic grown in pots under Hg stress. Before sowing, Hg and Si were added at 3?mg Kg?1 and 500?mg Kg?1, respectively. The treatments included CT (control), Si, Hg and Hg?+?Si. The results showed that in non-stress conditions, added Si did not affect the garlic growth, photosynthetic gas exchange, malonaldehyde concentration or activities of antioxidant enzymes in leaves, except that it increased the superoxide dismutase activity. Under Hg stress, the garlic growth, leaf net photosynthetic rate, stomatal conductance, transpirational rate and superoxide dismutase activity in leaves were all inhibited, while the malondialdehyde concentration was increased; whereas these changes were all reversed in the presence of added Si. Added Si significantly decreased Hg concentrations in the root, bulb and shoot, and it also decreased exchangeable Hg level in the soil. These results suggest that Si could alleviate Hg toxicity in garlic through improving antioxidant defense ability, and decreasing Hg availability in soil and thus Hg uptake.  相似文献   

20.
采用溶液培养试验,以抗寒性不同的两个小麦品种:临麦2号(高抗)和扬麦158号(低抗)为材料,研究短期低温胁迫下,加硅处理(Si 1.0 mmol/L)对小麦叶片光合作用生理参数(净光合速率、气孔导度、蒸腾速率、细胞间隙CO2浓度和水分利用效率)及其主要酶 RuBPCase和PEPCase的影响。结果表明,在短期低温胁迫下,加硅处理显著提高了小麦叶片的净光合速率,气孔导度和水分利用效率。短期低温胁迫下,两小麦品种叶片RuBPCase活性显著降低,低抗品种降低幅度更大;但加硅处理后,低抗品种RuBPCase活性显著比不加硅处理高,且与无低温处理的对照没有显著差异。硅对低抗品种扬麦158缓解低温胁迫的效果要明显高于高抗品种临麦2号。硅能显著提高低温胁迫下小麦净光合速率与硅提高小麦叶片RuBPCase活性密切相关。短期低温胁迫使小麦PEPCase活力升高,加硅处理可以抑制低抗品种中PEP羧化酶的升高;但PEPCase活力在低温胁迫条件下上升的机理有待于进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号