首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mycorrhizal enhancement of plant growth is generally attributed to increased nutrients uptake. A greenhouse experiment was conducted to investigate the effect of arbuscular mycorrhizal fungi (AMF) inoculation on the growth and nutrient uptake of directly seeded wetland rice. Seeds were germinated and inoculated with arbuscular mycorrhizal fungi or left uninoculated. The plants were grown at 60% of ‐0.03 MPa to establish the mycorrhizas. After 5 weeks, half of the pots were harvested and the rest were flooded with deionized water to maintain 3–5 cm of standing water until harvesting (122 days after sowing). Mycorrhizal fungal colonization of rice roots was 36.2% at harvest. Mycorrhizal fungi inoculated rice seedlings grew better compared to uninoculated seedlings and had increased grain yield (10%) at the harvesting stage. Shoot and root growth were effectively increased by AMF inoculation at the harvesting stage. The nitrogen (N) and phosphorus (P) acquisition of direct seeding wetland rice were significantly increased by AMF inoculation. The AMF enhanced N and P translocation through the hyphae from soils to roots/shoots to grains effectively.  相似文献   

2.
Arbuscular mycorrhizal fungi (AMF) can act as an extension of the root system of their host plants. In Desmoncus orthacanthos Martius (Arecaceae), which has thick and unbranched roots (i.e., magnolioid roots) and low densities of root hairs, this association may be essential to reach a maximum growth with minimum fertilizers. This is important because of the potential in the south of Mexico to use D. orthacanthos' shoots as a raw material to build handcrafts. To evaluate the effect of arbuscular mycorrhizae on phosphorus (P) uptake and initial growth of D. orthacanthos seedlings, a 160-day bi-factorial experiment was carried out in which plants were subject to one of two levels of mycorrhizal colonization (with or without) and one of three levels of P substrate addition (4, 12, and 24 ppm). Our results show that total dry weight (DW) and leaf area (LA) responded significantly to P addition but not to mycorrhizal colonization. Phosphorus concentration in plant tissues (Pt) was increased by both factors (mycorrhizae and P addition). Mycorrhizae increased relative growth rate (RGR) at low P level. Our results indicate that AMF play an important role in early growth and P uptake by D. orthacanthos seedlings; therefore, the AMF must be considered in plantations of this potentially economically important palm.  相似文献   

3.
This study evaluated the interactive effect of arbuscular mycorrhizal fungi (AMF) inoculation and exogenous phosphorus supply on soil phosphotases, plant growth, and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong). We aimed to explore the ecophysiological function of AMF in mangrove wetland ecosystems, and to clarify the possible survival mechanism of mangrove species against nutrient deficiency. K. obovata seedlings with or without AMF inoculation (mixed mangrove AMF), were cultivated for six months in autoclaved sediment medium which was supplemented with KH2PO4 (0, 15, 30, 60, 120 mg kg−1). Then the plant growth, nitrogen and phosphorus content, root vitality, AMF colonization and soil phosphatase activity were analyzed. The inoculated AMF successfully infected K. obovata roots, developed intercellular hyphae, arbuscular (Arum-type), and vesicle structures. Arbuscular mycorrhizal fungi colonization ranged from 9.04 to 24.48%, with the highest value observed under 30 and 60 mg kg−1 P treatments. Soil P supply, in the form of KH2PO4, significantly promoted the height and biomass of K. obovata, enhanced root vitality and P uptake, while partially inhibiting soil acid (ACP) and alkaline phosphotase (ALP) activities. Without enhancing plant height, the biomass, root vitality and P uptake were further increased when inoculated with AMF, and the reduction on ACP and ALP activities were alleviated. Phosphorus supply resulted in the decrease of leaf N–P ratio in K. obovata, and AMF inoculation strengthened the reduction, thus alleviating P limitation in plant growth. Arbuscular mycorrhizal fungi inoculation and adequate P supply (30 mg kg−1 KH2PO4) enhanced root vitality, maintained soil ACP and ALP activities, increased plant N and P uptake, and resulted in greater biomass of K. obovata. Mutualistic symbiosis with AMF could explain the survival strategies of mangrove plants under a stressed environment (waterlogging and nutrient limitation) from a new perspective.  相似文献   

4.
The influence of dual inoculation of arbuscular mycorrhizal fungi (AMF) and Rhizobium was assessed on garden pea productivity, root morphology and soil fertility during 2011–2012 at Palampur, India, in a medium phosphorus (P) acid Alfisol. Field experimentation comprised 13 treatments involving Rhizobium, AMF and inorganic fertilizers in (RBD) replicated thrice. The dual inoculation of Rhizobium and AMF exhibited nominal effect on pea pod length, pod girth and number of seeds per pod. However, average pod weight (APW) and productivity increased by 14.1 and 20% following dual inoculation, respectively, over generalized recommended nitrogen, phosphorus and potassium (NPK) dose general recommended dose (GRD). Dual inoculation of pea seed with both symbionts sharply increased the root volume (RV), root dry weight (RDW), root weight density (RWD) and root nodules per plant by 34.5, 13.3, 13 and 44%, respectively. Similarly, the highest AMF root colonization was registered under dual-inoculated plots compared to sole application of Rhizobium or AMF. Different treatments including dual-inoculated ones did not alter the soil organic carbon (SOC), available N, K and diethylenetriaminepentaacetic acid (DTPA)-extractable micronutrients iron, zinc, copper and manganese (Fe, Zn, Cu and Mn) status significantly; however, a nominal buildup in the above-mentioned parameters was registered under dual inoculation. Available P status increased to the tune of 6.7 and 8.7% following dual inoculation with Rhizobium and AMF over their respective sole inoculations. Overall, the current study suggests that Glomus–Rhizobium symbiosis has great potential in enhancing productivity through better proliferation of the root system and improved soil fertility status. Furthermore, dual inoculation of AMF and Rhizobium can save up to 25% fertilizer N and P in garden pea in acid Alfisol of the northwestern Himalayas (NWH).  相似文献   

5.
菌根对紫色土上间作玉米生长及磷素累积的影响   总被引:4,自引:2,他引:4  
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)在土壤与植物系统的磷素循环中发挥着关键的作用。本文通过盆栽模拟试验研究了不同AMF接种状况[不接种(NM)、接种Glomus mosseae(GM)、接种G.etunicatum(GE)]和玉米/大豆间作体系不同根系分隔方式(不分隔、尼龙网分隔、塑料膜分隔)对间作玉米植株生长及磷素吸收累积的影响。研究结果表明:GM处理下的间作玉米根系侵染率在不同根系分隔方式之间的差异不显著,而GE处理则在塑料膜分隔处理下对玉米的侵染率最高。接种不同AMF对间作玉米促生效果不同,GM和GE处理在不同根系分隔情况下表现出各自的优势,与未接种处理相比,GM处理能使玉米生物量、株高有一定程度增加并在根系不分隔处理下玉米磷吸收较多、生长较好;GE处理能使植株生物量有一定程度增加并在尼龙网分隔处理下的玉米磷吸收较多、生长较好。间作体系不同根系分隔方式对玉米的影响也不同,其中玉米地上部生物量在根系分隔处理下普遍小于不分隔处理,但根系生物量的大小情况则刚好相反。另外,无论何种接种状况,玉米根系磷含量及吸收量均以尼龙网分隔处理显著较高。而根系磷吸收效率则以接种G.mosseae且不分隔根系处理显著高于分隔处理。所有复合处理中,以接种G.etunicatum与尼龙网分隔根系组合处理对间作玉米的生长及磷素累积的促进作用最好,若应用于滇池流域,可望有效控制坡耕地土壤磷素的迁移。  相似文献   

6.
Alfalfa (Medicago sativa L.) is cultivated in arid and semi-arid regions where salinity is one of the main limiting factors for its production. Thus, this experiment was conducted to evaluate the efficacy of arbuscular mycorrhizal fungus (AMF), Glomus mosseae, alfalfa rhizobia Sinorhizobium meliloti (R) seed inoculation in the development of salinity tolerance of different alfalfa cultivars (Rehnani, Pioneer and Bami) under a variety of salinity levels. The results revealed that under non-stress condition, root mycorrhizal infection, nodulation (the number and weight of nodules per plant), potassium (K), calcium (Ca), phosphorus (P), zinc (Zn), copper (Cu) and magnesium (Mg) contents of the root and shoot, the value of the K/Na ratio, protein [calculated from the nitrogen (N) content] and proline contents of the shoot and the alfalfa yield were found to be the highest while Na contents of the root and shoot were seen to be the lowest when seeds were double inoculated followed by mycorrhizae, rhizobium and control treatments, respectively. Similarly, under salinity condition, the greatest amounts of mycorrhizal infection, nodulation, root and shoot P contents, the value of K/Na ratio, the shoot proline content and the root Ca content were enhanced with the least amount of leaf Na content related to the cases of seeds which were double inoculated, followed by mycorrhizae, rhizobium and control treatments respectively. The results suggested that inoculation of alfalfa seed with AMF or R, especially double inoculation, causes a considerable increase in alfalfa yield under both saline and non-saline conditions by increasing colonization, nodulation and nutrient uptake.  相似文献   

7.
A pot experiment was conducted to evaluate the effect of indigenous arbuscular mycorrhizal fungi (AMF) and the synergy of indigenous AMF and sheep manure (SM) on cotton growth and nitrogen and phosphorus uptake. AMF were a mixture of Glomus viscosum, Glomus mosseae, and Glomus intraradices initially isolated from a Syrian cotton field. Dry biomass was enhanced significantly by AMF and was higher at AMF plus SM treatment compared to control. Cotton plants showed a significant dependency to indigenous AMF, which was 52% in the AMF treatment. Plant concentrations of nitrogen (N)and phosphorus (P) were significantly higher in mycorrhizal than nonmycorrhizal plants. Maximum plant N and P uptake was found in the treatment of AMF inoculation with SM, which was significantly higher by 202% and 397% over control, respectively. Indigenous AMF was successful in colonizing cotton roots and when combined with SM resulted in better plant growth and N and P uptake.  相似文献   

8.
【目的】蚯蚓和丛枝菌根真菌处于不同的营养级,但在促进植物生长和提高土壤肥力等方面却都发挥着积极作用。研究蚯蚓菌根互作及其对玉米吸收土壤中的氮、磷养分的影响,可为提升土壤生物肥力及促进农业的可持续发展提供理论依据。【方法】本研究采用田间盆栽方式,以玉米为供试作物,研究蚯蚓(Eisenia fetida)与丛枝菌根真菌(Glomus intraradices)互作及其对玉米养分吸收的影响。试验设置P 25和175 mg/kg两个水平。每个磷水平进行接种与不接种菌根真菌以及添加与不添加蚯蚓,共8个处理。调查了玉米生长、养分吸收以及真菌浸染和土壤养分的有效性。【结果】两个磷水平下,蚯蚓和菌根在增加玉米地上部和根系生物量方面有显著正交互作用(P0.05)。接种菌根真菌的各处理显著增加了玉米的侵染率及泡囊丰度、根内菌丝丰度等菌根指标。同时添加蚯蚓和接种菌根真菌的处理(AM+E)显著提高了菌根的侵染率、菌丝密度、丛枝丰度和根内菌丝丰度但是泡囊丰度有所下降。两种磷水平下,AM+E处理玉米地上部和地下部含氮量和含磷量均显著高于其他三个处理。在低磷条件下,地上部氮磷总量的增加分别是添加蚯蚓和接菌的作用;而地下部磷总量的增加主要是菌根真菌的作用。在高磷条件下,单加蚯蚓显著增加玉米氮磷的总量,而接种菌根真菌对玉米氮磷吸收的影响未达显著性水平。在高磷条件下,单加蚯蚓的处理显著提高玉米地上地下部生物量(P0.05),而单接菌的处理效应不显著,蚯蚓菌根互作通过提高土壤微生物量碳、氮实现对玉米生长和养分吸收的调控。在低磷条件下,单接菌显著提高了玉米的生物量(P0.05),单加蚯蚓的处理具有增加玉米生物量的趋势。菌根真菌主要促进玉米对磷的吸收,蚯蚓主要矿化秸秆和土壤中的氮磷养分增加土壤养分的有效性,蚯蚓菌根互作促进了玉米根系对土壤养分的吸收并形成氮磷互补效应。【结论】无论在高磷还是低磷水平下,蚯蚓菌根相互作用都提高了玉米地上地下部生物量、氮磷吸收量同时提高了土壤微生物量碳、氮。蚯蚓菌根相互作用对植物生长的影响取决于土壤养分条件。在高磷条件下(氮相对不足),蚯蚓菌根互作通过调控土壤微生物量碳、氮调控玉米生长和养分吸收。低磷条件下,菌根主要发挥解磷作用,蚯蚓主要矿化秸秆和土壤中的氮素,蚯蚓和菌根互补调控土壤中氮、磷,从而促进植物的生长和养分吸收。  相似文献   

9.
The present study investigates the performance of recommended doses of chemical fertilizer (RDF) and locally isolated strains of Azotobacter, Azospirillum, and arbuscular mycorrhizal fungi (AMF) inoculated either solely or in combination with seedlings of Red Delicious and Lal Ambri cultivars. The RDF (T7) treatment recorded significantly greater vegetative growth and leaf nitrogen (N), phosphorus (P), and potassium (K) contents over multi-inoculation of Azotobacter + Azospirillum + AMF (T6) but root colonization and microbial counts decreased significantly. Inoculation of Azotobacter + Azospirillum + AMF (T6) was superior over sole and dual inoculation with respect to vegetative growth and nutrient contents in leaves and soil but had significant greater counts of Azotobacter, Azospirillum, and Pseudomonas than RDF. Greatest root colonization (34.0 and 35.1%) was recorded in Azotobacter + Azospirillum + AMF (T6) followed by AMF (T4) treatment (29.3 and 32.0%) in Red Delicious and Lal Ambri seedlings, respectively. Overall, it can be inferred that multiinoculation of synergistically interacting bioinoculants may be helpful in the establishment of healthy organic apple orchards.  相似文献   

10.
丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)能与多数陆生植物共生,促进植物吸收养分尤其是磷。解磷细菌(Phosphate-solubilizing bacteria,PSB)可以活化土壤中难溶性无机磷和有机磷。本研究采用苯菌灵对田间低磷土壤中土著AM真菌进行灭菌,并接种外源AM真菌(Glomusversiforme,G.v)和PSB(Pseudomonassp.),研究AM真菌和PSB接种对不同生育期玉米生长、磷养分吸收和产量的影响。结果表明,施用苯菌灵能够有效地抑制土著AM真菌对玉米根系的侵染,未施用苯菌灵处理中土著AM真菌促进了玉米前期和收获期的生长,提高了玉米吸磷量;接种Pseudomonas sp.促进了玉米六叶期根系的生长;接种外源AM真菌G.v促进了玉米六叶期和收获期地上部的生长,但降低了玉米产量。双接种Pseudomonas sp.和G.v对玉米生长、吸磷量和产量未表现出显著的协同效应。  相似文献   

11.
Pomegranate (Punica granatum L.) symbiosis with arbuscular mycorrhizae fungi (AMF) is a strategy in saline soils. In this study, two AMF (+AMF and –AMF), two phosphorus (P) fertilizer (+ P and –P), and three irrigation salinity (1, 4, and 8 dS m?1) treatments were studied. The highest salinity level decreased the root colonization by hyphae. Plant growth parameters including shoot dry weight, leaf surface area, and plant height were negatively affected by salinity. However, the growth parameters improved in AMF treatments. Salinity decreased the shoot P concentration and increased the shoot chlorine (Cl). The root and shoot sodium (Na) concentrations were the greatest in unfertilized and P-fertilized treatments, respectively. AMF treatment improved the root and shoot P concentration and reduced the negative effect of salinity on shoot Cl concentrations. In conclusion, the effects of AMF symbiosis on growth and tissue elements concentration depend on irrigation water salinity and P fertilization.  相似文献   

12.
Phosphorus (P) availability to plants is a major constraint in acid soils. A study was conducted to determine the effect of arbuscular mycorrhizal fungi (AMF) under varying inorganic P and irrigation regimes on P availability and P-use efficiency in garden pea (Pisum sativum L.) in a Himalayan acid Alfisol. The experiment comprised of 14 treatments replicated thrice in a randomized block design. The results revealed that integrated use of AM fungi and inorganic P at either of the two irrigation regimes (IW/CPE0.6 or IW/CPE1.0) enhanced the green pea pod weight, green pod productivity and agronomic efficiency of applied P to the extent of 8.4%, 7.2% and 30.7%, respectively, over non-AMF counterparts as well as “generalized recommended NPK dose and irrigations (GRD).” AMF inoculation also led to enhanced nitrogen (N), P and potassium (K) acquisition (uptake) by 16.3%, 18.2% and 6% over non-AMF counterpart treatments. Further, AMF inoculation at varying P and irrigation regimes sharply enhanced the rooting depth (21.4%), root volume (23.5%), root dry weight (14.9%), root weight density (13.7%) as well as N concentration in root nodules (3.4%) over non-AMF counterparts and GRD practice. AMF also enhanced the mycorrhizal root colonization by 3.2 folds at flowering stage in AMF inoculated pea plants. AMF-imbedded treatments did not alter the available soil nutrient status (macronutrients and micronutrients) significantly in comparison to non-AMF counterparts in pea, available P status, however, increased to the extent of 6.5% over initial status. Further, AMF imbedded plots showed a slight build-up in soil organic carbon with nominal decrease in soil bulk density. AMF inoculation in pea also led to fertilizer P economy by about 25% soil-test-based P dose. Overall, AMF holds great potential in enhancing nutrient acquisition especially P besides influencing root morphology in order to harness better crop yields vis-à-vis fertilizer P economy by about 25% soil-test-based P dose in Himalayan acid Alfisol.  相似文献   

13.
Drought stress greatly affected the growth and development of wheat in the world, while wheat growth could benefit through improvement of water status and nutrient uptake by mycorrhizal symbiosis or addition of phosphorus (P). Experimental treatments were (a) phosphorus addition (0 and 90 kg/ha), (b) soil water condition (40% field capacity and 95% field capacity), and (c) arbuscular mycorrhizal fungi (AMF, Glomus intraradices) (noninoculation and inoculation) which were conducted in a growth chamber. The results showed that addition of phosphorus and AMF inoculation significantly increased the relative water content and specific leaf area of flag leaves especially under 40% field capacity (water deficit (WD)). The leaf gas exchange parameters were all decreased under WD. The water use efficiency (WUE) and instantaneous WUE (WUEi) was enhanced by WD, AMF inoculation, and phosphorus addition. AMF inoculation and WD significantly decreased the carbon isotope discrimination (CID) of leaf. The P concentrations in stem, grain, and leaf were significantly increased by phosphorus addition, WD, and AMF inoculation. Significant correlations were found between WUE and grain P, stem P, and leaf P concentrations. Leaf CID was significantly negatively correlated with WUE and stem P concentrations. Inoculation of AMF or phosphorus addition could improve the growth, physiology, and phosphorus uptake in spring wheat under drought conditions.  相似文献   

14.
Effects of arbuscular mycorrhizal fungi (AMF) on the growth, nutrient absorption, and inoculation effectiveness of AMF on pioneer plants Pharagmites japonica (C4) and Polygonum cuspidatum (C3) were evaluated by performing a pot experiment in a greenhouse at Saitama University, Japan. AMF spores were collected from the commercial product, Serakinkon. The average colonization levels of P. japonica and P. cuspidatum were 24–33% and 0.2–0.5% respectively and no colonization was found in sterilized soil treatment. AMF colonization increased the plant dry mass, phosphorus (P), and nitrogen (N) concentrations of P. japonica’s roots, stems, and leaves when AMF applied with natural and sterilized soil compared with only sterilized and natural soil. This was a significant effect for N-loss minimization from soil. Maximum value showed when P. japonica was grown with natural soil in combination with AMF whereas P. cuspidatum showed very less or a negative response to AMF colonization in all cases.  相似文献   

15.
Cowpea is an important crop that serves as a legume and vegetable source to many smallholder farmers in sub-Saharan Africa. Soil fertility is a significant limitation to its production thus; inoculation with beneficial soil biota such as arbuscular mycorrhizal fungi (AMF) could improve its performance. However, plant–AMF interaction could vary based on crop cultivar hence affecting overall crop production. The present study aimed at determining the effect of AMF inoculation and soil sterilization on root colonization and growth of a wild-type and three modern cowpea cultivars grown by smallholder farmers in Kenya. Potted cowpea plants were inoculated with a commercial AMF inoculum comprising of Rhizophagus irregularis, Funneliformis mosseae, Glomus aggregatum and Glomus etunicatum and maintained in a greenhouse for 40 days. After harvesting, mycorrhizal colonization, nodule number and dry weight, root and shoot dry weights, nitrogen (N,) phosphorus (P) and potassium (K) content were determined. Interestingly, the modern cultivars showed significantly (p < 0.001) higher root colonization, nodulation, shoot P and N compared to the wild-type cultivar. Moreover, a strong positive correlation between AMF root colonization and shoot P (r2 = 0.73, 0.90, p < 0.001), AMF root colonization and shoot N (r2 = 0.78; 0.89, p < 0.001) was observed in both sterilized and non-sterilized soil, respectively. Soil sterilization affected root colonization and growth parameters with plants grown in non-sterilized soil performing better than those grown in sterilized soil. This study provides major evidence that modern cowpea cultivars are still responsive to mycorrhizal inoculation suggesting that modern breeding programs are not deleterious AMF symbiosis.  相似文献   

16.
ABSTRACT

This experiment aimed to study phosphorus efficiency of six wheat genotypes (Triticum aestivum) inoculated with arbuscular mycorrhizal fungi (AMF) and to quantify the contribution of root and mycorrhizal hyphae length to P uptake by using NST 3.0 model. The results showed that all wheat genotypes with AMF (except V4) attained more than 80% of the maximum shoot yield. NST 3.0 predicted approximately 49% and 30% of observed P uptake for V4 with and without mycorrhizae, respectively, at the lowest P level. Additionally, the predicted values of P uptake increased rapidly with increasing P levels by up to 90% and 89% with and without mycorrhizae, respectively, at the highest P level. The model predicted 58% and 43% of the observed P uptake for V6 with and without mycorrhizae, respectively, at the lowest P level and increased up to 98% and 95% respectively at the highest P level. Soil P depletion zones of plants without mycorrhizal fungi (V4 and V6) did not extend as far as those of plants with mycorrhizal fungi. In conclusion, we recommend that V6 (Gemmeiza12) is suitable for growth in calcareous soil with or without mycorrhizal fungi inoculation (highly P efficient). The results of this study suggest that root growth and mycorrhizal hyphae length are the main parameters suitable for selecting P-efficient wheat genotypes, especially under limited P supplies. The current study clearly shows that (NST 3.0) model provide useful tools for studying the role of (AMF) and root length in plant P uptake.  相似文献   

17.
Mycorrhizal technique is a promising biotechnology in horticultural industry, benefiting plants exposed to diverse abiotic stresses. In this study, the effects of three arbuscular mycorrhizal fungi (AMF), Acaulospora laevis, Glomus mosseae, and Glomus caledonium on plant growth and nutrient uptake of loquat (Eriobotrya japonica Lindl.) seedlings under three water regimes (well watered, water stressed-slight, water stressed-heavy) were investigated. Results showed that inoculated seedlings had higher dry biomass, plant height, and total leaf areas than those un-inoculated ones. AMF effect was the greatest for water stressed-heavy seedlings, followed by water stressed-slight seedlings and well watered seedlings. All AMF species increased the uptake of nitrogen (N) potassium (K), phosphorus (P), calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), and the mycorrhizal contributions to the nutrient uptake were positively related to that to the biomass. Data suggest that AMF inoculation increases the tolerance of loquat seedlings to drought stress, and the improved nutrient uptake by AMF contributes greatly to the tolerance.  相似文献   

18.
AM真菌对烟苗生长及某些生理指标的影响   总被引:6,自引:0,他引:6  
在低浓度营养液条件下,利用漂浮育苗技术培育烟苗,于播种期、小十字期、生根期分别接种不同的AM真菌,研究了它们对烟苗生长、营养和某些生理指标的影响。结果表明,越早接种AM真菌,其侵染率越高;播种期接种,侵染率达到39.2%~59.6%。AM真菌的菌根效应因菌种(株)不同而异,接种球囊霉真菌(BEG-141)后,显著增加烟苗干重、磷含量、氮磷钾吸收量、叶绿素含量,以及根系硝酸还原酶、超氧化物歧化酶和几丁质酶活性。表明在漂浮育苗技术中,播种期接种适宜的AM真菌是培育壮苗的有效措施。  相似文献   

19.
Arbuscular mycorrhizal fungi (AMF) can benefit growth and yield of agriculturally significant crops by increasing mineral nutrient uptake, disease resistance and drought tolerance of plants. We conducted a meta-analysis of 38 published field trials with 333 observations to determine the effects of inoculation and root colonization by inoculated and non-inoculated (resident) AMF on P, N and Zn uptake, growth and grain yield of wheat. Field AMF inoculation increased aboveground biomass, grain yield, harvest index, aboveground biomass P concentration and content, straw P content, aboveground biomass N concentration and content, grain N content and grain Zn concentration. Grain yield was positively correlated with root AMF colonization rate, whereas straw biomass was negatively correlated. The most important drivers of wheat growth response to AMF were organic matter concentration, pH, total N and available P concentration, and texture of soil, as well as climate and the AMF species inoculated. Analysis showed that AMF inoculation of wheat in field conditions can be an effective agronomic practice, although its economic profitability should still be addressed for large-scale applications in sustainable cropping systems.  相似文献   

20.
ABSTRACT

We conducted a field- and pot experiment with peas to investigate the impact of soil tillage and herbicide applications on arbuscular mycorrhizal fungi (AMF), plant growth, phosphorus concentrations, C:N ratio in plants and yield. The field study was carried out in a long-term soil tillage experiment where four tillage treatments have been compared. Field soil from the experimental plots were used for the pot experiment. AMF were not affected by herbicide (MCPB) application, neither in the field nor in the pot experiments. However, AMF root colonization was enhanced by reduced tillage, minimum tillage and no-tillage practices, compared to conventional tillage. In the pot experiment, plant growth and nodulation of pea roots was negatively affected by the high herbicide dosage. In the field experiment neither tillage nor herbicide treatment exert specific effects on root growth parameters, phosphorus concentrations, C:N ratio and plant dry matter. This work demonstrates that an appropriate herbicide usage coupled with conservation soil tillage techniques can favour AMF root colonization and benefit plant growth.

Abbreviations: AMF: arbuscular mycorrhizal fungi; CT: conventional tillage; RT: reduced tillage; MT: minimum tillage; NT: no tillage; P: Phosphorus; C:N ratio: carbon:nitrogen ratio  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号