首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potato (Solanum tuberosum L.) is the fourth major crop worldwide after cereals. Some producers use irrigation water with high salinity, which consequently decreases the agronomic yield and potato quality. The aim of this investigation was to determine the effect of vermicompost and vermiwash on plant growth and tuber yield and characteristic traits in Solanum tuberosum L. plants and tubers subjected to salinity stress. A surface response experimental design with three replicates using a central point and 15 treatments was used with vermicompost at 300, 580, and 860 g plant?1; vermiwash at 5, 10, and 15 ml plant?1; and salinity stress with 15, 20, and 25 mM of NaCl levels. Plant physiological measurements included plant height (cm), stem diameter (mm), and plant fresh and plant dry weight (g). Six months after planting, measurements on tuber fresh weight, pH, electric conductivity, and °Brix were carried out. The addition of vermicompost and vermiwash minimized the influence of salinity stress on growth parameters and tuber characteristics in potato plants. Vermicompost (580 g plant?1) plus vermiwash (15 ml plant?1) induced a greater plant height and stem diameter. Plants amended with vermicompost (860 g plant?1), vermiwash (15 ml plant?1), and salinity stress (15 mM) had higher pH values, whereas electrical conductivity value in potato tubers decreased.  相似文献   

2.
Plants grown in salt‐affected soils may suffer from limited available water, ion toxicity, and essential plant nutrient deficiency, leading to reduced growth. The present experiment was initiated to evaluate how salinity and soil zinc (Zn) fertilization would affects growth and chemical and biochemical composition of broad bean grown in a calcareous soil low in available Zn. The broad bean was subjected to five sodium chloride (NaCl) levels (0, 10, 20, 30, and 40 m mol kg?1 soil) and three Zn rates [0, 5, and 10 mg kg?1 as Zn sulfate (ZnSO4) or Zn ethylenediaminetetraaceticacid (EDTA)] under greenhouse conditions. The experiment was arranged in a factorial manner in a completely randomized design with three replications. Sodium chloride significantly decreased shoot dry weight, leaf area, and chlorophyll concentration, whereas Zn treatment strongly increased these plant growth parameters. The suppressing effect of soil salinity on the shoot dry weight and leaf area were alleviated by soil Zn fertilization, but the stimulating effect became less pronounced at higher NaCl levels. Moreover, rice seedlings treated with ZnSO4 produced more shoot dry weight and had greater leaf area and chlorophyll concentration than those treated with Zn EDTA. In the present study, plant chloride and sodium accumulations were significantly increased and those of potassium (K), calcium (Ca), and magnesium (Mg) strongly decreased as NaCl concentrations in the soil were increased. Moreover, changes in rice shoot Cl?, Na+, and K+ concentrations were primarily affected by the changes in NaCl rate and to a lesser degree were related to Zn levels. The concentrations of Cl? and Na+ associated with 50% shoot growth suppression were greater with Zn‐treated plants than untreated ones, suggesting that Zn fertilization might increase the plant tolerance to high Cl? and Na+ accumulations in rice shoot. Zinc application markedly increased Zn concentration of broad bean shoots, whereas plants grown on NaCl‐treated soil contained significantly less Zn than those grown on NaCl‐untreated soil. Our study showed a consistent increase in praline content and a significant decrease in reducing sugar concentration with increasing salinity and Zn rates. However, Zn‐treated broad bean contained less proline and reducing sugars than Zn‐untreated plants, and the depressing impact of applied Zn as Zn EDTA on reducing sugar concentration was greater than that of ZnSO4. In conclusion, it appears that when broad bean is to be grown in salt‐affected soils, it is highly advisable to supply plants with adequate available Zn.  相似文献   

3.
A pot experiment was conducted to study the response of wheat to concurrent stresses of salinity and nickel (Ni)-toxicity. Soil was spiked with Ni (0, 20 and 40 mg kg?1) combined with two levels of salinity (control and 10 dS m?1) using Ni(ii) nitrate hexahydrate (Ni(NO3)2.6H2O) and sodium chloride (NaCl), respectively, in a completely randomized design with four replicates. Plants were harvested at the tailoring stage and the results showed that wheat growth was positively affected by Ni at 20 mg kg?1, and negatively at 40 mg kg?1 concentration both in control and at 10 dS m?1. Ni (20 mg kg?1) had a nonsignificant positive effect on tissue potassium (K+) and a significant negative effect on Na+ concentration. Moreover, Ni translocation from root to shoot and accumulation decreased by increasing the levels of Ni in both control and salinity treatments. It can be concluded that Ni at 20 mg kg?1 increased wheat growth by alleviating salinity stress; however, at 40 mg kg?1 it aggravated the plant stress and decreased the plant growth.  相似文献   

4.
Thermography is proposed to be an alternative non-destructive and rapid technique for the study and diagnosing of salt tolerance in plants. In a pot experiment, 30 cultivars of wheat (Triticum aestivum L.) were evaluated in terms of their leaf temperature and shoot growth and their ion distribution responses to NaCl salinity at two concentration levels: the control with electrical conductivity (EC) of 1 dS m?1 and salinity treatment with EC of 16 dS m?1 (150 mM). A completely randomized block design with factorial treatments was employed with three replications. The results indicated that thermography may accurately reflect the physiological status of salt-stressed wheat plants. The salt stress-based increase in leaf temperature of wheat cultivars grown at 150 mM NaCl reached 1.34°C compared to the control. According to the results obtained, it appears that thermography has the capability of discerning differences of salinity tolerance between the cultivars. Three salt-tolerant wheat cultivars, namely Roshan, Kharchia and Sholeh, had higher mean shoot dry matter (0.039 g plant?1) and higher mean ratio of leaf K+/Na+ (14.06) and showed lower increase in the mean leaf temperature (0.37°C) by thermography compared to the control. This was while nine salt-sensitive cultivars, namely Kavir, Ghods, Atrak, Parsi, Bahar, Pishtaz, Falat, Gaspard and Tajan, had lower mean plant dry matter production (0.027 g plant?1), lower mean ratio of K+/Na+ (9.49) and higher mean increases in leaf temperature (1.24°C).  相似文献   

5.
This study investigates the effect of conjoint use of bio-organics (biofertilizers + crop residues + FYM) and chemical fertilizers on yield, physical–chemical and microbial properties of soil in a ‘French bean–cauliflower’-based cropping system of mid hills of the north-western Himalayan Region (NWHR) of India. Conjoint bio-organics at varied levels of NPK chemical fertilizers increased yield of ‘cauliflower’ over corresponding single application. Incorporation of crop residues with 75% of the recommended NPK application resulted in the highest yield (19 t ha?1). Conjoint use of bio-organics produced a yield (15.65 t ha?1), which was statistically on a par with 75% of the recommended NPK application alone. This indicated a saving of 75% NPK chemical fertilizers. In the case of ‘French bean’, the effect was non-significant. The results also showed significant higher soil available N (351.3 kg ha?1) under 75% NPK + biofertilizers, whereas the highest soil available K (268.3 kg ha?1) was recorded under 75% NPK + crop residues. Lowest bulk density (1.03 Mg m?3), highest water holding capacity (36.5%), soil organic matter (10.6 g kg?1), bacterial (4.13 × 107 cfu g?1) and fungal (6.3 × 107 cfu g?1) counts were recorded under sole application of bio-organics. According to our study, we concluded that the combination of NPK fertilizers and bio-organics increased yield except French bean, soil available N, K and saved chemical fertilizers under ‘French bean–cauliflower’-based cropping system.  相似文献   

6.
This study was conducted to evaluate the roles of glycine betaine (GB) in mitigating deleterious effect of salt stress on lettuce. Lettuce plants were subjected to two salinity (0 and 100 mmol l?1 NaCl) and four GB levels (0, 5, 10, 25 mmol l?1). Salinity resulted in a remarkable decrease in growth parameters, relative leaf water content and stomatal conductance. Plants subjected to salt stress exhibited an increase in membrane permeability (MP), lipid peroxidation (MDA), leaf chlorophyll reading value, H2O2 and sugar content. Exogenous foliar applications of GB reduced MP, MDA and H2O2 content in salt-stressed lettuce plants. Salt stress increased Na and generally decreased other nutrient elements. GB reduced Na accumulation, but significantly increased other element contents under salinity conditions. The study showed that gibberellic acid (GA) and salicylic acid (SA) content in salt-stressed plants were lower than those of nonstressed plants. However, salinity conditions generally increased the abscisic acid content. GB treatments elevated the concentrations of GA, SA and indole acetic acid (IAA) at especially 10 and 25 mmol l?1 GB under salt stress conditions. It could be concluded that exogenous GB applications could ameliorate the harmful effects of salt stress in lettuce.  相似文献   

7.
This trial was carried out to study the influence of the nutrient solution on the microelements concentration and distribution in C. fruticosa var. ‘Red Edge' plants. Four treatments were tested: T1 [control, 1.5 dS m?1, 14.3 mmol L?1 sodium chloride (NaCl)], T2 (2.5 dS m?1, 22.2 mmol L?1 NaCl), T3 (3.5 dS m?1, 32.7 mmol L?1 NaCl) and T4 (4.5 dS m?1, 38.2 mmol L?1 NaCl). In roots and stems, iron (Fe) concentrations were lower in the no saline treatment. Stems accumulated more Fe with treatments T3 and T4. Copper concentration and extraction were not affected by salinity. The highest manganese (Mn) concentration in roots was observed in T2, while in petioles was higher in T3 and T4. Manganese extraction reached higher levels in the saline treatments in roots and stems, while in petioles it was lower in T1, T2 and T3. In roots, zinc (Zn) concentration was lower with the extreme treatments. Micronutrients concentration in leaves was unaffected by salinity, because an exclusion mechanism that consists on accumulation in roots and stems was developed.  相似文献   

8.
Hydroponic production of rocket as a salad vegetable has become increasingly important in recent years. Rocket is known to be a high nitrate (NO3)-accumulating vegetable, which can be grown throughout the year. In the present study, rocket was grown in a floating hydroponic system at three levels of nitrogen (N) and sodium chloride (NaCl). The highest yield was obtained at 14 mM N, whereas the yield was lower at 20 mM and 40 Mm NaCl. Leaf elongation was more sensitive to salinity than leaf differentiation. Adding NaCl to the nutrient solution increased the relative chlorophyll content. Na+ and Cl concentrations increased as salinity increased. NO3? levels in fresh biomass increased with increased amounts of NO3? in the nutrient solution, and plants at 18 mM N were able to maintain a higher NO3? : Cl? ratio than those at 10 mM N.  相似文献   

9.
The effects of salt stress on plant growth parameters, lipid peroxidation and some antioxidant enzyme activities [superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), glutathione reductase (GR; EC EC 1.6.4.2) and ascorbate peroxidase (APX, EC 1.11.1.11) activity] were studied in the leaves of mustard. Plants were exposed to two different concentrations of NaCl stress (100 and 150 mM) for 45 days and were sprayed with GA3 (75 ml pot?1, conc. 75 mg l?1) once a week. Salt stress resulted in decrease in the growth and biomass yield of mustard but the exogenous application of GA3 enhanced these parameters significantly. Application of GA3 counteracted the adverse effects of NaCl salinity on relative water content, electrolyte leakage and chlorophyll (Chl) content. GA3 was sufficient to attenuate partially the stimulatory effect of NaCl supply on proline and glycinebetaine biosynthesis. GA3 reduced lipid peroxidation in the leaves, which was increased during salt stress. The activity of all the antioxidant enzymes was increased significantly during salt stress in mustard. The exogenous application of GA3 decreased the enzyme activity. The results of the present study indicate that usage of GA3 reduces the harmful effects of salinity and increases resistance to salinity in mustard plant.  相似文献   

10.
Drip irrigation offers potential for rice (Oryza sativa L.) production in regions where water resources are limited. However, farmers in China’s Xinjiang Province report that drip-irrigated rice seedlings sometimes suffer salt damage. The objective of this study was to learn more about the effects of soil salinity and soil temperature on the growth of drip-irrigated rice seedlings. The study consisted of a two-factor design with two soil salinity treatments (0 and 1.8 g kg?1 NaCl) and three soil temperature treatments (18°C, 28°C and 36°C). The results showed that shoot biomass, root biomass and root vigor were greatest when seedlings were grown with no salt stress (0 g kg?1 NaCl) at 28°C. Moderate salt stress (1.8 g kg?1 NaCl) combined with high temperature (36°C) significantly reduced root and shoot biomass by 39–53%. Moderate salt stress and high temperature also increased root proline concentration by 77%, root malonyldialdehyde concentration by 60% and seedling mortality by 60%. Shoot and root Na+ concentrations, shoot and root Na+ uptake and the Na+ distribution ratio in shoots were all the greatest when moderate salt stress was combined with high temperature. In conclusion, high soil temperature aggravates salt damage to drip-irrigated rice seedlings. Therefore, soil salinity should be considered before adopting drip-irrigation for rice production.  相似文献   

11.
The effects of nitrogen (N) forms (ammonium- or nitrate-N) on plant growth under salinity stress [150 mmol sodium chloride (NaCl)] were studied in hydroponically cultured cotton. Net fluxes of sodium (Na+), ammonium (NH4+), and nitrate (NO3?) were also determined using the Non-Invasive Micro-Test Technology. Plant growth was impaired under salinity stress, but nitrate-fed plants were less sensitive to salinity than ammonium-fed plants due mainly to superior root growth by the nitrate-fed plants. The root length, root surface area, root volume, and root viability of seedlings treated with NO3-N were greater than those treated with NH4-N with or without salinity stress. Under salinity stress, the Na+ content of seedlings treated with NO3-N was lower than that in seedlings treated with NH4-N owing to higher root Na+ efflux. A lower net NO3? efflux was observed in roots of nitrate-fed plants relative to the net NH4+ efflux from roots of ammonium-fed plants. This resulted in much more nitrogen accumulation in different tissues, especially in leaves, thereby enhancing photosynthesis in nitrate-fed plants under salinity stress. Nitrate-N is superior to ammonium-N based on nitrogen uptake and cotton growth under salinity stress.  相似文献   

12.
In order to study the effects of foliar applications of methanol (0, 15, and 30%) and NaCl salinity (0, 50, and 100?mM) on some physiological characteristics of Lavandula stoechas L. plants, a pot experiment was carried out at the Research Greenhouse of Azarbaijan Shahid Madani University. Physiological characteristics (stem and leaf dry weights, total phenolic and flavonoids compounds, chlorophyll a and K+ contents, and K+/Na+ ratio) were significantly affected by the interaction effects of Methanol foliar application and salinity levels. The highest K+ content, K+/Na+ ratio, chl a and stem dry weight, belonged to NaCl 0?×?Methanol 30% and NaCl 50?×?Methanol 30%. For the leaves’ dry weight, the greatest data were recorded for NaCl 0?×?Methanol 30% and NaCl 0?×?methanol 15%. Methanol spray promoted the total phenolic content, especially at NaCl 50?×?methanol 30% and NaCl 100?×?methanol 15% and 30% and flavonoid content at NaCl 50?×?methanol 30%. Anthocyanin content, essential oil percent, and flower dry weight were affected by NaCl salinity levels, and the highest amount of anthocyanin was recorded for the control treatment. The highest data for Essential oil was attained by the NaCl 0 and 50?mM. The Na+ content was affected by methanol foliar application and the highest amount was obtained in the control treatment. Both foliar application levels and salinity levels influenced the flower dry weight. The highest amount of the flower dry weight was recorded at 30% methanol spray level and 0?mM NaCl treatments. The results reveal that methanol application had significant effects on the physiological characteristics of Lavandula plants growing under salinity stress condition.  相似文献   

13.
There is a paucity of information on the critical content, threshold levels, uptake, transport, and accumulation of sodium (Na+) and chloride (Cl?) ions in young sunflower plants. Effect of salinity was analyzed in root, stem, leaves, and buds by raising plants in fine sand irrigated with Hoagland's solution and supplemented with 10–160 mM sodium chloride (NaCl) for 30 days. Maximum sensitivity index, reduction in growth, and water content were observed in buds. Maximum Na+ and Cl? contents were obtained in old leaves and stems under low salinity but in roots at high salinity. Uptake, transport, and accumulation rate of Cl? were more than those of Na+, and for both ions they increased with increasing NaCl concentration but decreased with increasing exposure time. Growth reduction at low salinity seems to be because of Cl? toxicity, but Na+ toxicity and water deficiency could also be the causes at high salinity.  相似文献   

14.
《Journal of plant nutrition》2013,36(10):1561-1573
The interactions between NaCl and different NO3 ?NH4 + ratios were investigated. Tomato plants (Lycopersicon esculentum Mill.) were grown in a greenhouse, in 120L capacity containers filled with continuously aerated Hoagland nutrient solution. Treatments were added to observe the combined effect of two NaCl levels (30 and 60 mM) and three millimolar ratios of nitrate: ammonium (14:0, 12:2, 10:4) on growth, nutrition, and contents of chlorophyll and sugars. Saline treatments decreased growth, which was partly restored by NH4 + treatment. The leaf mineral composition showed a marked effect of nitrogen (N) source, while salinity only affected NO3 ? concentration. Changing the NO3 ?:NH4 + ratio from 14:0 to 12:2 and 10:4 produced progressive increases in the concentrations of iron (Fe), chlorophyll, and reducing sugars in leaves. Therefore, the deleterious effect of salinity on biomass production can be minimized by the use of nutrient solutions containing higher NH4 + concentrations, since this seemed to be correlated with increases in nitrogen assimilation and the levels of Fe and chlorophyll.  相似文献   

15.
This study was attempted to assess the extent of toxicity contributed by Na+ and/or Cl? ions individually, besides their possible additive effects under NaCl using physiological and biochemical parameters. Despite the fact that most annual plants accumulate both Na+ and Cl? under saline conditions and each ion deserves equal considerations, most research has been focused on Na+ toxicity. Consequently, Cl? toxicity mechanisms including its accumulation/exclusion in plants are poorly understood. To address these issues, effects of equimolar (100 mM) concentrations of Na+, Cl? and NaCl (EC ≈ 10 dS m?1) were studied on 15-day-old seedlings of two rice cultivars, Panvel-3 (tolerant) and Sahyadri-3 (sensitive), using in vitro cultures. All three treatments induced substantial reductions in germination rate and plant growth with greater impacts under NaCl than Na+ and Cl? separately. Apparently, salt tolerance of Panvel-3 was due to its ability to exclude Na+ and Cl? from its shoots and maintaining low (<1.0) Na+/K+ ratios. Panvel-3 exhibited better vigour and membrane stability indices coupled with lower reactive oxygen species and lipid peroxidation levels, besides stimulated synthesis of proline, glycine betaine and ascorbic acid. Overall, the magnitude of toxicity was observed in NaCl > Na+ > Cl? manner. Though Cl? was relatively less toxic than its countercation, its effect cannot be totally diminished.  相似文献   

16.
Application of organic fertilizers in sustainable agriculture systems improves yield sustainability of field crop production. The current research has been formed to investigate the effects of various levels of vermicompost (zero, 3, 6 and 9 t ha?1) in combination with foliar spraying of potassium humate (0, 1, 2 and 3 mL L?1) on spring safflower, in Iran during 2012–2013. In addition, inorganic fertilization has been considered as conventional agriculture (CA). In the current experiment, growth indices, seed yield, yield components and flower yield were evaluated. The results showed that the maximum leaf area index, total dry weight and crop growth rate have been determined at 9 t ha?1 vermicompost and 3 mL L?1 K-humate while the maximum netto assimilation rate has existed in CA at the emergence of flower buds. Likewise, the results indicated that vermicompost leads to a significant increase in seed yield, flower yield and yield components except 1000 seed weight. Flower yield, head number per plant and seed number per head were affected by K-humate concentrations and increased significantly from 1 to 3 mL L?1. It should be mentioned that 9 t ha?1 vermicompost and 3 mL L?1 K-humate produced the highest seed and flower yield.  相似文献   

17.
Abstract

This trial was carried out to establish an appropriate nutrient solution for Aglaonema commutatum and to investigate the nutritional effects generated by modifications in the solution. Six treatments were tested: control (T0; pH 6.5, E.C. 1.5 dS m?1, 6 mmol L?1 NO3 ?‐N, and 6 mmol L?1 K+); high nitrogen (N) level (T1; 9 mmol L?1 6:3 NO3 ?–NH4 +); N form (T2; 6 mmol L?1 N‐NH4 +); high K+ level (T3; 12 mmol L?1 K+); high electrical conductivity (T4; E.C. 4 dS m?1, 25 mmol L?1 NaCl), and basic pH (T5; pH 8). At the end of the cultivation, leaf, shoot, and root dry weights and elemental concentrations were determined. Nutrient contents and total plant uptake were calculated from the dry weights and nutrient concentrations. Plant K+ uptake increased with application of K+ or basic nutrient solution. The uptake and transport of calcium (Ca) were enhanced by the use of NO3 ?‐N and inhibited by the presence of other cations in the medium (NH4 +, K+, Na+) and by basic pH. Magnesium (Mg) uptake increased with NO3 ?‐N application and with pH. Sodium (Na) uptake was the highest in the saline treatment (T4), followed by the basic pH treatment. Sodium accumulation was detected in the roots (natrophobic plant), where the plant generated a physiological barrier to avoid damage. Dry weight did not differ significantly (p<0.05) among treatments except in the NaCl treatment. These results may help in the formulation of nutrient solutions that take into account the ionic composition of irrigation water and the physiological requirements of plants.  相似文献   

18.
Abstract

Two pot experiments under greenhouse condition were carried out to study the influence of vermicompost and zinc‐enriched compost with two levels of iron and zinc on the productivity of geranium (Pelargonium graveolens). Joint application of vermicompost and zinc‐enriched compost was effective in increasing the herb and oil yield over sole application of iron and zinc. Combined application of vermicompost and zinc‐enriched compost gave better herb and oil yield in both the experiments. With application of vermicompost and zinc‐enriched compost with two graded levels of iron, higher N, P, and K concentrations were observed with application of vermicompost (5 g kg?1), vermicompost (5 g kg?1), and Fe 12.5 ppm+Zn‐enriched compost 2.5 g kg?1 soil, respectively, over control. Highest reduction in soil pH was observed with an application of vermicompost at 5 g kg?1 soil; maximum soil organic carbon content was also recorded in the same treatment. In experiment II, joint application of vermicompost, zinc‐enriched compost, and graded levels of zinc recorded highest N, P, and K concentration with treatments of Zn (15 ppm)+vermicompost (2.5 g kg?1), vermicompost (5 g kg?1), and Zn (15 ppm)+vermicompost (2.5 g kg?1 soil), respectively. Nitrogen, P, and K content increased by 36, 125, and 305%, respectively, with these treatments over the control.

Chemical constituents of geranium oil such as cis‐rose oxide, isomenthone, linalool, citronellyl, geranylformate, geranyl, and epi‐γ‐eudesmol were significantly improved by combined application of Zn with vermicompost and Zn‐enriched compost as compared to sole application of Zn. Similar effects were observed with Fe in combination with vermicompost and Zn‐enriched compost on most of the chemical constituents of geranium oil. Physicochemical properties of the soil were also improved as macro‐ and micronutrient availability markedly increased in both the experiments because of combined application of vermicompost and Zn‐enriched compost with two levels of Zn and Fe.  相似文献   

19.
The use of vermicompost as a soil amendment is suggested as a method to reduce nitrogen (N) losses in crop production; however, it is unclear whether and how vermicompost can affect water quality after a significant irrigation or rainfall event. Bare-root strawberry plugs were grown in 1-gallon plastic pots. The treatments consisted of two media: (1) a peat:perlite soil-less mix and (2) a fine sand soil. Each media was amended with three levels of dairy manure vermicompost: 0, 10, and 25% by weight, and a biweekly synthetic fertilizer treatment of 150 mg N-P-K L?1 evaluated in a full factorial randomized block design. Drainage water from each plant was collected each week for 18 weeks and analyzed for NO3? concentration. In the first 2 weeks, high (1000–5000 mg L?1) amounts of NO3? leaching occurred in all vermicompost-amended media relative to non vermicompost-amended media, but this leaching significantly (p < 0.01) decreased over time across all vermicompost treatments. Strawberry growth response to 10% vermicompost was similar to synthetic fertilizer only treatments. Plants grown with vermicompost at 25% with synthetic fertilizer had the highest above-ground vegetative biomass (15.3 g) relative to plants with synthetic fertilizer only (5.3 g). These data suggest vermicompost addition rates of 10 and 25% by weight promote high vegetative biomass in greenhouse strawberry but may facilitate high initial nitrate leaching, which can negatively affect water quality and environmental health.  相似文献   

20.
In vermicomposting, the main product is the worm casts, but a leachate is generated that contains large amounts of plant nutrients. This leachate is normally diluted to avoid plant damage. We investigated how dilution of vermicompost leachate combined with different concentrations of nitrogen (N) - phosphorus (P) - potassium (K) triple 17 fertilizer, and polyoxyethylene tridecyl alcohol as dispersant and polyethylene nonylphenol as adherent to increase efficiency of fertilizer uptake, affected sugarcane plant development. The vermicomposting leachate with pH 7.8 and electrolytic conductivity 2.6 dS m?1, contained 834 mg potassium (K) l?1, 247 mg nitrate (NO3?) l?1 and 168 mg phosphate (PO43?) l?1, was free of pathogens and resulted in a 65% germination index. Vermicompost leachate did not inhibit sugarcane growth and mixed with 170 g l?1 NPK triple 17 fertilizer resulted in the best plant development. No dispersant or adherent was required to improve plant height and stem development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号