首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Manipulation of single spins is essential for spin-based quantum information processing. Electrical control instead of magnetic control is particularly appealing for this purpose, because electric fields are easy to generate locally on-chip. We experimentally realized coherent control of a single-electron spin in a quantum dot using an oscillating electric field generated by a local gate. The electric field induced coherent transitions (Rabi oscillations) between spin-up and spin-down with 90 degrees rotations as fast as approximately 55 nanoseconds. Our analysis indicated that the electrically induced spin transitions were mediated by the spin-orbit interaction. Taken together with the recently demonstrated coherent exchange of two neighboring spins, our results establish the feasibility of fully electrical manipulation of spin qubits.  相似文献   

2.
Understanding and controlling the complex environment of solid-state quantum bits is a central challenge in spintronics and quantum information science. Coherent manipulation of an individual electron spin associated with a nitrogen-vacancy center in diamond was used to gain insight into its local environment. We show that this environment is effectively separated into a set of individual proximal 13C nuclear spins, which are coupled coherently to the electron spin, and the remainder of the 13C nuclear spins, which cause the loss of coherence. The proximal nuclear spins can be addressed and coupled individually because of quantum back-action from the electron, which modifies their energy levels and magnetic moments, effectively distinguishing them from the rest of the nuclei. These results open the door to coherent manipulation of individual isolated nuclear spins in a solid-state environment even at room temperature.  相似文献   

3.
Most materials freeze when cooled to sufficiently low temperature. We find that magnetic dipoles randomly distributed in a solid matrix condense into a spin liquid with spectral properties on cooling that are the diametric opposite of those for conventional glasses. Measurements of the nonlinear magnetic dynamics in the low-temperature liquid reveal the presence of coherent spin oscillations composed of hundreds of spins with lifetimes of up to 10 seconds. These excitations can be labeled by frequency and manipulated by the magnetic fields from a loop of wire and can permit the encoding of information at multiple frequencies simultaneously.  相似文献   

4.
The excitation spectrum of a model magnetic system, LiHoF4, was studied with the use of neutron spectroscopy as the system was tuned to its quantum critical point by an applied magnetic field. The electronic mode softening expected for a quantum phase transition was forestalled by hyperfine coupling to the nuclear spins. We found that interactions with the nuclear spin bath controlled the length scale over which the excitations could be entangled. This generic result places a limit on our ability to observe intrinsic electronic quantum criticality.  相似文献   

5.
We have observed coherent time evolution between two quantum states of a superconducting flux qubit comprising three Josephson junctions in a loop. The superposition of the two states carrying opposite macroscopic persistent currents is manipulated by resonant microwave pulses. Readout by means of switching-event measurement with an attached superconducting quantum interference device revealed quantum-state oscillations with high fidelity. Under strong microwave driving, it was possible to induce hundreds of coherent oscillations. Pulsed operations on this first sample yielded a relaxation time of 900 nanoseconds and a free-induction dephasing time of 20 nanoseconds. These results are promising for future solid-state quantum computing.  相似文献   

6.
Resistively detected nuclear spin relaxation measurements in closely separated two-dimensional electron systems reveal strong low-frequency electron-spin fluctuations in the quantum Hall regime. As the temperature is decreased, the spin fluctuations, manifested by a sharp enhancement of the nuclear spin-lattice relaxation rate 1/T1, continue to grow down to the lowest temperature of 66 millikelvin. The observed divergent behavior of 1/T1 signals a gapless spin excitation mode and is a hallmark of canted antiferromagnetic order. Our data demonstrate the realization of a two-dimensional system with planar broken symmetry, in which fluctuations do not freeze out when approaching the zero temperature limit.  相似文献   

7.
Conditional quantum dynamics, where the quantum state of one system controls the outcome of measurements on another quantum system, is at the heart of quantum information processing. We demonstrate conditional dynamics for two coupled quantum dots, whereby the probability that one quantum dot makes a transition to an optically excited state is controlled by the presence or absence of an optical excitation in the neighboring dot. Interaction between the dots is mediated by the tunnel coupling between optically excited states and can be optically gated by applying a laser field of the right frequency. Our results represent substantial progress toward realization of an optically effected controlled-phase gate between two solid-state qubits.  相似文献   

8.
We present here a quantum Carnot engine in which the atoms in the heat bath are given a small bit of quantum coherence. The induced quantum coherence becomes vanishingly small in the high-temperature limit at which we operate and the heat bath is essentially thermal. However, the phase phi, associated with the atomic coherence, provides a new control parameter that can be varied to increase the temperature of the radiation field and to extract work from a single heat bath. The deep physics behind the second law of thermodynamics is not violated; nevertheless, the quantum Carnot engine has certain features that are not possible in a classical engine.  相似文献   

9.
Picosecond optical excitation was used to coherently control the excitation in a single quantum dot on a time scale that is short compared with the time scale for loss of quantum coherence. The excitonic wave function was manipulated by controlling the optical phase of the two-pulse sequence through timing and polarization. Wave function engineering techniques, developed in atomic and molecular systems, were used to monitor and control a nonstationary quantum mechanical state composed of a superposition of eigenstates. The results extend the concept of coherent control in semiconductors to the limit of a single quantum system in a zero-dimensional quantum dot.  相似文献   

10.
Kerr rotation measurements on a single electron spin confined in a charge-tunable semiconductor quantum dot demonstrate a means to directly probe the spin off-resonance, thus minimally disturbing the system. Energy-resolved magneto-optical spectra reveal information about the optically oriented spin polarization and the transverse spin lifetime of the electron as a function of the charging of the dot. These results represent progress toward the manipulation and coupling of single spins and photons for quantum information processing.  相似文献   

11.
喷雾高度可调的果园风送喷雾机的设计   总被引:2,自引:0,他引:2  
【目的】设计喷雾高度可调的牵引式果园风送喷雾机,以满足不同果树对喷雾机喷雾高度可调的要求。【方法】针对轴流风机式果园风送喷雾机难以满足不同果树喷雾高度可变的不足,基于喷雾高度可调的目的,设计了一种由1对转向相反的离心风机和角度可调的导流风箱为核心的牵引式果园风送喷雾机,在需求分析和虚拟三维建模的基础上,完成了各关键部件技术参数和整机结构的确定,并通过试验分析了该喷雾机在不同喷雾角度、风机转速、喷雾距离和喷雾压力条件下喷雾沉积量的分布情况。【结果】设计的以转向相反的离心风机和角度可调的导流风箱为核心的牵引式果园风送喷雾机,在离心风机转速为1 200r/min、喷雾距离为2.5m、喷雾压力为0.7MPa、导流风箱的角度为0°和15°时,喷雾沉积量适宜的施药高度分别为0.8~2.4m和1.6~3.2m。【结论】所设计的果园风送喷雾机可以满足果园对不同高度果树施药的农艺要求。  相似文献   

12.
Electron spins are strong candidates with which to implement spintronics because they are both mobile and able to be manipulated. The relatively short lifetimes of electron spins, however, present a problem for the long-term storage of spin information. We demonstrated an ensemble nuclear spin memory in phosphorous-doped silicon, which can be read out electrically and has a lifetime exceeding 100 seconds. The electronic spin information can be mapped onto and stored in the nuclear spin of the phosphorus donors, and the nuclear spins can then be repetitively read out electrically for time periods that exceed the electron spin lifetime. We discuss how this memory can be used in conjunction with other silicon spintronic devices.  相似文献   

13.
Most schemes for quantum information processing require fast single-qubit operations. For spin-based qubits, this involves performing arbitrary coherent rotations of the spin state on time scales much faster than the spin coherence time. By applying off-resonant, picosecond-scale optical pulses, we demonstrated the coherent rotation of a single electron spin through arbitrary angles up to pi radians. We directly observed this spin manipulation using time-resolved Kerr rotation spectroscopy and found that the results are well described by a model that includes the electronnuclear spin interaction. Measurements of the spin rotation as a function of laser detuning and intensity confirmed that the optical Stark effect is the operative mechanism.  相似文献   

14.
Magnetic anisotropy allows magnets to maintain their direction of magnetization over time. Using a scanning tunneling microscope to observe spin excitations, we determined the orientation and strength of the anisotropies of individual iron and manganese atoms on a thin layer of copper nitride. The relative intensities of the inelastic tunneling processes are consistent with dipolar interactions, as seen for inelastic neutron scattering. First-principles calculations indicate that the magnetic atoms become incorporated into a polar covalent surface molecular network in the copper nitride. These structures, which provide atom-by-atom accessibility via local probes, have the potential for engineering anisotropies large enough to produce stable magnetization at low temperatures for a single atomic spin.  相似文献   

15.
Current experimental and theoretical progress toward the goal of controlling quantum dynamics is summarized. Two key developments have now revitalized the field. First, appropriate ultrafast laser pulse shaping capabilities have only recently become practical. Second, the introduction of engineering control concepts has put the required theoretical framework on a rigorous foundation. Extrapolations to determine what is realistically possible are presented.  相似文献   

16.
Tunneling electrons from a low-temperature (5 kelvin) scanning tunneling microscope were used to control, through resonant electronic excitation, the molecular dynamics of an individual biphenyl molecule adsorbed on a silicon(100) surface. Different reversible molecular movements were selectively activated by tuning the electron energy and by selecting precise locations for the excitation inside the molecule. Both the spatial selectivity and energy dependence of the electronic control are supported by spectroscopic measurements with the scanning tunneling microscope. These experiments demonstrate the feasibility of controlling the molecular dynamics of a single molecule through the localization of the electronic excitation inside the molecule.  相似文献   

17.
Mechanical systems can be influenced by a wide variety of small forces, ranging from gravitational to optical, electrical, and magnetic. When mechanical resonators are scaled down to nanometer-scale dimensions, these forces can be harnessed to enable coupling to individual quantum systems. We demonstrate that the coherent evolution of a single electronic spin associated with a nitrogen vacancy center in diamond can be coupled to the motion of a magnetized mechanical resonator. Coherent manipulation of the spin is used to sense driven and Brownian motion of the resonator under ambient conditions with a precision below 6 picometers. With future improvements, this technique could be used to detect mechanical zero-point fluctuations, realize strong spin-phonon coupling at a single quantum level, and implement quantum spin transducers.  相似文献   

18.
By applying a two-dimensional double-quantum carbon-13 nuclear magnetic resonance experiment to a protein uniformly enriched to 26 percent carbon-13, networks of directly bonded carbon atoms were identified by virtue of their one-bond spin-spin couplings and were classified by amino acid type according to their particular single- and double-quantum chemical shift patterns. Spin systems of 75 of the 98 amino acid residues in a protein, oxidized Anabaena 7120 ferredoxin (molecular weight 11,000), were identified by this approach, which represents a key step in an improved methodology for assigning protein nuclear magnetic resonance spectra. Missing spin systems corresponded primarily to residues located adjacent to the paramagnetic iron-sulfur cluster.  相似文献   

19.
We studied the dynamics of a single cobalt (Co) atom during lateral manipulation on a copper (111) surface in a low-temperature scanning tunneling microscope. The Co binding site locations were revealed in a detailed image that resulted from lateral Co atom motion within the trapping potential of the scanning tip. Random telegraph noise, corresponding to the Co atom switching between hexagonal close-packed (hcp) and face-centered cubic (fcc) sites, was seen when the tip was used to try to position the Co atom over the higher energy hcp site. Varying the probe tip height modified the normal copper (111) potential landscape and allowed the residence time of the Co atom in these sites to be varied. At low tunneling voltages (less than approximately 5 millielectron volts), the transfer rate between sites was independent of tunneling voltage, current, and temperature. At higher voltages, the transfer rate exhibited a strong dependence on tunneling voltage, indicative of vibrational heating by inelastic electron scattering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号