首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a transport study of nonequilibrium quasi-particles in a high-transition-temperature cuprate superconductor using the transient grating technique. Low-intensity laser excitation (at a photon energy of 1.5 electron volts) was used to introduce a spatially periodic density of quasi-particles into a high-quality untwinned single crystal of YBa2Cu3O6.5. Probing the evolution of the initial density through space and time yielded the quasi-particle diffusion coefficient and the inelastic and elastic scattering rates. The technique reported here is potentially applicable to precision measurements of quasi-particle dynamics not only in cuprate superconductors but in other electronic systems as well.  相似文献   

2.
Epitaxial BiFeO3 multiferroic thin film heterostructures   总被引:2,自引:0,他引:2  
Enhancement of polarization and related properties in heteroepitaxially constrained thin films of the ferroelectromagnet, BiFeO3, is reported. Structure analysis indicates that the crystal structure of film is monoclinic in contrast to bulk, which is rhombohedral. The films display a room-temperature spontaneous polarization (50 to 60 microcoulombs per square centimeter) almost an order of magnitude higher than that of the bulk (6.1 microcoulombs per square centimeter). The observed enhancement is corroborated by first-principles calculations and found to originate from a high sensitivity of the polarization to small changes in lattice parameters. The films also exhibit enhanced thickness-dependent magnetism compared with the bulk. These enhanced and combined functional responses in thin film form present an opportunity to create and implement thin film devices that actively couple the magnetic and ferroelectric order parameters.  相似文献   

3.
In high-temperature superconductivity, the process that leads to the formation of Cooper pairs, the fundamental charge carriers in any superconductor, remains mysterious. We used a femtosecond laser pump pulse to perturb superconducting Bi(2)Sr(2)CaCu(2)O(8+δ) and studied subsequent dynamics using time- and angle-resolved photoemission and infrared reflectivity probes. Gap and quasiparticle population dynamics revealed marked dependencies on both excitation density and crystal momentum. Close to the d-wave nodes, the superconducting gap was sensitive to the pump intensity, and Cooper pairs recombined slowly. Far from the nodes, pumping affected the gap only weakly, and recombination processes were faster. These results demonstrate a new window into the dynamical processes that govern quasiparticle recombination and gap formation in cuprates.  相似文献   

4.
The high-temperature superconducting cuprate La(2-x)Sr(x)CuO(4) (LSCO) shows several phases ranging from antiferromagnetic insulator to metal with increasing hole doping. To understand how the nature of the hole state evolves with doping, we have carried out high-resolution Compton scattering measurements at room temperature together with first-principles electronic structure computations on a series of LSCO single crystals in which the hole doping level varies from the underdoped (UD) to the overdoped (OD) regime. Holes in the UD system are found to primarily populate the O 2p(x)/p(y) orbitals. In contrast, the character of holes in the OD system is very different in that these holes mostly enter Cu d orbitals. High-resolution Compton scattering provides a bulk-sensitive method for imaging the orbital character of dopants in complex materials.  相似文献   

5.
A cuprate superconductor containing double mercury layers was synthesized with a high-pressure, high-temperature technique. The compound, with chemical formula Hg(2)Ba(2)-Y1-xCaxCu(2)O(8-delta), contains a double HgO layer with structure similar to that of rock salt. The prototype compound Hg(2)Ba(2)YCu(2)O(8-delta) is an insulator. Superconductivity is induced in the system by partially replacing yttrium with calcium.  相似文献   

6.
7.
Polarized and unpolarized neutron scattering was used to measure the wave vector- and frequency-dependent magnetic fluctuations in the normal state (from the superconducting transition temperature, Tc = 35 kelvin, up to 350 kelvin) of single crystals of La1.86Sr0.14CuO4. The peaks that dominate the fluctuations have amplitudes that decrease as T-2 and widths that increase in proportion to the thermal energy, kBT (where kB is Boltzmann's constant), and energy transfer added in quadrature. The nearly singular fluctuations are consistent with a nearby quantum critical point.  相似文献   

8.
9.
10.
We report on the modulation of the transport properties of thin films, grown by molecular beam epitaxy, of the spin-ladder compound [CaCu2O3]4, using the field effect in a gated structure. At high hole-doping levels, superconductivity is induced in the nominally insulating ladder material without the use of high-pressure or chemical substitution. The observation of superconductivity is in agreement with the theoretical prediction that holes doped into spin ladders could pair and possibly superconduct.  相似文献   

11.
12.
13.
14.
One of the most intriguing features of some high-temperature cuprate superconductors is the interplay between one-dimensional "striped" spin order and charge order, and superconductivity. We used mid-infrared femtosecond pulses to transform one such stripe-ordered compound, nonsuperconducting La(1.675)Eu(0.2)Sr(0.125)CuO(4), into a transient three-dimensional superconductor. The emergence of coherent interlayer transport was evidenced by the prompt appearance of a Josephson plasma resonance in the c-axis optical properties. An upper limit for the time scale needed to form the superconducting phase is estimated to be 1 to 2 picoseconds, which is significantly faster than expected. This places stringent new constraints on our understanding of stripe order and its relation to superconductivity.  相似文献   

15.
16.
17.
18.
19.
The magnon pairing mechanism is derived to explain the high-temperature superconductivity of both the La2-xSrxCu(1)O(4) and Y(1)Ba(2)Cu(3)O(7) systems. Critical features include (i) a one- or two-dimensional lattice of linear Cu-O-Cu bonds that contribute to large antiferromagnetic (superexchange) coupling of the Cu(II)(d(9)) orbitals; (ii) holes in the oxygen ppi bands [rather than Cu(III)(d(8))] leading to high mobility hole conduction; and (iii) strong ferromagnetic coupling between oxygen ppi holes and adjacent Cu(II)(d(9)) electrons. The ferromagnetic coupling of the conduction electrons with copper d spins induces the attractive interaction responsible for the superconductivity, leading to triplet-coupled pairs called "tripgems." The disordered Heisenberg lattice of antiferromagnetically coupled copper d spins serves a role analogous to the phonons in a conventional system. This leads to a maximum transition temperature of about 200 K. For La(1.85)Sr(0.15)Cu(1)O(4), the energy gap is in excellent agreement with experiment. For Y(1)Ba(2)Cu(3)O(7), we find that both the CuO sheets and the CuO chains can contribute to the supercurrent.  相似文献   

20.
We present studies of the electronic structure of La(2-x)BaxCuO4, a system where the superconductivity is strongly suppressed as static spin and charge orders or "stripes" develop near the doping level of x = (1/8). Using angle-resolved photoemission and scanning tunneling microscopy, we detect an energy gap at the Fermi surface with magnitude consistent with d-wave symmetry and with linear density of states, vanishing only at four nodal points, even when superconductivity disappears at x = (1/8). Thus, the nonsuperconducting, striped state at x = (1/8) is consistent with a phase-incoherent d-wave superconductor whose Cooper pairs form spin-charge-ordered structures instead of becoming superconducting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号