首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous global measurements of nitric acid (HNO(3)), water (H(2)O), chlorine monoxide (CIO), and ozone (O(3)) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO(3) was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H(2)O after mid-July. By mid-August, near the time of peak CIO, abundances of gas-phase HNO(3) and H(2)O were extremely low. The concentrations of HNO(3) and H(2)O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO(3) or H(2)O were observed in the 1992-1993 Arctic winter vortex. Although CIO was enhanced over the Arctic as it was over the Antarctic, Arctic O(3) depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone "hole" is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.  相似文献   

2.
Dramatic springtime depletions of ozone in polar regions require that polar stratospheric air has a high degree of dynamical isolation and extremely cold temperatures necessary for the formation of polar stratospheric clouds. Both of these conditions are produced within the stratospheric winter polar vortex. Recent aircraft missions have provided new information about the structure of polar vortices during winter and their relation to polar ozone depletions. The aircraft data show that gradients of potential vorticity and the concentration of conservative trace species are large at the transition from mid-latitude to polar air. The presence of such sharp gradients at the boundary of polar air implies that the inward mixing of heat and constituents is strongly inhibited and that the perturbed polar stratospheric chemistry associated with the ozone hole is isolated from the rest of the stratosphere until the vortex breaks up in late spring. The overall size of the polar vortex thus limits the maximum areal coverage of the annual polar ozone depletions. Because it appears that this limit has not been reached for the Antarctic depletions, the possibility of future increases in the size of the Antarctic ozone hole is left open. In the Northern Hemisphere, the smaller vortex and the more restricted region of cold temperatures suggest that this region has a smaller theoretical maximum for column ozone depletion, about 40 percent of the currently observed change in the Antarctic ozone column in spring.  相似文献   

3.
Simultaneous in situ measurements of hydrochloric acid (HCl) and chlorine monoxide (ClO) in the Arctic winter vortex showed large HCl losses, of up to 1 part per billion by volume (ppbv), which were correlated with high ClO levels of up to 1.4 ppbv. Air parcel trajectory analysis identified that this conversion of inorganic chlorine occurred at air temperatures of less than 196 +/- 4 kelvin. High ClO was always accompanied by loss of HCI mixing ratios equal to (1/2)(ClO + 2Cl(2)O(2)). These data indicate that the heterogeneous reaction HCl + ClONO(2) --> Cl(2) + HNO(3) on particles of polar stratospheric clouds establishes the chlorine partitioning, which, contrary to earlier notions, begins with an excess of ClONO(2), not HCl.  相似文献   

4.
Stratospheric ozone and aerosol distributions were measured across the wintertime Arctic vortex from January to March 1992 with an airborne lidar system as part of the 1992 Airborne Arctic Stratospheric Expedition (AASE II). Aerosols from the Mount Pinatubo eruption were found outside and inside the vortex with distinctly different distributions that clearly identified the dynamics of the vortex. Changes in aerosols inside the vortex indicated advection of air from outside to inside the vortex below 16 kilometers. No polar stratospheric clouds were observed and no evidence was found for frozen volcanic aerosols inside the vortex. Between January and March, ozone depletion was observed inside the vortex from 14 to 20 kilometers with a maximum average loss of about 23 percent near 18 kilometers.  相似文献   

5.
The sensitivity of polar ozone depletion to proposed geoengineering schemes   总被引:2,自引:0,他引:2  
The large burden of sulfate aerosols injected into the stratosphere by the eruption of Mount Pinatubo in 1991 cooled Earth and enhanced the destruction of polar ozone in the subsequent few years. The continuous injection of sulfur into the stratosphere has been suggested as a "geoengineering" scheme to counteract global warming. We use an empirical relationship between ozone depletion and chlorine activation to estimate how this approach might influence polar ozone. An injection of sulfur large enough to compensate for surface warming caused by the doubling of atmospheric CO2 would strongly increase the extent of Arctic ozone depletion during the present century for cold winters and would cause a considerable delay, between 30 and 70 years, in the expected recovery of the Antarctic ozone hole.  相似文献   

6.
Observations at Thule, Greenland, that made use of direct light from the moon on 2,3, 4,5, and 7 February 1988 revealed nighttime chlorine dioxide (OClO) abundances that were less than those obtained in Antarctica by about a factor of 5, but that exceeded model predictions based on homogeneous (gas-phase) photochemistry by about a factor of 10. The observed time scale for the formation of OClO after sunset strongly supports the current understanding of the diurnal chemistry of OClO. These data suggest that heterogeneous (surface) reactions due to polar stratospheric clouds can occur in the Arctic, providing a mechanism for possible Arctic ozone depletion.  相似文献   

7.
Results of the first year of data collection by the SAM (Stratospheric Aerosol Measurement) II satellite system are presented. Almost 10,000 profiles of stratospheric aerosol extinction in the Arctic and Antarctic regions are used to construct plots of weekly averaged aerosol extinction versus altitude and time and stratospheric optical depth versus time. Corresponding temperature fields are presented. These data show striking similarities in the aerosol behavior for corresponding seasons. Wintertime polar stratospheric clouds that are strongly correlated with temperature are documented. They are much more prevalent in the Antarctic stratosphere during the cold austral winter and increase the stratospheric optical depths by as much as an order of magnitude for a period of about 2 months. These clouds might represent a sink for stratospheric water vapor and must be considered in the radiative budget for this region and time.  相似文献   

8.
Polar stratospheric clouds (PSCs) play a key role in stratospheric ozone depletion. Surface-catalyzed reactions on PSC particles generate chlorine compounds that photolyze readily to yield chlorine radicals, which in turn destroy ozone very efficiently. The most prevalent PSCs form at temperatures several degrees above the ice frost point and are believed to consist of HNO(3) hydrates; however, their formation mechanism is unclear. Results of laboratory experiments are presented which indicate that the background stratospheric H(2)SO(4)/H(2)O aerosols provide an essential link in this mechanism: These liquid aerosols absorb significant amounts of HNO(3) vapor, leading most likely to the crystallization of nitric acid trihydrate (NAT). The frozen particles then grow to form PSCs by condensation of additional amounts of HNO(3) and H(2)O vapor. Furthermore, reaction probability measurements reveal that the chlorine radical precursors are formed readily at polar stratospheric temperatures not just on NAT and ice crystals, but also on liquid H(2)SO(4) solutions and on solid H(2)SO(4) hydrates. These results imply that the chlorine activation efficiency of the aerosol particles increases rapidly as the temperature approaches the ice frost point regardless of the phase or composition of the particles.  相似文献   

9.
Measurements from the winter of 1994-95 indicating removal of total reactive nitrogen from the Arctic stratosphere by particle sedimentation were used to constrain a microphysical model. The model suggests that denitrification is caused predominantly by nitric acid trihydrate particles in small number densities. The denitrification is shown to increase Arctic ozone loss substantially. Sensitivity studies indicate that the Arctic stratosphere is currently at a threshold of denitrification. This implies that future stratospheric cooling, induced by an increase in the anthropogenic carbon dioxide burden, is likely to enhance denitrification and to delay until late in the next century the return of Arctic stratospheric ozone to preindustrial values.  相似文献   

10.
In situ measurements of chlorine monoxide, bromine monoxide, and ozone are extrapolated globally, with the use of meteorological tracers, to infer the loss rates for ozone in the Arctic lower stratosphere during the Airborne Arctic Stratospheric Expedition II (AASE II) in the winter of 1991-1992. The analysis indicates removal of 15 to 20 percent of ambient ozone because of elevated concentrations of chlorine monoxide and bromine monoxide. Observations during AASE II define rates of removal of chlorine monoxide attributable to reaction with nitrogen dioxide (produced by photolysis of nitric acid) and to production of hydrochloric acid. Ozone loss ceased in March as concentrations of chlorine monoxide declined. Ozone losses could approach 50 percent if regeneration of nitrogen dioxide were inhibited by irreversible removal of nitrogen oxides (denitrification), as presently observed in the Antarctic, or without denitrification if inorganic chlorine concentrations were to double.  相似文献   

11.
Laboratory studies of heterogeneous reactions important for ozone depletion over Antarctica are reported. The reaction of chlorine nitrate (ClONO(2)) with H(2)0 and hydrogen chloride (HCl) on surfaces that simulate polar stratospheric clouds [ice and nitric acid (HNO(3))-ice and sulfuric acid] are studied at temperatures relevant to the Antarctic stratosphere. The reaction of ClONO(2) on ice and certain mixtures of HNO(3) and ice proceeded readily. The sticking coefficient of ClONO(2) on ice of 0.009 +/- 0.002 was observed. A reaction produced gas-phase hypochlorous acid (HOCl) and condensed-phase HNO(3); HOC1 underwent a secondary reaction on ice producing dichlorine monoxide (Cl(2)O). In addition to the reaction with H(2)0, ClONO(2) reacted with HCl on ice to form gas-phase chlorine (Cl(2)) and condensed-phase HNO(3.) Essentially all of the HCl in the bulk of the ice can react with ClONO(2) on the ice surface. The gaseous products of the above reactions, HOCl, Cl(2)0, and Cl(2), could readily photolyze in the Antarctic spring to produce active chlorine for ozone depletion. Furthermore, the formation of condensed-phase HNO(3) could serve as a sink for odd nitrogen species that would otherwise scavenge the active chlorine.  相似文献   

12.
Scattered sunlight and direct light from the moon was used in two wavelength ranges to measure the total column abundances of stratospheric ozone(O(3)) and nitrogen dioxide (NO(2)) at Thule, Greenland (76.5 degrees N), during the period from 29 January to 16 February 1988. The observed O(3) column varied between about 325 and 400 Dobson units, and the lower values were observed when the center of the Arctic polar vortex was closest to Thule. This gradient probably indicates that O(3) levels decrease due to dynamical processes near the center of the Arctic vortex and should be considered in attempts to derive trends in O(3) levels. The observed NO(2) levels were also lowest in the center of the Arctic vortex and were sometimes as low as 5 x 10(14) molecules per square centimeter, which is even less than comparable values measured during Antarctic spring, suggesting that significant heterogeneous photochemistry takes place during the Arctic winter as it does in the Antarctic.  相似文献   

13.
The current understanding of stratospheric chemistry is reviewed with particular attention to the influence of human activity. Models are in good agreement with measurements for a variety of species in the mid-latitude stratosphere, with the possible exception of ozone (O(3)) at high altitude. Rates calculated for loss of O(3) exceed rates for production by about 40 percent at 40 kilometers, indicating a possible but as yet unidentified source of high-altitude O(3). The rapid loss of O(3) beginning in the mid-1970s at low altitudes over Antarctica in the spring is due primarily to catalytic cycles involving halogen radicals. Reactions on surfaces of polar stratospheric clouds play an important role in regulating the abundance of these radicals. Similar effects could occur in northern polar regions and in cold regions of the tropics. It is argued that the Antarctic phenomenon is likely to persist: prompt drastic reduction in the emission of industrial halocarbons is required if the damage to stratospheric O(3) is to be reversed.  相似文献   

14.
Upper Atmosphere Research Satellite observations indicate that extensive denitrification without significant dehydration currently occurs only in the Antarctic during mid to late June. The fact that denitrification occurs in a relatively warm month in the Antarctic raises concern about the likelihood of its occurrence and associated effects on ozone recovery in a colder and possibly more humid future Arctic lower stratosphere. Polar stratospheric cloud lifetimes required for Arctic denitrification to occur in the future are presented and contrasted against the current Antarctic cloud lifetimes. Model calculations show that widespread severe denitrification could enhance future Arctic ozone loss by up to 30%.  相似文献   

15.
A comprehensive investigation of polar stratospheric clouds was performed on 25 January 2000 with instruments onboard a balloon gondola flown from Kiruna, Sweden. Cloud layers were repeatedly encountered at altitudes between 20 and 24 kilometers over a wide range of atmospheric temperatures (185 to 197 kelvin). Particle composition analysis showed that a large fraction of the cloud layers was composed of nitric acid trihydrate (NAT) particles, containing water and nitric acid at a molar ratio of 3:1; this confirmed that these long-sought solid crystals exist well above ice formation temperatures. The presence of NAT particles enhances the potential for chlorine activation with subsequent ozone destruction in polar regions, particularly in early and late winter.  相似文献   

16.
Calculations indicate that chlorofluoromethanes produced by man can greatly affect the concentrations of stratospheric ozone in future decades. This effect follows the release of chlorine from these compounds in the stratosphere. Present usage levels of chlorofluoromethanes can lead to chlorine-catalyzed ozone destruction rates that will exceed natural sinks of ozone by 1985 or 1990.  相似文献   

17.
This article reports measurements of the column density of stratospheric chlorine monoxide and presents a complete diurnal record of its variation (with 2-hour resolution) obtained from ground-based observations of a millimeter-wave spectral line at 278 gigahertz. Observations were carried out during October and December 1982 from Mauna Kea, Hawaii. The results reported here indicate that the mixing ratio and column density of chlorine monoxide above 30 kilometers during the daytime are approximately 20 percent lower than model predictions based on 2.1 parts per billion of total stratospheric chlorine. The observed day-to-night variation of chlorine monoxide is, however, in good agreement with recent model predictions, confirms the existence of a nighttime reservoir for chlorine, and verifies the predicted general rate of its storage and retrieval. From this evidence, it appears that the chlorine chemistry above 30 kilometers is close to being understood in current stratospheric models. Models based on this chemistry and measured reaction rates predict a reduction in the total stratospheric ozone content in the range of 3 to 5 percent in the final steady state for an otherwise unperturbed atmosphere, although the percentage decrease in the upper stratosphere is much higher.  相似文献   

18.
Thermodynamic data are presented for hydrates of nitric acid: HNO(3).H(2)O, HNO(3).2H(2)O, HNO(3).3H(2)O, and a higher hydrate. Laboratory data indicate that nucleation and persistence of metastable HNO(3).2H(2)O may be favored in polar stratospheric clouds over the slightly more stable HNO(3).3H(2)O. Atmospheric observations indicate that some polar stratospheric clouds may be composed of HNO(3).2H(2)O and HNO(3).3H(2)O. Vapor transfer from HNO(3).2H(2)O to HNO(3).3H(2)O could be a key step in the sedimentation of HNO(3), which plays an important role in the depletion of polar ozone.  相似文献   

19.
The widespread use of hydrogen fuel cells could have hitherto unknown environmental impacts due to unintended emissions of molecular hydrogen, including an increase in the abundance of water vapor in the stratosphere (plausibly by as much as approximately 1 part per million by volume). This would cause stratospheric cooling, enhancement of the heterogeneous chemistry that destroys ozone, an increase in noctilucent clouds, and changes in tropospheric chemistry and atmosphere-biosphere interactions.  相似文献   

20.
How strong is the case linking global release of chlorofluorocarbons to episodic disappearance of ozone from the Antarctic stratosphere each austral spring? Three lines of evidence defining a link are (i) observed containment in the vortex of ClO concentrations two orders of magnitude greater than normal levels; (ii) in situ observations obtained during ten high-altitude aircraft flights into the vortex as the ozone hole was forming that show a decrease in ozone concentrations as ClO concentrations increased; and (iii) a comparison between observed ozone loss rates and those predicted with the use of absolute concentrations of ClO and BrO, the rate-limiting radicals in an array of proposed catalytic cycles. Recent advances in our understanding of the kinetics, photochemistry, and structural details of key intermediates in these catalytic cycles as well as an improved absolute calibration for ClO and BrO concentrations at the temperatures and pressures encountered in the lower antarctic stratosphere have been essential for defining the link.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号