首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
When chickpea shoots were placed in solanapyrone A, the compound could not be recovered from the plant and symptoms developed. These consisted of loss of turgor, shrivelling and breakage of stems and flame-shaped, chlorotic zones in leaflets. In similar experiments with solanapyrone B, only 9.4% (22 μ g) of the compound taken up was recovered and stems remained turgid but their leaflets became twisted and chlorotic and some abscized.Cells isolated from leaflets of 12 chickpea cultivars differed by up to five-fold in their sensitivity to solanapyrone A and this compound was 2.6–12.6 times more toxic than solanapyrone B, depending on cultivar.Glutathione reacted with solanapyrone A in vitro reducing its toxicity in a cell assay and forming a conjugate. Measurement of reduced glutathione concentration and glutathione-S-transferase (GST) activity among cultivars showed that the differences of their means were highly significant and both were negatively and significantly correlated with their sensitivity to solanapyrone A. Treatment of shoots with solanapyrone A enhanced total, reduced and oxidized glutathione content as well as GST activity 1.26-, 1.23-, 1.50- and 1.94-fold, respectively. Similarly, treatment of shoots with the safener, dichlormid, also raised total, oxidized and reduced glutathione levels and GST activity 1.42-, 1.07-, 1.43-, 1.42-fold, respectively. Cells isolated from shoots treated with dichlormid at 150 and 300 μ g per shoot were 2.45 and 2.66 times less sensitive to solanapyrone A, with LD50values of 71.5 and 77.8 μ g ml−1, respectively, as compared to 29.2 μ g ml−1for controls.  相似文献   

2.
3.
Eleven pathotype groups (A-K), including five not previously reported, ofDidymella rabiei (anamorphAscochyta rabiei), representing isolates of the pathogen from Ascochyta blight-affected chickpeas mainly from India, Pakistan, Spain and the USA, were characterized using 44 single-spore isolates tested against seven differential chickpea lines. Of 48 isolates tested for mating type, 58% belonged to MAT 1-1 and 42% to MAT 1-2. Thirty-nineD. rabiei isolates, as well as two isolates ofAscochyta pisi and six isolates of unrelated fungi, were analyzed using Randomly Amplified Polymorphic DNAs (RAPDs) employing five primers (P2 at 40°C, and OPA3, OPC1, OPC11 and OPC20 at 35°C). Computer cluster analysis (UPGMA / NTSYS-PC) detected a relatively low level of polymorphism among all theD. rabiei isolates, although atca 7% dissimilarity,ca 10 RAPD groups [I-X] were demarcated, as well as subclustering within the larger groups. By the same criteria, the maximum dissimilarity for the whole population ofD. rabiei isolates wasca 13%. No correlation was found between different RAPD groups, pathotype, or mating type ofD. rabiei, although some evidence of clustering based on geographic origin was detected. The use of RAPDs enabled us to identify specific DNA fragments that may have a potential use as genetic markers in sexual crosses, but none which could be used as virulence markers.  相似文献   

4.
Ascochyta blight caused by Ascochyta rabiei, is the most destructive disease in many chickpea growing countries. Disease development varies with the growth stage and host resistance. Hence, disease development was studied in cvs ICCX 810800 (resistant), ICCV 90201 (moderately resistant), C 235 (moderately susceptible), ICCV 96029 and Pb 7 (susceptible) under controlled environment (ICRISAT, Patencheru) and field conditions (Dhaulakuan, Himachal Pradesh) at seedling, post-seedling, vegetative, flowering and podding stages. Under controlled environment, the incubation period and terminal disease reaction (TDR) did not vary significantly at different growth stages against virulent isolate AB 4. Cultivars ICCX 810800, ICCV 90201 and C 235 showed a significantly longer incubation period than the susceptible cv. Pb 7. Cultivar ICCX 810800 showed slow disease progress and the least TDR. Field experiments were conducted during the 2003–2004 and 2004–2005 growing seasons. During 2003–2004, TDR was higher in plants inoculated at podding and the flowering stage and the lowest disease reaction was recorded in ICCX 810800. A severe epidemic during 2004–2005 was attributed to the favourable temperature, humidity and well distributed high rainfall. TDR did not differ significantly at any of the growth stages in susceptible cvs ICCV 96029 and Pb 7. With respect to seeding date and cultivar, the highest yield was recorded in the early-sown crop (1,276.7 kg ha−1) and in ICCV 90201 (1,799.3 kg ha−1), respectively. The yields were greatly reduced in all the cultivars during 2004–2005 and the highest yield was recorded in ICCX 810800 (524.7 kg ha−1). Integrated disease management using resistant cultivars, optimum sowing period and foliar application of fungicides will improve chickpea production. The experiment under controlled environment and field conditions (during the epidemic year) showed a similar disease development.  相似文献   

5.
To ascertain if active oxygen species play a role in fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris, the degree of lipid peroxidation (malondialdehyde formation) and the activity levels of diamine oxidase (DAO), an apoplastic H2O2-forming oxidase, and several antioxidant enzymes, namely ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), guaiacol-dependent peroxidase (GPX) and superoxide dismutase (SOD), were determined spectrophotometrically in roots and stems of ‘WR315’ (resistant) and ‘JG62’ (susceptible) chickpea cultivars inoculated with the highly virulent race 5 of the pathogen. Moreover, APX, CAT, GPX and SOD were also analysed in roots and stems by gel electrophoresis and activity staining; and the protein levels of APX and SOD in roots were determined by Western blotting. In roots, infection by the pathogen increased lipid peroxidation and CAT and SOD activities, although such responses occurred earlier in the incompatible compared with the compatible interactions. APX, GPX and GR activities were also increased in infected roots, but only in the compatible interaction. In stems, infection by the pathogen increased lipid peroxidation and APX, CAT, SOD and GPX activities only in the compatible interaction, and DAO activity only in the incompatible one. In general, electrophoregrams agreed with the activity levels determined spectrophotometrically and did not reveal any differences in isoenzyme patterns between cultivars or between infected and non-infected plants. Further, Western blots revealed an increase in the root protein levels of APX in the compatible interaction and in those of SOD in both compatible and incompatible interactions. In conclusion, whereas enhanced DAO activity in stems, and earlier increases in lipid peroxidation and CAT and SOD activities in roots, can be associated with resistance to fusarium wilt in chickpea, the induction of the latter three parameters in roots and stems along with that of APX, GR (only in roots) and GPX (only in stems) activities are rather more associated with the establishment of the compatible interaction.  相似文献   

6.
Ascochyta blight caused by Ascochyta rabiei and fusarium wilt caused by Fusarium oxysporum. f. sp. ciceris are the two most serious diseases of chickpea (Cicer arietinum). Quantitative trait loci (QTL) or genes for ascochyta blight resistance and a cluster of resistance genes for several fusarium wilt races (foc1, foc3, foc4 and foc5) located on LG2 of the chickpea map have been reported independently. In order to validate these results and study the linkage relationship between the loci that confer resistance to blight and wilt, an intraspecific chickpea recombinant inbred lines (RIL) population that segregates for resistance to both diseases was studied. A new LG2 was established using sequence tagged microsatellite sites (STMS) markers selected from other chickpea maps. Resistance to race 5 of F. oxysporum (foc5) was inherited as a single gene and mapped to LG2, flanked by the STMS markers TA110 (6.5 cM apart) and TA59 (8.9 cM apart). A QTL for resistance to ascochyta blight (QTLAR3) was also detected on LG2 using evaluation data obtained separately in two cropping seasons. This genomic region, where QTLAR3 is located, was highly saturated with STMS markers. STMS TA194 appeared tightly linked to QTLAR3 and was flanked by the STMS markers TR58 and TS82 (6.5 cM apart). The genetic distance between foc5 and QTLAR3 peak was around 24 cM including six markers within this interval. The markers linked to both loci could facilitate the pyramiding of resistance genes for both diseases through MAS.  相似文献   

7.
The effects of Glomus intraradices, Pseudomonas alcaligenes and Bacillus pumilus on the root-rot disease complex caused by the root-knot nematode Meloidogyne incognita and the root-rot fungus Macrophomina phaseolina in chickpea was assessed by quantifying differences in the shoot dry mass, pod number, nodulation, and shoot content of chlorophyll, nitrogen, phosphorus and potassium. Inoculation of plants with G. intraradices, P. alcaligenes and B. pumilus alone and in combination significantly increased shoot dry mass, pod number, and content of chlorophyll, nitrogen, phosphorus and potassium in plants inoculated with pathogens over that in the uninoculated control plants. P. alcaligenes caused a greater increase in shoot dry mass, pod number, chlorophyll, nitrogen, phosphorus and potassium in plants with pathogens than did G. intraradices or B. pumilus. Combined application of G. intraradices, P. alcaligenes and B. pumilus to plants inoculated with pathogens caused a greater increase in shoot dry mass, pod number, nitrogen, phosphorus, and potassium than did an application of P. alcaligenes plus B. pumilus or of G. intraradices plus B. pumilus. Root colonization by G. intrardices was high when used alone, while inoculation with the pathogens reduced root colonization by G. intraradices. In the presence of P. alcaligenes and B. pumilus, root colonization by G. intraradices increased. In plants inoculated with just one antagonist, P. alcaligenes reduced galling and nematode multiplication the most, followed by G. intraradices, then B. pumilus. The greatest reduction in galling, nematode multiplication and root-rot was observed when both bacterial species and G. intraradices were applied together.  相似文献   

8.
我国玉米灰斑病菌遗传多样性的ISSR分析   总被引:2,自引:2,他引:2  
为明确我国发生的玉米灰斑病菌地理差异及遗传结构,利用简单序列重复区间(ISSR)对玉米灰斑病菌遗传多样性进行了分析,并利用尾孢菌特异引物对分离自四川、云南、湖北、贵州等西南地区的16个玉米灰斑病菌菌株进行了分子鉴定。结果显示,通过ISSR标记筛选出10个扩增多态性好且稳定的通用引物,共扩增出81条DNA条带,均为多态性条带,扩增片段大小在200~2 000 bp之间,菌株遗传相似系数为0.19~1.00。在遗传相似系数为0.19时,供试菌株被聚为2大类群,来自西南地区和东北地区的菌株各自聚为一组,在DNA水平上表现出明显差异,认为是2类不同的致病类群。分子鉴定结果显示引起西南各地区玉米灰斑病的主要致病菌均为玉米尾孢菌Cercospora zeina。表明我国玉米灰斑病菌存在丰富的遗传多样性,ISSR标记可揭示出玉米灰斑病菌株间的亲缘关系及遗传差异性,可用于其遗传多样性研究。  相似文献   

9.
Angular leaf spot, a disease of common bean produced by Phaeoisariopsis griseola, an imperfect (Deuteromycotina) fungus, causes significant yield losses in Argentina. The development of a strategy to control and/or reduce the impact of P. griseola requires a previous knowledge of the population structure. Therefore, the purpose of this work was to analyze diversity among 45 isolates of P. griseola collected within the production area of common bean in Northwestern Argentina. Pathotypes diversity was determined based on a set of bean differentials and genomic differences between isolates were determined by means of molecular markers. We confirmed that isolates belonging to Middle American and Andean groups coexist in Northwestern Argentina and the level of diversity between them was considerable and of similar level within each group. Even though the number of isolates analyzed was 45, among them 37 were Middle American and only eight were Andean. The number of haplotypes found based on ISSR and RAPD markers were 18 and as expected, they were unrelated with pathotypes. The wild bean species, Phaseolus vulgaris var. aborigineus, showed a high level of tolerance to most pathotypes of P. griseola except 63.63 and 63.23. This together with the fact that none of the bean differentials was resistant to all pathotypes led us to conclude that the range of pathogenic responses might be conditioned by multigenic interactions between the pathogen and the host. Our results not only provided basic information about the diversity of the causative agent of the disease but it will also help to develop cultivars with enhanced tolerance and/or resistance to the disease.  相似文献   

10.
以26份北方白菜型冬油菜为材料,通过观察记载冬前植物学性状、测定半致死温度(LT50),分析冬油菜春播后的春化率与抗寒性的关系,并利用筛选出的SRAP、SSR和InDel标记对参试材料进行聚类和遗传多样性分析。结果表明,白菜型冬油菜植物学性状具有丰富变异,遗传多样性指数Simpson(D)变化范围为0.011~0.847,Shannon-Weaver(H)变化范围0.035~2.046,其中数值型性状叶柄长度的遗传多样性指数最大,非数值型性状生长习性的遗传多样性指数最小。参试材料春化率为6.59%~69.88%,半致死温度-3.52~-9.93℃。相关性分析表明,春化率与LT50呈极显著正相关(P≤0.01),与生长习性呈显著正相关(P≤0.05),与叶色呈极显著负相关(P≤0.001)。遗传多样性分析表明,26份白菜型冬油菜共筛选出27对引物,共检测总等位基因数130个,有效等位基因数(Ne)平均为3.14,香农指数(I)平均为1.2073,Nei’s基因多样性指数(H)平均为0.6168,多态性信息含量(PIC)平均为0.5681。聚类和...  相似文献   

11.
油菜和小麦种苗根系对乙草胺的耐性差异分析   总被引:1,自引:0,他引:1  
为揭示油菜和小麦根系对乙草胺耐药性差异的原因,采用水培法研究了梯度浓度乙草胺对油菜和小麦种苗根系形态、根尖生理代谢和解剖结构的影响。结果表明,1 mg/L乙草胺对油菜根长抑制率为33.63%,而对小麦根长抑制率可达55.22%;100 mg/L乙草胺对油菜侧根抑制率为63.03%,而对小麦侧根抑制率达100.00%;经0.01 mg/L乙草胺处理后的油菜根尖细胞膜透性高于小麦,当乙草胺浓度高于0.1 mg/L后,小麦根尖细胞膜透性剧烈增加且高于油菜;在较高浓度乙草胺胁迫下,小麦根尖抗氧化酶活性均低于油菜;10 mg/L乙草胺处理下,小麦根尖的解剖结构变异较油菜明显,表现为细胞排列松散、混乱,根冠变形,分生组织细胞染色程度变浅,伸长区细胞分化提前,中柱鞘细胞木质化。研究表明,小麦的根系建成比油菜更容易受乙草胺抑制,且侧根数比根长更敏感;油菜和小麦对乙草胺耐药性差异可能与细胞膜透性、抗氧化酶活性以及根尖细胞组织分化等差异有关。  相似文献   

12.
为有效控制小菜蛾的危害,明确绿薄荷对小菜蛾的防治效果,采用95%乙醇对绿薄荷茎和叶进行索式抽提,并测定了茎和叶提取物12.5、25.0和50.0 mg/mL浓度下小菜蛾幼虫的拒食率和成虫产卵忌避活性。结果显示,绿薄荷茎和叶的乙醇提取物对小菜蛾幼虫的拒食和成虫的产卵忌避均有显著作用,提取物浓度越高,拒食率和产卵忌避率越大。当茎和叶提取物浓度为12.5 mg/mL时,小菜蛾的拒食率最低,分别为36.16%和59.81%,产卵忌避率最低,分别为46.18%和57.78%;茎和叶提取物浓度为50.0 mg/mL时,拒食率最高,分别为82.67%和87.15%,产卵忌避率最高,分别为88.29%和98.27%。茎和叶对应的拒食中浓度(AFC_(50))最高分别为18.93 mg/mL和15.97 mg/mL,产卵忌避中浓度(AOC_(50))最高分别为16.38 mg/mL和15.03 mg/mL。  相似文献   

13.
抗坏血酸过氧化物酶(Ascorbate peroxidase, APX)是植物活性氧代谢中重要的抗氧化酶之一,在植物抵抗氧化胁迫方面发挥重要作用。利用生物信息学方法对芹菜基因组中的APX基因家族成员进行鉴定和分析,并通过实时荧光定量PCR(quantitative real\|time PCR, qRT-PCR)验证分析AgAPXs在高温胁迫下的表达情况,为开展芹菜APX基因参与高温胁迫调控机制提供依据。结果表明:芹菜基因组中共有9个APX基因,随机分布在5个染色体上,并出现了基因片段复制现象;大多数基因被定位在细胞质中。系统发育分析表明,AgAPX基因家族可分为3个亚族,同一亚族中的成员具有相似的基因结构和基序。启动子顺式元件分析表明,大多数AgAPX基因含有多种与生长发育、植物激素和逆境胁迫相关的顺式元件。高温胁迫下,芹菜APX活性提高。qRT-PCR分析表明,AgAPXs在不同时间的高温处理下表达具有显著差异,并与转录组表达丰度相一致,AgAPX2AgAPX3AgAPX4AgAPX5AgAPX7的表达量和APX活性具有显著相关性,推测AgAPXs可能参与了芹菜抵御高温的调控过程。本研究初步鉴定并提供了芹菜APX基因家族成员信息,为今后进一步探索芹菜APX基因功能提供了重要的研究基础。  相似文献   

14.
亚洲小车蝗Oedaleus asiaticus Bei-Bienko是我国北方草原和农牧交错区的主要害虫。为评价内蒙古地区亚洲小车蝗种群的遗传多样性和遗传分化,应用ISSR标记方法对内蒙古15个亚洲小车蝗种群遗传多样性及遗传分化进行了分析。结果表明,7条引物扩增出85条ISSR条带,均为多态性条带。多态性比例(P)、Nei''s遗传多样性指数(H)和香农多样性指数(I)分别为82.59%、0.2319和0.3421,表明亚洲小车蝗种群具有较高的遗传多样性。基因流(Nm)和基因分化系数(Gst)分别为1.2298和0.3352,表明亚洲小车蝗不同地理种群具有明显的遗传分化。遗传距离与地理距离呈极显著正相关关系。表明地理距离和地形差异可能是形成亚洲小车蝗种群遗传分化的主要原因。  相似文献   

15.
SAUR(Small auxin-up RNA)是生长素早期响应逆境胁迫的基因,本文研究白菜型油菜全基因组中SAUR家族的信息,分析了该家族成员的基本特征。以强抗寒性白菜型冬油菜品种陇油7号(L7)和弱抗寒性冬油菜品种陇Lenox(X)为试验材料,采用低温和干旱处理,应用荧光定量技术分析不同基因在不同品种中的表达特性,筛选差异表达基因,为研究生长素早期应答基因调控白菜型冬油菜生长点发育机理提供支撑。结果表明:白菜型油菜的BraSAUR基因共有142个,在10条染色体中不对称分布,主要分布在2、3号染色体上,基因长度较短,且大多数基因没有内含子。qRT-PCR结果表明,低温处理后,与CK相比,在两个品种的叶片中,Bra029452的表达量变化趋势不同,24 h时在L7中的表达量是X的24倍,在生长点中,Bra010501在L7中24 h时表达量达到CK的4倍,而在X中是先增加后降低的趋势。模拟干旱胁迫后,Bra029452在L7的叶片中的表达量均显著高于CK,在X中则是逐渐降低,在L7的生长点中1 h和24 h表达量均高于CK,但在X中则表现为先降低后升高。低温胁迫和干旱胁迫条件下,Bra029452基因表达量在强抗寒性油菜品种L7的叶片及生长点中均逐渐升高,可推断该基因同时参与白菜型冬油菜耐受低温、干旱的调控过程。  相似文献   

16.
为筛选用于我国禾谷缢管蚜种群遗传学研究的微卫星位点,从8个省(市)共9个地区采集282头试虫,采用微卫星PCR产物荧光标记与自动扫描分型方法,研究了8个欧洲禾谷缢管蚜微卫星位点在试虫个体中的扩增稳定性和遗传多样性。结果显示:位点R1.35在9个种群中均不能扩增;位点R5.29b只在7个种群的少数样本中能扩增;位点R2.73、R3.171、R5.10、R5.138、R5.50和R6.3在各种群中均能稳定扩增,这6个位点的无效等位基因频率为0.0044~0.2663,平均等位基因数为2.9~9.3个,观测杂合度为0.047~0.912,其中位点R6.3具有较低的观测杂合度(0.047)和等位基因数(2.9),不适合用于种群遗传多样性研究,而位点R2.73、R3.171、R5.10、R5.138和R5.50均具有较高的杂合度和等位基因数,可用于我国禾谷缢管蚜的种群遗传学研究。  相似文献   

17.
虎耳草[Saxifraga stolonifera(L.)Meerb.]又名金线吊芙蓉、石荷叶等,是虎耳草科多年生的双子叶草本植物,产于贵州、江苏、浙江等地[1].虎耳草具有较高的药用价值,有清热、祛湿消肿等功效[2].从虎耳草中分离得到具有药效成分的就有岩白菜素[3]、没食子酸、槲皮素等[4].虎耳草提取组分还具抑菌...  相似文献   

18.
为查明西藏小麦条锈菌Puccinia striiformis f. sp. tritici群体结构和遗传多样性,采用中国鉴别寄主和近等基因系鉴别寄主,以及竞争性等位基因特异性PCR-单核苷酸多态性(kompetitive al-lele specific PCR-single nucleotide polymorphism,KASP-SNP)分子标记对2017年采自西藏的150个小麦条锈菌菌系分别进行表型分析和基因型分析。表型分析结果显示,中国鉴别寄主将150个菌系区分为 12 个已知小种、6 个已知致病类型和 13 个未知致病类型,所有菌系均不能侵染中四和Triticum spelta album鉴别寄主。近等基因系鉴别寄主将150个菌系区分为88个毒性类型,这些毒性类型均不侵染携带抗性基因Yr5Yr10Yr15的品种。基因型分析结果显示,26对引物将150个菌系划分为73个基因型,表明西藏小麦条锈菌群体基因型丰富。基因流分析结果表明,波密县与洛扎县小麦条锈菌亚群体之间的基因流Nm最高,达5.86,米林县西部与波密县、洛扎县、巴宜县、米林县东部条锈菌亚群体之间的Nm较低,分别为0.25、0.34、0.42和0.67,表明西藏不同地区条锈菌群体之间基因交流强度差异较大。说明西藏作为我国小麦条锈病的独立流行区,条锈菌群体毒性结构复杂,遗传多样性高。  相似文献   

19.
为了解新疆不同地区葡萄霜霉病菌Plasmopara viticola的遗传特征,分别采用叶盘接菌法及SSR分子标记技术对采自新疆吐鲁番、阿克苏、石河子等11个不同产区的葡萄霜霉病菌菌株的致病性进行测定,并分析各菌株的遗传多样性。结果显示,来自新疆不同地区的菌株种内存在着致病性分化现象,依据其在鉴别寄主上致病性的差异,将供试菌株划分为强、中、弱3类,其中强致病性菌株为优势菌株,且种间致病性分化与菌株的地理来源无关;SSR标记结果表明,供试菌株之间存在遗传变异现象,并且菌株之间亲缘关系都较近,在相似系数为0.93时,48株菌株聚为4大类,且遗传分化与地理分布具有一定的相关性。研究表明新疆不同地区的葡萄霜霉病菌菌株之间存在致病性分化与遗传变异现象。  相似文献   

20.
为研究北方白菜型冬油菜花冠直径与千粒重及含油量之间的相关性,以20份不同的白菜型冬油菜为材料,测定花器大小、农艺性状、种子含油量及蛋白质含量,并对控制花器特征基因mf6、apetala和myb进行实时荧光定量PCR分析。结果表明:花冠直径受雌蕊直径影响较大,主成分分析提取的3个主成分可综合为花器各性状长度、雌蕊直径和花器各性状宽度;以花冠直径为指示性状,将20份白菜型冬油菜花冠划分为3类群;相关性分析表明,花冠直径与千粒重呈极显著正相关,相关系数0.663;千粒重与含油量呈极显著正相关,与蛋白质含量呈显著负相关。相较于小花,mf6在大花中相对表达量上调了151.63%,而apetala和myb分别下调了83.80%和72.70%。北方白菜型冬油菜品种间花器大小存在显著差异;在育种中可通过增加花冠直径来提高千粒重,进而增加油菜产油量,培育高含油量白菜型冬油菜品种。mf6、apetala和myb基因对白菜型冬油菜花器生长发育均具有一定调控作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号