首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distribution coefficients of Cd, Co, Ni, and Zn in soils   总被引:17,自引:0,他引:17  
Batch adsorption experiments were conducted with a mixture of solutes at low equilibrium concentrations of Cd (0.7-12.6 μg1−1), Co (18-118μg1−1, Ni (22-330 μg 1−1), and Zn (40-1480 μg1−1) in 38 different soils. Statistical correlations indicated that metal sorption onto the soils was influenced by the presence of clays and hydrous oxides of Fe and Mn. Based on calculated distribution coefficients for these metals, Co will generally exhibit the highest mobility in soils, but the mobility of Zn will increase faster with decreasing pH. Two types of empirical relationships are developed from these data to estimate values for the distribution coefficients.  相似文献   

2.
Solubility control of Cu, Zn, Cd and Pb in contaminated soils   总被引:21,自引:0,他引:21  
We developed a semiempirical equation from metal complextion theory which relates the metal activity of soil solutions to the soil's pH, organic matter content (OM) and total metal content (MT). The equation has the general form: where pM is the negative logarithm (to base 10) of the metal activity, and a, b and c are constants. The equation successfully predicted free Cu2+ activity in soils with a wide range of properties, including soils previously treated with sewage sludge. The significant correlation of pCu to these measured soil properties in long-contaminated soils suggests that copper activity is controlled by adsorption on organic matter under steady state conditions. An attempt was made from separate published data to correlate total soluble Cu, Zn, Cd and Pb in soils to soil pH, organic matter content and total metal content. For Cu, the total Cu content of the soil was most highly correlated with total soluble Cu. Similarly, total soluble Zn and Cd were correlated with total metal content, but were more strongly related to soil pH than was soluble Cu. Smaller metal solubility in response to higher soil pH was most marked for Zn and Cd, metals that tend not to complex strongly with soluble organics. The organic matter content was often, but not always, a statistically significant variable in predicting metal solubility from soil properties. The solubility of Pb was less satisfactorily predicted from measured soil properties than solubility of the other metals. It seems that for Cu at least, solid organic matter limits free metal activity, whilst dissolved organic matter promotes metal solubility, in soils well-aged with respect to the metal pollutant. Although total metal content alone is not generally a good predictor of metal solubility or activity, it assumes great importance when comparing metal solubility in soils having similar pH and organic matter content.  相似文献   

3.
Ageing reactions can reduce trace metal solubility and can explain natural attenuation of contaminated soils. We modelled ageing reactions in soil with an assemblage model that considers slow reactions in Fe‐oxyhydroxides and reversible sorption on organic matter and clay minerals. Metal adsorption kinetics on Fe‐oxyhydroxides was obtained from data with synthetic oxyhydroxides. Metal solubility and isotopic exchangeability data were obtained from 28 soils amended with Ni, Zn, Cu and Cd metal salts and monitored for 850 days. The assemblage model was constructed in WHAM 6.0 and used soil properties and dissolved organic matter as input data. The model was first validated to predict dissolved metal concentrations, based on the concentration of isotopic exchangeable metals. The model overestimated metal solubility without parameter adjustment by mean factors of 4–7, and successful fits were obtained by increasing the specific surface area of Fe‐oxyhydroxides from measured values of synthetic systems to a value of 600 m2 g?1 recommended by other authors. The effect of ageing on the isotopic exchangeable metal fraction was subsequently modelled starting from the predicted fraction of metals present on Fe‐oxyhydroxides immediately after soil spiking. The observed isotopic exchangeable metal fractions of Ni, Zn and Cd agreed reasonably well with predicted values. The model predicts that ageing reactions are more pronounced at higher pH because metal sorption is increasingly directed to oxyhydroxide surfaces with increasing soil pH. Modelling fixation of Cu requires more information on fixation of that metal in organic matter.  相似文献   

4.
The monitoring of heavy metal deposition onto soils surrounding old Pb-Zn mines in two locations in the UK has shown that relatively large amounts of Cd, Pb, Zn and, in one case, Cu are entering the soil annually. Small particles of ore minerals in windblown mine tailings were found to be contributing up to 1.46 g m?2 yr?1 of Pb, 1.41 g m?2 yr?1 of Zn and 0.027 g m?2 yr?1 of Cd. However, when these inputs from bulk deposition are compared with the concentrations of the same metals within the soil profiles it is apparent that relatively little long-term accumulation is occurring. Metals are being lost from the soil profiles, probably through leaching. A calculated relative retention parameter gave values that ranged from 0.01 to 0.17 for Cd, 0.11 to 0.19 for Zn, 0.32 to 0.63 for Cu and over 1 for Pb. These relative retention values were found to follow the order of electronegativity of the elements concerned: Pb>Cu>Zn>Cd. Distribution coefficient (Kd) values quantifying the adsorptive capacity of the mine soils for Cd and Pb showed marked differences for the two metals (12 to 69 cm3 g?1 for Cd and 14 to 126 cm3 g?1 for Pb) and may, in part, account for the two to one hundred-fold variation in the relative retention parameter for the different metals within these soils.  相似文献   

5.
This study investigated the effect of different farming practices over long time periods on the sorption‐desorption behavior of Cu, Cd, and Zn in soils. Various amendments in a long‐term field experiment over 44 y altered the chemical and physical properties of the soil. Adsorption isotherms obtained from batch sorption experiments with Cu, Cd, and Zn were well described by Freundlich equations for adsorption and desorption. The data showed that Cu was adsorbed in high amounts, followed by Zn and Cd. In most treatments, Cd ions were more weakly sorbed than Cu or Zn. Generally, adsorption coefficients KF increased among the investigated farming practices in the following order: sewage sludge ≤ fallow < inorganic fertilizer without N ≈ green manure < peat < Ca(NO3)2 < animal manure ≤ grassland/extensive pasture. The impact of different soil management on the sorption properties of agricultural soils for trace metals was quantified. Results demonstrated that the soil pH was the main factor controlling the behavior of heavy metals in soil altered through management. Furthermore, the constants KF and n of isotherms obtained from the experiments significantly correlated with the amount of solid and water‐soluble organic carbon (WSOC) in the soils. Higher soil pH and higher contents of soil organic carbon led to higher adsorption. Carboxyl and carbonyl groups as well as WSOC significantly influenced the sorption behavior of heavy metals in soils with similar mineral soil constituents.  相似文献   

6.
Abstract

Three thermal power plants in Serbia, Croatia and Bosnia of the Western Balkan region were expected to be metal polluting sources, and this study was performed to investigate the bioavailability and chemical speciation of trace metals in soils and soil water extracts, respectively. Surface (0–15 cm) soil samples along with maize and grass samples were collected at a gradient from the pollution source. The chemical speciation of metals was conducted using the Windereme Humic Aqueous Model (WHAM)/Model VI for water, whereas the Diffusion Gradient in Thin Films (DGT) technique was used to estimate plant availability. The chemical speciation indicated that more than 99% of all four metals in soil water extracts were complexed to fulvic acid. This is connected to relatively high soil pH (> 6.5) and high contents of soil organic matter in these soils. The accumulation of trace metals by DGT was not correlated to plant uptake. This is connected to the very low partitioning of free ions in solution, but also to the low variation in metal solubility and metal concentration in plant tissue between sites. In spite of active thermal power plants located in the areas, hardly any differences in concentration of soil metals between sites were seen and the partition of metals in soil waters was insignificant. The latter indicates that these soils have a large metal-retaining capacity. The only significant soil chemical variable affecting the variation in metal solubility was the soil pH. In a time with large infrastructure and industrial expansion in these areas, this investigation indicates the importance of protecting these high-quality soils from industrial use and degradation. High industrial activity has so far had insignificant effect on soil quality with respect to bioavailability of trace metals in these soils.  相似文献   

7.
A field study was conducted to determine the plant uptake of metals in soils amended with 500 Mg ha?1 of municopal sewage sludge applied 16 yr previously. Results showed that metals were available for plan uptake after 16 yr, but that liming greatly reduced the plant availability of most metals. The application of sludge also resulted in high rates nitrification and subsequent lowering of the soil pH before the uptake study was started. The sludge-amended soil (a mesic Dystric Xerochrept) was adjusted with lime one month prior to planting from an unlimed pH of 4.6 to pH 5.8, 6.5 and 6.9. Food crops grown were: (i) bush bean (Phaseolus vulgaris L. cv. Seafarer), (ii) cabbage (Brassica oleracea L. v. capitata L. cv. Copenhagen market), (iii) maize (Zea mays L. cv. FR37), (iv) lettuce (Lactuca sativa L. cv. Parris Island, (v) (Solanum tuberosum L. cv. (vi) tomato (Lycopersicum esculentum L. cv. Burpee VF). With the exception of maize, yields were significantly reduced in the unlimed sludge-amended soil. However, liming increased yields above the growth level of the unlimed untreated soil for cabbage, maize, lettuce, potato tuber and tomato fruit. Soluble and exchangeable of Cd. Ni and Zn were also reduced after liming the sludge-amended soil. In both limed and unlimed soils, the majority of the soil Cu was found in insoluble and unavailable soil fractions. To evaluate trace metal uptake, the edible portion of each crop was analyzed for Cd, Cu, ni and Zn. Liming redoced uptake of Cd, Ni and Zn in most crops, but generally did not change Cu, This study shows the benefit of pH adjustment in reducing relative solubility and plant uptake of metals as well as increasing crop yield in acid soils.  相似文献   

8.
The literature on the fluxes of six heavy metals in temperate forest ecosystems is reviewed. Special attention is given to wet and dry deposition and internal flux, to metal budgets for ecosystems and soils, to concentrations in aqueous compartments of the ecosystem and to speciation in soil solutions. Metal fluxes are discussed in relation to pollution load, soil type, tree species and land use. The mobility of Cu and Pb is strongly dependent on the solubility of organic matter. These metals are commonly accumulated in forest soils. Zinc, Cd and Ni are greatly influenced by soil acidity and are often lost in considerable amounts from acidified soils. Chromium is often at balance in forest ecosystems. Implications for metal solubility and budgets in forest soils are discussed in connection with an increase in soil acidification.  相似文献   

9.
Journal of Soils and Sediments - Heterogeneity of soil mineral particles may lead to the misinterpretation of bulk sorption data on their role in metal sorption, which may be resolved through the...  相似文献   

10.
Trace metals are present in the soil matrix in different forms, and this obscures the relationship between the amounts of metals, their biological availability and effects. Chemical methods have been devised to directly measure the biological available pools of trace metals, but such methods need to be validated against measured exposure of organisms in the soil. We studied acquired Zn- and Cd tolerance of the soil microbial community as a reporter of its exposure, and compared it with chemical determination of Zn and Cd in 10 soils differing in pH, organic matter content, texture, vegetation-/cultivation history and metal contamination. The tolerance was measured as LC50 (i.e. the metal concentration which inhibits 50% of the activity) in suspensions of extracted soil bacteria, by measuring the incorporation rate of [3H] thymidine at different metal concentrations. Chemical determination of Cd and Zn in soils included total concentrations by aqua regia extractions (AR), and total concentrations in extracted pore water (PW). In addition was the ‘effective concentration’ (CE) determined using the Diffusion Gradients in Thins films method (DGT). The LC50 values correlated better with PW (r2=0.90 for Cd and r2=0.97 for Zn) and CE (0.90 for Cd and 0.98 for Zn) compared to the correlation with AR (0.72 for Cd and 0.82 for Zn). After excluding a single extremely contaminated soil from the analysis, the correlation of LC50 with AR was much poorer (r2=0.03 (ns) for Cd and r2=0.48 for Zn), whereas correlations remained significant for both PW (0.90 for Cd and 0.87 for Zn) and CE (0.54 for Cd and 0.84 for Zn). In conclusion, PW fraction of Cd and Zn appear to be the best predictor of trace metal exposure of the soil microorganisms.  相似文献   

11.
To investigate Cd, Zn, Cu and Pb adsorption in acidified forest soils, six soil samples of the aluminium buffer range were selected and analyzed for their physical and chemical properties. Determination of the specific surface area using ethylene glycol monoethyl ether (EGME) adsorption yielded a characteristic value of the solid phases, which can parameterize the major properties of the various soil constituents with sufficient accuracy.

Traditional adsorption isotherms reveal the relation between the amount of a heavy metal adsorbed and the heavy metal concentration in the soil solution only for the soil under study and can therefore not be applied to other soils. To meet the aim of modelling heavy metal adsorption and mobility also for soils differing greatly in their properties, it was attempted to establish a generalizing adsorption isotherm for soils of entirely different composition of the solid phase. The generalizing adsorption density isotherms introduced in the following provide a useful mathematical model for the quantity/intensity relation of heavy metals in soils that differ greatly in their specific surface area and their composition.

It is also shown that limit values which take into account the major quantities influencing heavy metal adsorption and mobility in acid soils can be established from the regression equation between the adsorption density of a heavy metal (ions/m2 specific surface area) and its concentration in the soil solution. In particular in view of the groundwater contamination to be expected if acid rain and, as a result, soil acidification continues, these limit values seem to provide considerably more information than the European limit values, given in mg heavy metal /kg soil, which are presently valid for any soil condition and property.  相似文献   

12.
为增加粮食可食用部分有益元素的浓度,同时减少有毒重金属元素的含量,需要更好地了解元素在植株和籽粒内的运输和分布。在温室盆栽条件下,以春小麦为供试材料,设置对照(不添加重金属)和重金属复合处理(同时添加铜、锌、镍、镉,以不影响小麦生长为前提),研究锌(Zn)、铜(Cu)、镍(Ni)、镉(Cd)在成熟植株和籽粒不同部位的分布特点。结果表明,重金属复合处理对小麦成熟期籽粒和秸秆产量、收获指数以及粒重均无显著影响,但使小麦各器官重金属浓度均显著增加,增幅因不同器官和不同元素而异,籽粒中Zn、Cu、Ni和Cd浓度分别增加1.8、0.5、48.1倍和45.3倍。重金属复合处理还显著改变了Zn和Ni在地上部各器官中的分配模式:对照小麦吸收的Zn更易向生殖器官中转运,处理植株则更多地滞留在营养器官中,而Ni呈相反的趋势。激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)对籽粒糊粉层和胚乳的定量分析表明,重金属复合处理使糊粉层Zn和Cu浓度仅增加了78%和86%,而糊粉层Ni和Cd浓度分别增加了30倍和121倍。重金属复合处理使胚乳Zn和Cu浓度分别增加了49%和48%,使Ni和Cd浓度均超出小麦标准中Ni和Cd的最大允许浓度(对照籽粒胚乳中没有检验到Ni和Cd)。以上结果表明,在小麦生物强化实践中,在增加有益营养元素(如Cu和Zn)的同时亦存在有毒重金属(如Ni和Cd)超标的巨大风险。  相似文献   

13.
This work describes simultaneous determination of Zn, Cd, Pb and Cu in soil extract by d. c. anodic stripping voltammetry at the hanging mercury drop electrode. Soil samples were taken from six different areas characterized by different degrees of heavy metal pollution. The metals were extracted from the soil samples using 0.5 M HCI. The base electrolyte for ASV was 0.2 M acetic buffer at pH 5.0. These results are compared with those obtained by using atomic absorption spectrophotometric method. The accuracy and precision of the presented method are satisfactory (relative standard deviation is 3.5 to 11%). Iron, Al and Ti contained in the extract in the concentration of 1120, 5400, and 480 µg g?1, respectively, do not present measurement difficulties.[/p]  相似文献   

14.
The influence of vegetational background on binding of selected heavy metals in humus was examined. For this purpose samples of terrestrial humus from surface soil layers with different vegetational background, such as spruce, pine and oak forests, and different types of mires were studied with respect to differences in binding of Cd, Cu, Pb and Zn. The metal binding capacity was examined at different pH using batch extractions. The results indicated that vegetational background influences the binding of metals in organic soil significantly. Drying and storage of the soil samples appeared not to affect the metal binding capacity of the soils. Neither did heating of the samples at 100 °C or incubation at constant temperature and moisture affect the binding significantly, indicating that any fungi or soil microorganisms present did not appreciably affect the metal binding in these soils.  相似文献   

15.
以中国科学院桃源农业生态实验站的长期田间定位试验为基础,研究了16年长期定量施肥对土壤Cd、Pb、Cu和Zn积累及其有效性的影响。结果表明:单施化肥可使土壤Cd含量降低、Pb含量增加,对Cu和Zn的积累无显著影响,水稻收获时的移出效应可能是Cd含量降低的主要原因;与单施化肥相比,有机物料循环可提高土壤Cd和Pb的积累,但对Cu和Zn的积累无显著影响。试验期内单施化肥对土壤Cd、Pb、Cu和Zn的有效性无显著影响;有机物料循环可显著提高Cd和Zn的有效性,这与有机物料循环引起的土壤有机质含量增加和pH降低有关。  相似文献   

16.
Forms of Cu, Ni, and Zn in the contaminated soils of the Sudbury mining/smelting district were studied to assess metal mobility and plant availability. Soil, tufted grass (Deschampsia caespitosa (L.) Beauv.), tickle grass (Agrostis scabra Willd.), dwarf birch (Betula pumila L. var. glandulifera Regel) and white birch (Betula paprifera Marsh.) leaf and twig samples were taken from 20 locations around three Cu-Ni smelters. The sampling sites were collected to cover a wide range of soil pH and soil Cu and Ni concentrations. The water-soluble, exchangeable, sodium acetate-soluble, and total concentrations of the metals in the soils were analyzed. The soils were contaminated with Cu and Ni up to 2000 µg g?1. Zinc concentrations were also elevated in some samples above the normal soil level of 100 µg g?1. The mobility of Cu and Zn, expressed as the proportion of metals in Fl and F2 forms, increased with soil pH decrease. A strong positive correlation was found between the soil exchangeable (F2) Ni and the soil pH. Concentrations of Cu and Ni in birch twigs showed a good linear relationship with exchangeable forms of the metals in soils. A highly significant correlation was also found between total Ni in soils and the metal content of the twigs. No significant correlation was found between Zn concentrations in the soils and plants. Birch twigs are a good indicator (better than leaves) of Cu and Ni contamination of the Sudbury soils. The mobile forms of Cu and Ni and low pH seem to be the main factors that will control the success of revegetation. Strong variability of the soil metal mobility requires any reclamation effort be site-specific.  相似文献   

17.
This study examined the fixation pattern and kinetics of plant-available [diethylene triamine pentaacetic acid (DTPA)-extractable] copper (Cu), as well as basic soil properties that influence Cu availability in selected semi-arid soils. Soil samples from six different series were used and data obtained from Cu extraction experiments fitted to various kinetic models. Soils were also characterized for a suite of chemical and physical properties. The majority (80%) of the plant-available Cu fixed over the experimental period of 90 d occurred within the first 14 d. The amount of plant-available Cu fixed within the first 14 d tended to be influenced by the combination of organic matter (OM) and pH. The total amount of Cu fixed at the end of the experimental period of 90 d was influenced by pH and a combination of pH and calcium carbonate. The fixation of plant-available Cu over the experimental period was better described by the power function model [R2 = 0.90, Standard Error (SE) = 0.099] but poorly by the other models (R2: 0.58 to 0.59), while reactions within the first 35 d were better described by the second-order model (R2 = 0.98, SE = 0.008), suggesting a different fixation pattern. Findings from this study provide a basis for a more mechanistic approach to evaluating and comparing the fixation of Cu micronutrient compounds in these semi-arid soils for more scientific management decision making.  相似文献   

18.
利用盆栽试验对胡萝卜在不同浓度Cd/Zn及Cd/Zn/Ni复合作用下的重金属吸收效应进行了研究。结果表明,在Cd/Zn/Ni和Cd/Zn复合污染条件下,胡萝卜茎叶和块茎干重与对照土壤比较均受到显著影响(P<0.05),尤其是含Ni组合,在Ni浓度达到250 mg·kg-1后,胡萝卜块茎和茎叶生物量都锐降(P<0.01)。对比不同剂量下两组合富集系数(EF)和转运系数(TF)的结果发现,含Ni组合中, Cd、Zn、Ni 3种重金属在不同迁移界面以及不同浓度水平时的活性不同:在土壤-胡萝卜块茎迁移界面,当土壤中Cd、Zn、Ni浓度分别在0.35~1.8、50~300 mg·kg-1以及60~250 mg·kg-1之间时,活性大小为Cd〉Zn〉Ni;当其浓度分别达到3.5 mg·kg-1(Cd)、600 mg·kg-1(Zn)以及500 mg·kg-1(Ni)时,活性大小变为 Zn〉 Ni 〉Cd ;而在胡萝卜块茎-茎叶界面,Cd的活性在任何浓度水平下始终最大,当Zn、Ni浓度分别在50~180 mg·kg-1以及 60~170 mg·kg-1之间时,活性大小为Zn>Ni ,但在此浓度之后Ni的作用突显,活性大小变为Ni>Zn。非含Ni组合中,在两迁移界面和不同浓度水平下,两种重金属的迁移能力始终为Cd>Zn。此外,在碱性较高的绿洲灌淤土中,Cd、Zn、Ni之间的交互作用表  相似文献   

19.
Cadmium, Ni and Zn ions in aqueous solution were allowed to react with clay fractions (< 2 μm) separated from soils with a wide range of mineralogical composition and properties. Sorbed metals were separated into two components, termed specifically and non-specifically bound, by a controlled washing procedure using 10?2M Ca(NO3)2.Sorption reactions were characterized by Δ pH50 values, by shapes of adsorption curves, and by measuring separation factors and distribution coefficients under prescribed conditions. Three reaction types were identified, viz., (i) those associated with soil adsorbing surfaces dominated by iron oxides; these appear to be controlled by mechanisms which involve metal-ion hydrolysis and result accordingly in relative sorption affinities of Zn > Ni > Cd; (ii) those associated with organic surfaces for which metal-ion hydrolysis was of little significance and little difference in metal-ion affinity was evident; at lower pH-values, Cd and Ni were somewhat preferred over Zn, with the converse at higher pH-values; (iii) those associated with 2:1 layer lattice silicates which exhibit greater preference for Zn, i.e., Zn >> Ni, Cd and higher affinities for each metal at lower pH-values (< 5) than is shown by clays dominated by iron oxides. There was also evidence of greater relative affinity for Ni shown by clay fractions dominated by fine kaolinites when compared with other clays.This investigation has shown that a range of sorption processes are involved in reactions of heavy metals with soils. We caution against undue emphasis on any particular sorption process in developing theoretical sorption models as a basis of understanding and solving problems connected with pollution and plant nutrition; we also stress the need for studies with colloids separated from soils in conjunction with those using synthetic adsorbents as models for soil constituents.  相似文献   

20.
Mining activities are related to relevant environmental pollution issues that should be controlled. We used sequential extractions to fractionate Cd, Cu, Ni, Pb and Zn retained on unamended or mussel shell‐amended mine soil samples, all of them treated with a mixture of the five heavy metals (total metal concentration of 1·57 mmol L−1), after 1, 7 and 30 days of incubation. In addition, we used the stirred flow chamber technique to study the release of each of the five heavy metals from these different unamended and shell‐amended soil samples. The results indicate that the shell amendment caused a decrease in the most soluble fraction, while increasing the most recalcitrant (least mobile) fraction. With equivalent implications, the stirred flow chamber experiments showed that mussel shell amendment was associated to a decrease in heavy metal release and increased retention. The highest mussel shell dose and incubation time caused the most relevant changes in pH values and thus in metal retention, also indicating the importance of pH modifications in the mechanism of retention acting in the amended samples. In view of these results, the use of mussel shell amendment can be encouraged to increase heavy metal retention in acid mine soils, in order to minimise risks of environmental pollution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号