首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. Most freshly-matured seeds of Thlaspi arvense L. (Brassicaceae) were dormant at maturity in May. Seeds sown on soil germinated in autumn and spring, but mostly in autumn. Buried seeds exhumed at monthly intervals and tested in light and darkness over a range of thermoperiods exhibited annual dormancy/non-dormancy cycles. However, the dormant period was short, usually only in April, but sometimes May, and in some years 1–6% of the seeds remained conditionally dormant. After-ripening occurred during summer, and seeds were non-dormant during autumn. Seeds entered conditional dormancy in winter and dormancy in late winter or early spring. When buried dormant seeds were kept at 25/15, 30/15 or 35/20°C for 12 weeks, they gained the ability to germinate to 95–100% at 15/6, 20/10, 25/15, 30/15 and 35/20°C. After burial for 12 weeks at 15/6 and 20/10°C, seeds germinated to 80–100% at 15/6, 20/10 and 25/15°C. but to only 11–64% at 30/15 and 35/20°C. After 4 weeks at 5°C, initially-dormant seeds germinated to 100% at all thermoperiods except 35/20°C, where only 15% of them germinated. However, after 18 weeks at 5°C, only 0–1% of the seeds germinated at all thermoperiods. Most non-dormant seeds exposed to 1, 5 and 15/6°C for 16 weeks were induced into dormancy; 1–15% entered conditional dormancy and thus germinated only at 15/6, 20/10 and 25/15°C. This study indicates that seeds of winter annual plants of T. arvense are non-dormant in autumn and enter dormancy in winter, while those from summer annuals are dormant in autumn and become non-dormant during winter.  相似文献   

2.
Trials were carried out to investigate the effects of light and temperature on germination of Rumex obtusifolius L. After several months of storage, seeds gradually lost dormancy and became photosensitive. Thermal optima for germination were between 20 °C and 25 °C in light or in darkness. At lower temperatures there was a greater demand for light, so that the greatest differences in germination percentage (between low and high temperatures) were found within the 10–15 °C temperature range. The calculated thermal minima ( x -intercept method) in light and darkness were 8.3 °C and 6.1 °C respectively. Daily temperature fluctuation increased germination even after seed irradiation with far-red light, suggesting a lower demand for the far-red-absorbing form of phytochrome. Seed burial inhibited germination in proportion to depth; however, germination inhibition was independent of seed phytochrome photo-equilibrium, which had been diversified by seed pretreatment with light. Seedlings did not emerge when seeds were buried >8 cm deep. Recovery of ungerminated seeds showed that excessive burial did not impede seedling emergence but rather prevented seed germination. However, this induction of dormancy was lost once germination processes were activated (24–48 h at 20 °C) that made germination irreversible. Temperature was also involved in inhibition, and low temperature (<15 °C) induced the least inhibition. This is discussed in terms of processes of respiration and fermentation in buried seeds.  相似文献   

3.
Seasonal changes in the germination of buried seeds of Monochoria vaginalis   总被引:4,自引:0,他引:4  
CHEN  & KUO 《Weed Research》1999,39(2):107-115
This study investigates the seasonal variation of germination ability of buried seeds of Monochoria vaginalis (Burm.f.) Presl var. plantaginea Solms. The field-collected seeds were buried in a flooded or an upland field and then exhumed monthly. The exhumed seeds were germinated under four temperature regimes. The seeds exhumed from the flooded soil were dormant at the beginning of burial and proceeded into a conditional dormancy/non-dormancy/conditional dormancy cycle throughout the remaining period of the experiment. The seeds exhumed monthly from the non-flooded soil exhibited an annual dormant cycle, which is dormancy/conditional dormancy/non-dormancy/conditional dormancy/dormancy. At day and night temperatures of 25/20 °C, the exhumed seeds from both the flooded and the upland soil resembled each other in terms of seasonal variation of the germination percentage. In September and October, more seeds exhumed from upland soil failed to germinate under higher temperature than from flooded soil. Strictly avoiding exposure to light during seed exhuming and seed testing prevented the seeds from germinating. A short exposure of the exhumed seeds to light during preparation promoted dark germination when the seeds were at the non-dormant stage. The potential implications of our results for weed management strategies in rice production are discussed.  相似文献   

4.
Mimosa pudica (common sensitive plant) is a problematic weed in many crops in tropical countries. Eight experiments were conducted to determine the effects of light, seed scarification, temperature, salt and osmotic stress, pH, burial depth, and rice residue on the germination, seedling emergence, and dormancy of M. pudica seeds. Scarification released the seeds from dormancy and stimulated germination, though the germination of the scarified seeds was not influenced by light. The scarification results indicate that a hard seed coat is the primary mechanism that restricts germination. The germination increased markedly with the exposure to high temperature "pretreatment" (e.g. 150°C), which was achieved by placing non-scarified seeds in an oven for 5 min followed by incubation at 35/25°C day/night temperatures for 14 days. The germination of the scarified seeds was tolerant of salt and osmotic stress, as some seeds germinated even at 250 mmol L−1 NaCl (23%) and at an osmotic potential of −0.8 MPa (5%). The germination of the scarified seeds was >74% over a pH range of 5–10. The seedling emergence of the scarified seeds was 73–88% at depths of 0–2 cm and it gradually decreased with an increasing depth, with no seedling emergence at the 8 cm depth. The rice residue applied to the soil surface at rates of ≤6 t ha−1 did not influence the seedling emergence and dry weight. The information gained from this study identifies some of the factors that facilitate M. pudica becoming a widespread weed in the humid tropics and might help in developing components of integrated weed management practises to control this weed.  相似文献   

5.
The seasonal changes in percentage of dormant seeds of Echinochloa crus-galli in the field were recorded for 4 years. The lots of seeds were wrapped in nylon fabric, buried 20 cm under the grass sward and exhumed at monthly intervals. The proportion of seeds germinating under light conditions at a constant temperature of 25 °C fluctuated between 0% and 96%, with maxima in May–July and minima in September–November. Small between-year differences in the course of summer dormancy induction and its winter termination were probably caused by variation of weather conditions.
Attributes of dormancy innate to seeds after maturation (primary dormancy) and dormancy induced in buried seeds during the summer (secondary dormancy) were compared by investigating the rate of dormancy termination during storage of (a) dry seeds at 25 °C, (b) imbibed seeds at 5°C and (c) in seeds buried under field conditions during October–June. Percentage of germination increased faster in secondary than primary dormant seeds at both constant 25 °C and 5 °C. The seeds with primary and secondary dormancy also differed in the response to `germination pre-treatment', a 10-day exposure of imbibed seeds at 25 °C that causes germination of the non-dormant fraction of seed materials. After this treatment the time to resuming germination in primary dormant seeds was substantially increased, whereas the secondary dormant seeds were much less affected. Annual variation in the proportion of germinable seeds explains the low efficiency of autumn soil cultivation for decreasing reserves of E. crus-galli seeds in the soil.  相似文献   

6.
Seeds of Setaria glauca (L.) Beauv. buried in soil and exposed to natural temperature cycles exhibited seasonal changes in temperature, but generally not light; dark requirements for germination. Seeds were dormant at maturity in late September and October (autumn), and during burial from October to January they entered conditional dormancy, germinating up to ≥60% in light and darkness at daily thermoperiods of 25/15,30/15 and 35/20^C by January. During burial from February to May or June, seeds became non-dormant and germinated up to 68–100% in light and darkness at 15/6,20/10,25/15,30/15 and 35/20^C in May or June. At maximum yearly temperatures in June or July–August, 65–89% of the seeds entered conditional dormancy (germinating at 30/15 and 35/20, but not at 15/6,20/10 and 25/15^C), and the others entered dormancy (not germinating at any thermoperiod). Thus, most buried seeds had an annual conditional dormancy/non-dormancy cycle, but some had an annual dormancy/non-dormancy cycle. Except for seeds buried in 1990 that lost the ability to germinate in darkness at all thermoperiods the first summer of burial, seeds incubated in light and in darkness exhibited the same patterns of seasonal changes in germination responses. Although conditionally dormant and non-dormant seeds germinated to high percentages in darkness in Petri dishes, seedlings were found only in bags of seeds exhumed in April and May 1983, indicating that some factor(s) associated with the burial environment other than darkness prevented germination of buried seeds.  相似文献   

7.
Fresh seeds of Lamium purpureum L. were dormant at maturity, and when buried and exposed to natural seasonal temperature changes they exhibited an annual dormancy/non-dormancy cycle. During burial in summer, fresh seeds and those that had been buried for 1 year afterripened and thus were non-dormant by September and October; light was required for germination. During autumn and winter seeds re-entered dormancy, and during the following summer they became non-dormant again. Dormant seeds afterripened when buried and stored over a range of temperatures, becoming conditionally dormant at low (5, 15/6°C) and non-dormant at high (20/10, 25/15, 30/15 and 35/20°C) temperatures. Conditionally dormant seeds germinated to high percentages at 5, 15/6 and 20/10°C, while non-dormant seeds germinated to high percentages additionally at 25/15, 30/15 and 35/20°C. Low temperatures caused non-dormant seeds to re-enter dormancy, while high temperatures caused a sharp decline in germination only at 30/15 and 5°C. The temperature responses of L. purpureum seeds are compared to those of L. amplexicaule L.  相似文献   

8.
Summary A substantial amount of seed is left in the fields before and during harvest of oilseed rape. Although this crop exhibits little or no primary dormancy, the absence of certain environmental cues that promote germination of imbibed seeds induces secondary dormancy. The work reported investigated the extent to which environmental stress conditions, including osmotic stress, low oxygen stress and anaerobiosis, induce secondary dormancy in oilseed rape, and examined the variation in development of secondary dormancy between and within genotypes. Osmotic stress was most effective in inducing dormancy. Anaerobic treatment produced very few dormant seeds, as did an atmosphere low in oxygen and high in nitrogen. The development of secondary dormancy under osmotic stress varied considerably between and within genotypes. Dormancy ranged from almost zero to about 60% for winter genotypes and about 85% for spring types. Within genotypes, variations occurred between seed lots and years of harvest. Temperature variations affected the percentage of dormant seeds. More dormant seeds were likely to be produced with incubation under water stress at 20 °C than at 12 °C. In winter genotypes, fewer dormant seeds were produced when incubation temperature and germination test temperatures differed. Thus, incubating at 20 °C and 12 °C, followed by germination tests at 20 °C and 12 °C, respectively, produced most dormant seeds. Also, in the winter genotypes, the potential development of secondary dormancy was positively correlated with the pattern and speed of germination of untreated seeds.  相似文献   

9.
Four experiments were conducted to study seed dormancy and germination requirements in Solanum nigrum . In Expt 1, seeds were stratified at different constant and stepwise rising temperatures and their germinability was tested at three germination regimes at weekly intervals. In Expts 2–4, seeds dry stored at 4°C and stratified at 5 and 15°C were tested at constant temperatures, as well as fluctuating temperatures with constant and increasing amplitudes. Results suggest that the rate of dormancy release increased with increasing temperatures ranging from 4.5 to 18.6°C. However, prolonged stratification at higher temperatures caused subsequent induction of dormancy. When tested at constant temperatures, stratified seeds germinated between 18 and 34°C, with the optimum between 26 and 30°C, while dry-stored seeds showed no germination. Fluctuating temperatures, with amplitudes ranging from 5 to 15°C, promoted germination of seeds from all treatments. The dormancy dynamics and germination characteristics of the species will have implications for its survival and establishment. This information can be used to predict time of emergence and, thus, improve control of the species in weed management systems.  相似文献   

10.
Low temperatures may inhibit dormancy break in seeds of winter annuals, therefore it was hypothesized that seeds of Capsella bursa‐pastoris and Descurainia sophia that mature at high latitudes in late summer–early autumn would not germinate until they had been exposed to high summer temperatures. Consequently, germination would be delayed until the second autumn. Most freshly matured seeds of both species collected in August and September in southern Sweden were dormant. After 3 weeks of burial at simulated August (20/10°C) and September (15/6°C) temperatures, 28 and 27%, respectively, of the C. bursa‐pastoris and 56 and 59%, respectively, of the D. sophia seeds germinated in light at 15/6°C. In contrast, in germination phenology studies conducted in Sweden, only a few seeds of either species germinated during the first autumn following dispersal. However, there was a peak of germination of both species the following spring, demonstrating that dormancy was lost during exposure to the low habitat temperatures between late summer and early autumn and spring. Nearly 100% of the seeds of both species subjected to simulated annual seasonal temperature changes were viable after 30.5 months of burial. In the burial study, exhumed seeds of C. bursa‐pastoris were capable of germinating to 98–100% in light at the simulated spring–autumn temperature regime (15/6°C) in both spring and autumn, while those of D. sophia did so only in autumn. In early spring, however, seeds of D. sophia germinated to 17–50% at 15/6°C. Thus, most seeds of these two annual weeds that mature in late summer do not germinate in the first autumn, but they may do so the following spring or in some subsequent autumn or spring.  相似文献   

11.
Omami  Haigh  Medd  & Nicol 《Weed Research》1999,39(5):345-354
Changes in dormancy and viability of Amaranthus retroflexus seeds were examined after placement in pots that were buried in the field. Seeds were placed in woven nylon envelopes on the soil surface or buried at depths of 2.5, 5 or 10 cm. After 1, 3, 6, 9 and 12 months seeds were exhumed and their germinability was tested to assess changes in dormancy and viability. Depletion of seed stocks placed on the soil surface was partly because of in situ germination that did not exceed 21% and did not vary significantly over the 12-month study period. Less germination of buried seeds occurred in situ , and seeds that did not germinate appeared to acquire dormancy. Exhumed seeds germinated readily; germinability was linearly related to the depth of burial, with those retrieved from the surface germinating least. Cyclical changes in germinability occurred during the 12-month burial period, but this influence was identical for seeds buried at all depths. Germinability was greatest after periods with the lowest mean monthly temperatures and least during the hottest periods. The stimulation of remaining ungerminated seeds exhumed at each period, by the addition of ethephon to the germination medium, provided further evidence of a seasonal acquisition of dormancy, and it was concluded that other unknown factors besides cyclical changes in seasonal temperature were responsible. Irrespective of placement, all seeds lost viability at an exponential rate over time. However, the decline was most rapid for those placed on the surface, whereas the loss in viability became less with increased depth of burial. Possible explanations for this adaptation of enhanced survival when buried are discussed.  相似文献   

12.
Spring-produced seeds of Lamium amplexicaule L. were buried in pots of soil in an unheated glasshouse in June 1978, and at 1–2-month intervals, for 27 months, they were exhumed and tested for germination in light and darkness at temperatures simulating those in the habitat from early spring to late autumn. Freshly-matured seeds were dormant, but by autumn 85% or more germinated in light at 15/6, 20/10, 25/15 and 30/15°C but only 7% or less in darkness. During late autumn and winter germination in light decreased at 25/15 and 30/15 °C but not at 15/6 and 20/10 °C, and germination in darkness increased at 15/6 and 20/10 °C. During late winter and early spring germination in light at 15/6 and 20/10 °C decreased, and seeds lost the ability to germinate in darkness. By the second autumn of burial, seeds germinated to near 100% in light at 15/6 to 30/15 °C and to 10–25% in darkness at 15/6 and 20/10 °C. The cycle of germination responses was repeated during the second winter and spring and the third summer of burial. Autumn-produced seeds were dormant when buried in November 1979, but by spring they germinated to 81 and 36% at 15/6 and 20/10 °C, respectively, in light. These seeds afterripened further during summer. The consequence of seasonal changes in germination responses is that (1) seeds can germinate in the habitat in late summer, autumn and spring but not in early- to mid-summer or in late autumn and winter and (2) during both germination seasons, seeds produced during the previous spring(s) and/or autumn(s) can germinate.  相似文献   

13.
NAVIE  PANETTA  MCFADYEN  & ADKINS 《Weed Research》1998,38(5):335-341
Parthenium hysterophorus L. seeds were buried at a depth of 5 cm for periods of 2–24 months to determine their longevity. The majority (73.7%) of these seeds were still viable after 24 months of burial. The remainder could not be recovered (18.0%) or were no longer viable (8.3%). There was a log-linear decline in persistence of germinable seeds over time, which indicated a constant rate of loss and a half-life of about 6 years. Seedling emergence from surface-sown seeds was also studied. Although there was considerable rainfall (31 mm), seedlings did not emerge during the first month of this experiment. In the succeeding 3 months, there was substantial seedling emergence after rainfall, and 51.4% of seeds had germinated by the end of the fourth month. After 5 months had passed, further seedling emergence was not detected, and intact seeds could not be located. These findings suggest that seed incorporation into the soil is important to the long-term persistence of P . hysterophorus seeds. In an initial test of germination, unburied seeds from the same seed lot exhibited a degree of innate dormancy, and this may explain the delayed germination observed in the surface-sown seeds. In the seed burial and recovery experiment, innate dormancy was lost after 2 months of burial in the field, although in situ germination of buried seed remained low for at least 24 months. Therefore, it appears that more than one dormancy mechanism may contribute to the persistence of P. hysterophorus seeds.  相似文献   

14.
Seed dormancy and persistence in the soil seedbank play a key role in timing of germination and seedling emergence of weeds; thus, knowledge of these traits is required for effective weed management. We investigated seed dormancy and seed persistence on/in soil of Chenopodium hybridum, an annual invasive weed in north‐western China. Fresh seeds are physiologically dormant. Sulphuric acid scarification, mechanical scarification and cold stratification significantly increased germination percentages, whereas dry storage and treatments with plant growth regulators or nitrate had no effect. Dormancy was alleviated by piercing the seed coat but not the pericarp. Pre‐treatment of seeds collected in 2012 and 2013 with sulphuric acid for 30 min increased germination from 0% to 66% and 62% respectively. Effect of cold stratification on seed germination varied with soil moisture content (MC) and duration of treatment; seeds stratified in soil with 12% MC for 2 months germinated to 39%. Burial duration, burial depth and their interaction had significant effects on seed dormancy and seed viability. Dormancy in fresh seeds was released from October to February, and seeds re‐entered dormancy in April. Seed viability decreased with time for seeds on the soil surface and for those buried at a depth of 5 cm, and 39% and 10%, respectively, were viable after 22 months. Thus, C. hybridum can form at least a short‐lived persistent soil seedbank.  相似文献   

15.
Freshly matured, seeds of the four summer annuals Ambrosia artemisiifolia, Polygonum pensylvanicum, Amaranthus hybridus and Chenopodium album were buried in soil at (12/12 h) daily thermoperiods of 15/6, 20/10, 25/15, 30/15 and 35/20°C and at a constant temperature of 5°C. After 0, 1, 3 and 5 months, seeds of each species at each temperature were exhumed and tested at a 14-h daily photoperiod at all six temperatures. Fresh seeds of A. artemisiifolia and P. pensylvanicum did not germinate at any temperature, those of A, hybridus germinated to 4 and 64% at 30/15 and 35/20°C, respectively, and those of C. album to 11–20% at 25/15, 30/15 and 35/20°C. Seeds of A. artemisiifolia and P. pensylvanicum, which germinate only in spring, required exposure to low (5, 15/6°C) temperature to after-ripen completely (i.e., to gain the ability to germinate over a wide range of temperatures), and little or no after-ripening occurred at high (25/15, 30/15 and 35/20°C) temperatures. Seeds of A. hybridus and C. album, which germinate in spring and summer, required exposure to low temperature to after-ripen completely, but at high temperatures they rapidly gained the ability to germinate at high temperatures. Regardless of the burial temperatures and species, when after-ripening occurred, seeds firs germinated at high and then at low temperatures. The minimum germination temperature for a species decreased with after-ripening temperature and with an increase in the length of the burial period.  相似文献   

16.
Seeds of Poa annua from original collections in Louisiana, Maryland and Wisconsin were grown together in Louisiana over a 3-year period. The freshly harvested seeds and samples stored in moist soil at 30°C were tested for germination at a range of temperatures to compare dormancy and germination characteristics. Seeds of the Louisiana population were dormant over the germination temperature range of 5–25°C, and imbibed storage for 2 weeks did not break dormancy. Freshly harvested seeds of the Maryland population germinated well (78%) at 10°C. With 1 week of imbibed storage at 30°C, germination was good over the range from 5 to 15°C and near 50% at 20°C. Storage for 2 weeks had little further effect. Freshly harvested seeds of two Wisconsin populations germinated above 50% throughout the range of temperatures, and imbibed storage for 2 weeks at 30°C had no effect on germination. The variations in the dormancy of freshly harvested seeds and the varying responses of dormancy breaking from storing imbibed seeds at 30°C suggests that these populations have adapted to avoid high summer temperatures in Louisiana and Maryland but to grow as a summer annual in Wisconsin.  相似文献   

17.
Spring-produced seeds of Lamium amplexicaule L. were dormant at maturity in May and after-ripened when buried and stored over a range of temperatures, becoming conditionally dormant at low (5, 15/6 and 20/10°C) and non-dormant at high (25/15, 30/15 and 35/20°C) temperatures. Conditionally dormant seeds germinated to high percentages at 5 and 15/6°C, and non-dormant seeds germinated to high percentages at 5, 15/6, 20/10, 25/15 and 30/15°C. Seeds that became conditionally dormant at 5°C afterripened completely (i.e. became non-dormant) after transfer to 30/15°C. Buried seeds that became non-dormant in a non-temperature-controlled glasshouse during summer were still non-dormant after 12 weeks of storage at 30/15°C, while those stored at 5°C for 12 weeks had entered conditional dormancy. Thus, low temperatures cause reversal of the afterripening that takes place at high temperatures, but not that which takes place both at low and at high temperatures. Low winter temperatures cause dormant autumn-produced seeds and non-dormant seeds in the soil seed pool to become conditionally dormant. The ecological consequences of these responses to temperature are discussed in relation to the timing of seed germination in nature.  相似文献   

18.
Seed dormancy and germination in sand burr (Cenchrus longispinus (Hack,) Fern,) were investigated in laboratory and field studies. The burrs contain two types of seeds which differed in their innate dormancy. Primary seeds formed in the upper spikelet usually germinated within a year. Secondary seeds from lower spikelets germinated slowly and remained dormant for longer periods. Dormancy was enforced at low and high temperatures, and secondary seeds apparently developed an induced dormancy when continuously exposed to high temperatures. More than 94 % of the seedlings established during spring. Light suppressed germination, and secondary seeds also developed an induced dormancy when stored in the light. Burrs sown on the soil surface had an extended period of germination lasting for more than 3 years. However, over 96 % of the seeds sown below the surface of bare soil germinated within 2 years. Deep burial did not enforce dormancy, but germination was suppressed by the presence of live vegetation. It is concluded that treatments which disturb the soil and bury the burrs will stimulate the germination of dormant seeds.  相似文献   

19.
The annual dormancy cycle was investigated in buried seeds of Polygonum aviculare L. exposed to natural temperature changes in Lexington, Kentucky, U.S.A. Seeds were exhumed monthly from December 1984 to February 1987 and tested in light (14-h daily photoperiod) and continuous darkness at 12/12-h daily alternating temperature regimes of 15/6, 20/10, 25/15, 30/15 and 35/20°C. During autumn and winter, seeds became non-dormant, and in March 1985 they germinated to 95-100% at all thermoperiods in light and to 7-61% in darkness. Seeds remained non-dormant during spring but became more specific in their germination requirements in early summer. During July and August 1985, seeds germinated to 17-53% in light at 30/15 and 35/20°C but to 0-10% at all other test conditions. By September, about 65% of the seeds were dormant, but the others were able to germinate under the higher alternating temperatures in light. A similar seasonal cycle was recorded in the following year through to the spring of 1987. The results confirm the seasonal pattern of dormancy in this species (Courtney, 1968) but indicate that alternating temperatures combined with light are important in determining germination potential in P. aviculare.  相似文献   

20.
Seeds of Viola arvensis collected in different years and in different months within those years were buried in soil under natural seasonal temperature cycles, and changes in their germination requirements monitored. Seeds were dormant at maturity in May or June, but nondormant by autumn. During winter, some seeds entered dormancy, while others entered conditional dormancy, i.e. retained the ability to germinate at 15/6 and 20/10oC but not at other thermoperiods. Dormant and conditionally dormant seeds became nondormant the following summer. Seeds collected in 1981 exhibited an annual dormancy:nondormancy cycle, while those collected in 1982 exhibited an annual conditional dormancy:nondormancy cycle. The type of dormancy cycle found in these seed lots during their first year of burial persisted in subsequent years. Thirty–five and 36% of seeds collected in May 1983 and 1986, respectively, were conditionally dormant the following May, while only 5 and 9% of those collected in the same field in June 1983 and 1986, respectively, were conditionally dormant. Dormant seeds collected in 1981,1982 and 1984 and buried at 5oC during summer germinated to 0, 33 and 0% respectively, at 15/6oC in autumn. After the 1982 seeds became nondormant during summer, only 25% entered conditional dormancy when buried at 5oC, but after the 1981 and 1984 seeds became nondormant, 100% entered conditional dormancy at 5oC. Thus, the persistent seed bank of V. arvensis at a population site may consist of seeds with an annual dormancy:mondormancy cycle and others with an annual conditional dormancy:nondormancy cycle. This is the first report of the two types of annual seed dormancy cycles in the same species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号