共查询到19条相似文献,搜索用时 78 毫秒
1.
使用无人机搭载的多光谱相机获取田间遥感影像,通过相关性计算选取合适的波段组合,基于多光谱影像间的波段运算得到植被指数(VIs),采用最小二乘法构建棉花冠层含水量反演模型.结果表明,红波段(680nm)和近红外1波段(800nm)间的光谱特征与棉花冠层含水量相关性最高,由此光谱区间构建了归一化植被指数(NDVI)和比值植被指数(RVI),基于NDVI的二阶多项式回归得到了较好的预测结果,R2在0.69以上.使用此方法可以实现棉花冠层含水量的快速、无损监测,从而为田间精准灌溉提供技术支持. 相似文献
2.
为快速准确地获取植株冠层氮素含量及空间分布特征,对大尺度的果园进行精准动态的管理,以宽行窄株小冠模式、宽行窄株篱壁模式和传统栽培模式3种栽培模式的120棵柑橘树为研究对象,通过测定冠层氮素含量并提取无人机遥感影像多光谱数据中的纹理指数和植被指数,运用随机森林算法(RF)建立基于植被指数、纹理指数以及融合植被指数和纹理指数的柑橘冠层氮素反演模型,并比较融合植被指数和纹理指数的支持向量机(SVM)、BP神经网络算法(BP)和RF的模型反演精度。结果显示:在随机森林算法中,融合植被指数和纹理指数比单独的植被指数或纹理指数更能准确预测柑橘冠层氮素含量;植被指数训练集R2为0.710,测试集R2为0.430;纹理指数训练集R2为0.761,测试集R2为0.349;融合植被指数和纹理指数训练集R2为0.775,测试集R2为0.533。融合植被指数和纹理指数在SVM算法训练集R2为0.511,测试集R2为0.371;BP神经网络训练集R2为0.651,测试集R2为0.204。用融合植被指数和纹理指数的RF模型对3种栽培模式的柑橘园进行氮素反演,得到宽行窄株小冠模式的柑橘冠层平均氮素含量最高,其次为宽行窄株篱壁模式,传统栽培模式最低,氮素含量均值分别为31.33、30.20和27.82 mg/g。结合无人机遥感与融合植被指数和纹理指数的随机森林算法能够有效预测柑橘冠层氮素含量,可为大尺度柑橘果园定量施肥提供参考。 相似文献
3.
4.
基于低空无人机影像光谱和纹理特征的棉花氮素营养诊断研究 总被引:4,自引:1,他引:4
【目的】基于无人机高空间分辨率影像,探讨剔除土壤背景信息及增加纹理信息对棉花植株氮浓度反演的影响,为棉花氮素营养精准探测提供新技术手段。【方法】开展棉花水、氮耦合试验,分别在棉花的不同生育期获取无人机多光谱影像和植株氮浓度信息。基于以上数据,首先探讨了土壤背景对棉花冠层光谱的影响;其次,分析了影像纹理特征与植株氮浓度间的相关性;最后,将获得的数据分为建模样本和检验样本,设置剔除土壤背景前、剔除土壤背景后、增加纹理特征等不同情景,采用光谱指数与主成分分析耦合建模的方法,来建立各种情景下植株氮浓度的反演模型,并对模型反演效果进行比较。【结果】土壤背景对棉花冠层光谱有影响,且不同生育期趋势不同;影像纹理特征参数与植株氮浓度间有显著相关关系;剔除土壤背景前植株氮浓度反演模型的建模决定系数为0.33,标准误差为0.21%,验证决定系数为0.19,标准误差为0.23%;剔除土壤背景后模型的建模决定系数为0.38,标准误差为0.20%,验证决定系数为0.30,标准误差为0.21%;增加纹理信息后模型的建模决定系数为0.57,标准误差为0.17%,验证决定系数为0.42,标准误差为0.19%。【结论】基于低空无人机高空间分辨率影像,剔除土壤背景和增加纹理特征均可提高棉花植株氮浓度的反演精度;影像纹理可以作为一种重要信息来支撑无人机遥感技术反演作物氮素营养状况。 相似文献
5.
6.
基于无人机多光谱遥感图像的玉米田间杂草识别 总被引:5,自引:0,他引:5
【目的】为了精确高效识别玉米田间杂草,减少除草剂施用,提高玉米种植管理精准性。【方法】通过六旋翼无人机搭载多光谱相机获取玉米田块多光谱图像。为分离图像中植被与非植被像元,计算了7种植被指数,采用最大类间方差法提取植被指数图像中非植被区域,制作掩膜文件并对多光谱图像掩膜。通过主成分分析对多光谱图像进行变换,保留信息量最多的前3个主成分波段。将试验区域分为训练区域和验证区域,在训练区域中分别选取了675处玉米和525处杂草样本对监督分类模型进行训练,在验证区域选取了240处玉米样本及160处杂草样本评价模型分类精度。将7种植被指数、3个主成分波段的24个纹理特征及经过滤波的10个反射率,共计41项特征作为样本特征参数。利用支持向量机-特征递归消除算法(support vector machines-feature recursive elimination,SVM-RFE)和Relief算法从41项特征中各筛选14项特征构成特征子集,采用支持向量机、K-最近邻、Cart决策树、随机森林和人工神经网络对特征子集进行监督分类。【结果】支持向量机与随机森林对全部特征及2个特征子集分类效果较好,支... 相似文献
8.
关中地区小麦冠层光谱与氮素的定量关系 总被引:4,自引:0,他引:4
【目的】分析不同生育期及整个生育期小麦叶片氮含量(LNC)与冠层光谱反射特征的关系,以实现对田间小麦活体氮素营养状况的监测,为小麦叶片氮素状况的精确诊断提供依据。【方法】以位于陕西关中地区杨凌揉谷镇、扶风马席村和巨良农场的3个小麦试验田为研究对象,测定不同长势及生育期小麦LNC及冠层光谱反射率,分析不同长势下小麦LNC和反射率的变化,并研究氮含量与冠层光谱反射率的相关性,以及小麦LNC与比值植被指数(RVI)、归一化植被指数(NDVI)的相关性,建立小麦LNC的敏感波段及光谱监测模型。【结果】在同一生育期,长势差的小麦叶片氮含量较低,长势较好的叶片氮含量高。与单波段相比,组合波段构成的植被指数RVI、NDVI与LNC的相关性明显提高,近红外波段(730~1 075nm)和红波段630,660,690nm组成组合波段的RVI、NDVI与LNC呈极显著正相关,其中LNC与RVI的相关性较高。利用独立的小麦田间试验数据,采用通用的均方根差(RMSE)、决定系数(R2)、准确度(斜率)3个指标对所建立的模型进行检验,最终选取RVI(970,690)为监测小麦LNC的最佳光谱参数,构建的最佳模型为LNC=0.176 3×RVI(970,690)0.775 6,R2为0.863,RMSE为0.137,准确度为0.979,接近于1。【结论】利用小麦冠层光谱反射率构建了预测小麦LNC的最佳模型,该模型具有较好的准确度和普适性,适用于整个生育期小麦叶片氮含量的监测。 相似文献
9.
目的 研究融合无人机遥感影像多光谱信息和纹理特征估算马铃薯Solanum tuberosum叶面积指数(Leaf area index,LAI)方法,提高马铃薯LAI反演精度。方法 利用大疆P4M无人机采集2021年2-4月南方冬种马铃薯幼苗期、现蕾期、块茎膨大期多光谱影像,用LAI-2000冠层分析仪实测LAI数据。提取影像光谱、纹理等信息,分析植被指数、纹理特征与LAI的相关性,基于R2adj的全子集分析优选特征变量。采用主成分分析,融合光谱和纹理特征,用PCA-MLR(Principal component analysis-multiple linear regression)模型估算马铃薯LAI。结果 从幼苗期到块茎膨大期,PCA-MLR估算模型优于T-MLR(Texture multiple linear regression)和VI-MLR(Vegetation index multiple linear regression)模型,R2分别为0.73、0.59和0.66。结论 本研究提出一种估算马铃薯LAI的PCA-MLR方法,为马铃薯的长势监测和田间管理提供数据支持。 相似文献
10.
11.
【目的】去除无人机多光谱遥感影像中的阴影,以提高苹果树冠层氮素含量反演模型精度。【方法】以山东省栖霞市苹果园为试验区,利用2019年6月采集的无人机多光谱影像,分别基于归一化阴影指数(normalized shaded vegetation index,NSVI)和归一化冠层阴影指数(normalized difference canopy shadow index,NDCSI)去除果树冠层多光谱影像中的阴影,提取非阴影区域果树冠层光谱信息;通过相关性分析方法,将基于原始光谱影像和基于NSVI、NDCSI去除阴影后提取的光谱数据与实测叶片氮素含量进行相关性分析,分别筛选氮素含量的敏感波段并构建光谱参量;采用偏最小二乘(partial least square,PLS)及支持向量机(support vector machine,SVM)方法构建果树冠层氮素含量反演模型并进行精度检验。【结果】绿光波段和红光波段为果树冠层氮素含量反演的敏感波段;阴影削弱了果树冠层的光谱信息,去除阴影前后,冠层多光谱各波段光谱差异较大,在红边波段及近红外波段尤为明显;基于2个阴影指数去除阴影后构建的氮素反演模型精度均有提升,最优模型为基于NDCSI去除阴影后构建的支持向量机氮素含量反演模型,该模型建模集R2和RPD分别为0.774、1.828;验证集R2和RPD分别为0.723、1.819。【结论】基于NDCSI可有效去除无人机多光谱果树冠层影像中的阴影,提高氮素含量反演精度,为果园氮素精准管理提供了有效参考。 相似文献
12.
13.
以福建平潭岛木麻黄人工林为研究对象,对比研究基于无人机可见光遥感数据的株数提取方法,探讨多种方法在不同林龄木麻黄人工林株数提取的适用性。通过轻型旋翼无人机获取研究区可见光相片,经预处理生成无人机可见光正射影像(DOM)和冠层高度模型(CHM);分别选取成熟林、幼龄林6块标准地区域,使用基于冠层高度模型的局部最大值方法(LMC)、基于正射影像的局部最大值方法(LMD)、基于正射影像的多尺度分割方法(MST)提取标准地株数;最后通过3种方法提取的株数和实测数据进行对比分析。结果表明: 3种方法中LMC总体提取精度最高,Fscore为0.97,而LMD和MST总体提取精度明显降低,Fscore分别为0.90、0.78; LMC方法对幼龄林和成熟林的株数提取精度相近,幼龄林和成熟林的Fscore皆为0.97。 LMD方法在成熟林的株树提取精度略高于幼龄林,尤其2种林龄类型的P值相差较大,幼龄林RE:0.97、P:0.81、Fscore:0.88;成熟林RE:0.94、P:0.89、Fscore:0.91。 MST方法在成熟林的株树提取精度明显高于幼龄林,幼龄林 RE:0.88、P:0.67、Fscore:0.76;成熟林RE:0.88、P:0.74、Fscore:0.81。因此,3种方法中,LMC总体株数提取精度最高,且适用于不同林龄的木麻黄人工林株数提取,可以满足实时、快速提取木麻黄人工林株数的需求。 相似文献
14.
15.
基于遥感光谱的作物氮含量估算研究进展 总被引:2,自引:0,他引:2
氮是作物生长不可或缺的营养物质之一,氮的亏缺或富余会严重影响作物的产量和经济效益,及时、准确和无损的作物氮素水平监测对作物的增产、合理施肥以及减少环境污染等具有重要意义。阐述了作物氮含量遥感估算的原理及国内外估算方法与研究进展,并在此基础上分析了基于遥感光谱数据的作物氮含量估算存在的问题,提出了未来研究的重点:模型普适性的提高、多源遥感数据的使用、多因素影响下作物氮含量的监测等。 相似文献
16.
基于数码相机的玉米冠层SPAD遥感估算 总被引:1,自引:0,他引:1
【目的】叶绿素是植物光合作用中重要的色素。利用作物光谱信息对叶绿素含量进行反演,为作物的实时监测和生长状态诊断提供重要依据。【方法】以大田环境下不同氮肥水平(0,50%和100%)的开花期玉米为研究对象,利用轻小型无人机搭载数码相机,获取试验区RGB影像。使用土壤调整植被指数(soil adjusted vegetation index,SAVIgreen)对图像进行分割,基于分割前后的影像分别提取15种常见的可见光植被指数,综合分析指数与玉米冠层叶绿素相对含量SPAD值的相关关系。采用单变量回归模型、多元逐步回归模型和随机森林(random forest,RF)回归算法构建玉米SPAD值的遥感估算模型,通过模型精度评价指标决定系数(coefficient of determination,R2)、均方根误差(root mean square error,RMSE)、平均相对误差(mean relative error,MRE)和显著性检验水平(P0.01),确定最佳指标和最优模型。【结果】基于分割前后的数码影像提取的VIplot和VIplant植被指数与玉米冠层SPAD值之间具有显著的相关关系,其中VIplant中的红光标准化值(NRI)、归一化叶绿素比值植被指数(NPCI)、蓝红比值指数(BRRI)、差值植被指数(DVI)与SPAD值的相关性在0.77以上;以相关性高于0.77的VIplant指数NRI、NPCI、BRRI、DVI构建的线性、指数、对数、二次多项式、幂函数的单变量回归模型中,NRI指数构建的二次多项式模型效果最好,决定系数R2为0.7976,RMSE为4.31,MRE为5.91%。在VIplant指数NRI、NPCI、BRRI、DVI参与建立的多变量SPAD反演模型中,使用随机森林方法的模型精度最高,决定系数R2为0.8682,RMSE为3.92,MRE为4.98%,而多元逐步回归模型的精度高于任意单变量回归模型,决定系数R2为0.819,RMSE为4,MRE为5.67%;对数码影像结合各模型制作的SPAD分布图进行精度分析,使用随机森林回归模型对SPAD的估测值与实测值最为接近,具有最佳的预测效果,R2为0.8247,RMSE为4.3,MRE为5.36%,可以作为玉米冠层叶绿素信息监测的主要方法。【结论】本研究证明将数码相机影像提取的可见光植被指数应用于玉米叶绿素相对含量的估测是可行的,这也为无人机遥感系统在农业方面的应用增添了新的手段和经验。 相似文献
17.
准确快速得获取冬小麦地块的土壤墒情,可为高效利用水资源、实现精准灌溉提供参考。为此,特在江苏省张家港市获取返青期冬小麦种植区的无人机多光谱遥感数据,并同步测定2个深度(10 cm和20 cm)的土壤墒情,通过遥感图像提取光谱反射率,计算归一化植被指数(NDVI)、增强型植被指数(EVI)和垂直干旱指数(PDI),进行共线性分析后,分别运用逐步回归法、岭回归法和偏最小二乘法,构建针对不同深度土壤墒情的反演模型,并基于最佳反演模型绘制试验区不同深度土壤的墒情反演图。结果表明,用逐步回归法构建的模型在10、20 cm深度土壤墒情反演中的决定系数分别达到了0.885、0.782,建模精度最优,且针对10 cm深度土壤墒情的反演效果优于20 cm。研究结果可为冬小麦返青期土壤墒情监测方法的选择提供参考。 相似文献
18.
一种新的估算水稻上部叶片蛋白氮含量的植被指数 总被引:1,自引:0,他引:1
【目的】阐明水稻顶部4张叶片蛋白氮含量和反射光谱特征的变化规律及其相互关系,建立快速、准确诊断水稻功能叶片蛋白氮含量的方法。【方法】通过3年不同施氮水平和不同品种类型的大田试验,分生育期同步测定顶部4张叶片的光谱反射率及蛋白氮含量,系统分析叶片蛋白氮含量与多种高光谱参数的定量关系。【结果】水稻叶片蛋白氮含量和光谱反射率在不同施氮水平、不同生育期及不同叶位间均存在明显差异,叶片蛋白氮含量的敏感波段主要存在于可见光绿光区530~580 nm及红边区域695~715 nm,其中红边区域表现最为显著。红边区域700 nm附近波段与近红外短波段的比值组合(SRs)可以有效地估算水稻上部功能叶片的蛋白氮含量,其次是绿光区587 nm左右的波段与近红外短波段的比值组合。基于新提出的SR(770,700)及已报道的GM-2、SR705、RI-half光谱指数,线性回归模型的拟合精度(R2)分别达到 0.874,0.873,0.871和0.867。经独立资料的检验表明,这些回归模型可以实时监测叶片蛋白氮含量变化,预测精度R2分别为0.810、0.806、0.804和0.800,相对误差RE 分别为12.1%、12.4%、12.6%和12.9%。【结论】可以利用关键特征光谱指数来诊断水稻上部叶片的蛋白氮含量状况,尤以SR(770,700)、GM-2、SR705和RI-half表现为较强的估测能力。 相似文献