首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of prior soil amendment with different N sources at 50 mg N (kg soil)—1 on nodulation and N2 fixation of faba bean (Vicia faba L. cv. Troy) using wheat (Triticum aestivum L. cv. Star) as reference crop was assessed in a pot experiment. Four treatments viz legume manure (LEGM) as clover shoots, cereal manure (CEREM) as barley straw, N fertilizer (FERT‐N) as Ca(NO3)2, and no‐manure control (NOMAN) were investigated consecutively at 45, 70, and 90 days after sowing (DAS). Faba bean nodulated profusely, with an increase on average from 629 nodules per pot at 45 DAS to nearly 2.3‐ and 3.3‐fold at 70 and 90 DAS, respectively. Low nodule numbers and nodule dry matter occurred under FERT‐N and CEREM, whereas high values were found for NOMAN and LEGM. Soil amendment affected percent N2 fixation in relation to N source and plant age. Highest percent N2 fixation (≥ 90 %) was found under the lowest N‐supplying amendments, no‐manure, and cereal manure, respectively. FERT‐N depressed N2 fixation particularly at 45 DAS when N2 fixation was reduced to as low as 23 %. The rise in N2 fixation thereafter suggests that faba bean adjusted after depletion of mineral N in the soil. N2 fixation was also decreased after cereal straw application, even though N concentration in faba bean plants was high. The results indicate that plant residues, both with high and low N concentration, applied to soil to raise its fertility may interfere with N2 fixation of faba bean.  相似文献   

2.
The effect of increasing rates of 15N‐labelled Ca(NO3)2 (N0 = no N application, N300 = 300 mg N/pot; N600 = 600 mg N/pot; N900 = 900 mg N/pot) on recovery of fertilizer N in winter wheat plants and soil (total soil N, soil microbial biomass N [Nmic], extractable organic N [Norg]) and on N mineralization (NMsoil) was investigated at milk‐ripe growth stage in a pot experiment. The N rates were equally split at tillering, stem elongation and ear emergence. Fertilizer N recovered in crops increased with increasing N rates (N300: 223.5 mg N/pot [74.5% of applied fertilizer N], N600: 445.6 mg N/pot [74.3%], N900: 722.1 mg N/pot [80.2%]). NMsoil slightly increased from N0 (43.8 mg N/pot) to N900 (75.6 mg N/pot) indicating that N application enhanced availability of soil‐derived N for the plants. However, in fertilized treatments NMsoil is balanced by immobilization and losses (non‐recovered fertilizer N). Therefore the effective soil N mineralization is indicated by apparent net N mineralization (ANNM = NMsoil — fertilizer N immobilization — lost fertilizer N). Fertilizer N immobilization in soil increased from N300 (38.7 mg N/pot) to N600 (60.7 mg N/pot) and N900 (65.5 mg N/pot). Lost fertilizer N increased from N300 (14.8 mg N/pot) to N600 (56.7 mg N/pot) and N900 (62.1 mg N/pot). As a consequence negative ANNM values were calculated at N600 and N900. Due to the small differences between N600 and N900 fertilizer N immobilization and lost fertilizer N did not increase linearly with increasing N rates, i.e. both processes were limited by factors other than N rate. Only 5.6—7.4% of the immobilized fertilizer N was recovered in Norg and 5.4—9.3% in Nmic soil pools. It is assumed that most of the immobilized fertilizer N was in non‐extractable organic N forms. Nmic and Norg were weak indicators for the extent of fertilizer N immobilization.  相似文献   

3.
Nitrogen fixation in faba bean (Vicia faba cv. Mesay) as affected by sulfur (S) fertilization (30 kg S ha–1) and inoculation under the semi‐arid conditions of Ethiopia was studied using the 15N‐isotope dilution method. The effect of faba bean–fixed nitrogen (N) on yield of the subsequent wheat crop (Triticum aestivum L.) was also assessed. Sulfur fertilization and inoculation significantly (p < 0.05) affected nodulation at late flowering stage for both 2004 and 2005 cropping seasons. The nodule number and nodule fresh weighs were increased by 53% and 95%, relative to the control. Similarly, both treatments (S fertilization and inoculants) significantly improved biomass and grain yield of faba bean on average by 2.2 and 1.2 Mg ha–1. This corresponds to 37% and 50% increases, respectively, relative to the control. Total N and S uptake of grains was significantly higher by 59.6 and 3.3 kg ha–1, which are 76% and 66% increases, respectively. Sulfur and inoculation enhanced the percentage of N derived from the atmosphere in the whole plant of faba bean from 51% to 73%. This corresponds to N2 fixation varying from 49 to 147 kg N ha–1. The percentage of N derived from fertilizer (%Ndff) and soil (%Ndfs) of faba bean varied from 4.3% to 2.8 %, and from 45.1% to 24.0%, corresponding to the average values of 5.1 and 47.9 kg N ha–1. Similarly, the %Ndff and %Ndfs of the reference crop, barley, varied from 8.5 % to 10.8% and from 91.5% to 89.2%, with average N yields of 9.2 and 84.3 kg N ha–1. Soil N balance after faba bean ranged from 13 to 52 kg N ha–1. Beneficial effects of faba bean on yield of a wheat crop grown after faba bean were highly significant, increasing the average grain and N yields of this crop by 1.11 Mg ha–1 and 30 kg ha–1, relative to the yield of wheat grown after the reference crop, barley. Thus, it can be concluded that faba bean can be grown as an alternative crop to fallow, benefiting farmers economically and increasing the soil fertility.  相似文献   

4.
Neglected P and K fertilization in organic farming reduces N2 fixation and grain yield in a red clover‐oat rotation N2 fixation is the most important N source in organic farming. An insufficient P, K, and S supply to legumes may reduce their N2 fixation capacity. Consequently, the total yield of plant production may also be reduced. This problem was studied in a pot experiment with red clover followed by oat. Soil was taken from a field where organic farming had been practiced for more than 30 years without applying any mineral fertilizers or buying additional fodder. The soil (luvisol from loess) was characterized by: pH (CaCl2) 5.4; lactate‐soluble (CAL) P 5 mg kg–1 and K 110 mg kg–1. 6 kg dry soil were mixed with 400 mg P applied as (i) triplesuperphosphate (TSP), (ii) rock phosphate (RP) or (iii) compost from organic household residues (BAK). An additional treatment (iv) with TSP received 1000 mg K as K2SO4 (TSP+K) and an additional treatment with RP (v) received only 200 mg P (RP/2). A control treatment received no fertilizer. P application significantly improved the P nutritional status of the plants (P content) and increased the N amount in the shoots of red clover (with 400 mg P per pot by 64 % to 139 % as compared to the control) and the dry matter (DM) yield by 60 % to 130 %. No significant differences between TSP and RP were found. The application of BAK resulted in a significantly higher N yield than the application of RP and TSP. The treatment TSP+K resulted in the highest DM yield (230 %), removal of P was 343 %, of K 228 %, and of N 239 % as compared to the control plants. This indicates a synergistic effect of P, K, and S on N2 fixation, which was also found with BAK. Oat grown after red clover increased its grain yield by 132 % (200 mg P as RP) to 165 % (400 mg P treatments). This was mainly due to a higher P uptake (up to 172 %) and a higher N uptake (up to 172 %) as compared to the control.  相似文献   

5.
Influence of mineral and symbiotic nitrogen nutrition on proton release of roots, phosphorusuptake and root development of red clover Red clover was cultivated in pots containing a loamy sand soil of low buffer capacity. Nitrogen supply was either NH4NO3 and Ca(NO3)2 in the mineral treatment or Rhizobium fixed N2 in the symbiotic treatment. During six cuts the plants decreased the pH of the soil from 7.6 to 6.0 in the mineral treatment and to 5.2 in the symbiotic treatment. Both treatments yielded the same amount of shoot dry matter per pot. The N2-fixing red clover produced more root fresh weight associated with larger root length, root surface, and root density per pot compared with plants grown with mineral nitrogen. Due to stronger soil acidification and better root growth N2-fixing red clover was able to exploit the rock phosphate component from a partially acidulated P-fertilizer to a higher degree than NH4NO3 or Ca(NO3)2 fed plants. The proton release of symbiotically grown plants could be accounted for by mineral cation excess (difference of cation and anion uptake) in shoots and roots by only 68%. It is therefore assumed that the excess of H+ released was accompanied by a release of anions.  相似文献   

6.
The effects of phosphorus supply (0, 30, and 90 mg P kg‐1) on growth, N2 fixation, and soil N uptake by soybean (Glycine max (L.) Merr.) were studied in a pot experiment using the 15N isotope technique. Phosphorus supply increased the top dry matter production at flowering and the dry matter production of seeds, straw, pod shells, and roots at late pod filling of inoculated soybeans. Phosphorus supply reduced the N concentration of plant tops at flowering, but increased the amount of N accumulated at both flowering and late pod filling. In inoculated soybeans total N accumulation paralleled the dry matter production. The P concentration in above‐ground plant parts of nodulated soybeans was not affected by P application. At flowering only 18 to 34% of total N was derived from N2 fixation, whereas as much as 74% was derived from N2 fixation at late pod filling. Only the addition of 90 mg P kg‐1 soil significantly increased the amount of N2 fixed at the late pod filling stage. Phosphorus supply did not influence the uptake of fertilizer or soil N in soybeans, even if the root mass was increased up to 60% by the P supply.  相似文献   

7.
Turnover of nitrogen of different plant material in the soil in pot and field trials In pot and field trials, effects of various plant materials like green rape, sugar beet leaves, potato foliage, straw of wheat, maize, or field beans, on the turnover of N in the soil (mineralization, Nmin-concentrations, NO3-leaching) and on yield and N uptake by some crops was tested in relation to mineral N fertilizer application. In both experiments, widely corresponding results were obtained: Irrespective of the N contents of the plant material, biological immobilization of N always was combined with beginning mineralization (pot trial: decrease of NO3 leaching in late fall). Green rape (C/N = 12/1) showed already after 4 weeks in the field trial a marked net mineralization (Nmin) of 20–30% of the added nitrogen which was quantitatively reflected in higher removals of N. Beet leaves (C/N = 20/1) were decomposed at a much slower rate in combination with an increase in N removals of subsequent crops by 6-20 % depending on the rate of mineral fertilizer application. All types of straw (CM = 57-8611) and potato foliage (CM = 73/1) caused a marked biological immobilization of N which resulted in reduced N removals depending on turnover rate (potato foliage: fast, wheat straw: slow) and N contents of the organic material. Different plant residues (straw, leaves) were applicated on a harvested field with cereal to test comparatively one part of the total value of different preceding crops; at onset of vegetation the Nmin-contents in soil, depending on the climatic conditions during the non-growing season for mineralization, were analyzed.  相似文献   

8.
Effect of varied N-fertilization on assimilation rate and yield of spring wheat In pot experiments with spring wheat the effect of a variied N-fertilization on yield and assimilation rate was studied by the use of 14CO2. The assimilation rate per pot increases during the vegetative period in both years till the time short before flowering, followed by a decrease towards the end of experiment. Increased N-supply results only in a small increase of total assimilation per pot, but in the young leaves of high nitrogen plants the assimilation was enhanced. N-fertilization has a pronounced effect on the loss of assimilated 14C due to respiration. Plants with high N-supply lost 20%, those with low N-supply 50% of the 14C assimilated during the period of emergence of ears. The different yields of plants with variied N-supply are not primarely the result of an altered assimilation rate, but of the different loss due to respiration.  相似文献   

9.
采用田间小区试验,研究了习惯施肥与接触施用包膜控释肥料对夏玉米生长、产量、根系分布和土壤无机氮残留的影响。结果表明,接触施用包膜控释肥料没有抑制玉米的出苗和幼苗生长;减氮1/3的控释肥处理(N 120kg/hm2)与习惯施肥处理(N180 kg/hm2)的玉米产量没有差异。在0—30 cm土层,与对照和习惯施肥处理相比,接触施用控释肥增加了距茎基部0—10 cm区域内玉米根长密度的分布,占总根长的59%~64%;玉米收获后,减量控释肥处理土壤剖面各个土层Nmin含量与对照相比无显著增加,习惯施肥和全量控释肥处理(N 180 kg/hm2)在60—90、90—120 cm土层的Nmin累积显著高于对照。综合考虑玉米生长、产量以及根系分布和氮素淋失风险,本试验条件下,接触施用控释肥N120 kg/hm2是夏玉米季较为理想的选择。  相似文献   

10.
《Journal of plant nutrition》2013,36(4-5):623-637
Groundnuts (Arachis hypogaea L.) are frequently exposed to high temperatures in the semi-arid tropics. The objectives of the present research were: (i) to determine the response of groundnuts to different nitrogen sources; (ii) to quantify the effects of high air and soil temperatures on nodulation, dry matter production, partitioning and pod yields; and (iii) to discover whether plants dependent on symbiotic dinitrogen are more sensitive to heat stress than those dependent on inorganic nitrogen (N). Plants were grown at optimum air and ambient soil temperatures from sowing until the first flowering. Thereafter, plants were exposed to a factorial combination of two air temperatures [optimum: 28°/22°C (day/night) and high: 38°/22°C], two soil temperatures (ambient: 26°/24°C and high: 37°/30°C) and three N-sources [inoculated with Bradyrhizobium strain NC 92 (symbiotic N2); inoculated and supplied with 20 ppm inorganic N (symbiotic N2 plus 20 N); or not inoculated and supplied with 100 ppm inorganic N (inorganic N)]. At optimum air and ambient soil temperature dry matter and pod yields were greatest in plants dependent on inorganic N, intermediate in symbiotic N2 plus 20 N and least in symbiotic N2. High air or high soil temperatures significantly (P < 0.001) reduced pod yield to a similar extent and their effects were additive and without interaction. High soil, but not high air temperature, significantly (P < 0.001) reduced nodule numbers, nodule dry weight and 100 seed weight. High air and/or high soil temperature had no effect on pod yield in plants dependent on symbiotic N2 or symbiotic N2 plus 20 N, but significantly (P < 0.05) reduced pod yield in plants dependent on inorganic N. This suggest that effectively nodulated plants with small quantities of inorganic N are potentially more adaptable to hot environments than those relying on large quantities of inorganic N.  相似文献   

11.
小麦//蚕豆间作中的种间氮营养差异比较研究   总被引:15,自引:2,他引:15  
通过根系分隔和15N标记土壤的盆栽试验,研究间作蚕豆和小麦对不同氮素来源利用的差异。结果表明,根系不分隔的处理小麦生长改善,其生物量、吸氮量都高于其它2种分隔方式;蚕豆的生长则表现被抑制,其生物量在根系不分隔时生物量和吸氮量皆最低。在尼龙网分隔的处理中,小麦植株体内15N%丰度高于其它2种分隔方式,而蚕豆则表现为根系未分隔的处理15N%丰度最低。表明小麦竞争肥料氮的能力强于蚕豆,小麦的竞争促进了蚕豆固定更多的空气氮。  相似文献   

12.
An increased root turnover can be a mechanism of improved nutrient‐uptake efficiency. The objectives of this study were to investigate P and K efficiency of faba beans (Vicia faba L.), to determine their root growth and root turnover, and to assess the relevance of root turnover on P and K uptake at limited supply. Faba beans were grown as part of a long‐term fertilization experiment on fertilized plots (control) and plots that had not received any P or K fertilizer for 16 years (P0, K0). Although the unfertilized soils were low and very low in their P‐ and K‐supply level, respectively, no differences in shoot‐dry‐matter production occurred compared to the control. However, relative K concentration in dry matter of the K0 plants (control plants = 100) decreased during the experiment and was only 60% of the control at the final harvest. This indicated a high K‐utilization efficiency of faba bean. Relative phosphorus concentration increased in the P0 treatment and was not different from the control at the last harvest, indicating an improvement in P‐uptake efficiency with time. The size of the standing root system determined by sequential auger sampling (net development) was not influenced by P and K supply. Total root production as measured by the ingrowth‐core method was about 6 times higher than the average size of the standing root system and even increased under low‐K conditions. This indicated a fast root turnover. Modeling soil nutrient transport and uptake revealed that calculated uptake of the control was up to 48% higher when root turnover was taken into account, compared to calculations based on the net development of the root systems. This is due to a better soil exploitation. Under K shortage, root turnover resulted in a 117% higher calculated uptake, which was close to measured K uptake. Root turnover was also of benefit for P uptake, but calculated P uptake was significantly less than measured, indicating that root turnover was of little importance for P uptake of faba beans.  相似文献   

13.
Introducing autumn-sown legumes into Central European farming systems could be beneficial for addressing two challenges for European agriculture, i.e., the substantial deficit of protein sources for livestock and expected changes in agroclimatic conditions. Therefore, a two-year field experiment was conucted under Pannonian climate conditions in eastern Austria to assess nitrogen (N) yield and N fixation of several winter faba bean varieties from different European countries as compared to a spring faba bean. Winter wheat was used as a reference crop for estimating atmospheric N fixation. Winter faba beans were susceptible to frost damage especially in the harder of the two winters. Winter faba bean varieties could not achieve a higher grain yield and a higher grain N yield than the spring faba bean but had a higher grain N concentration (except for one variety). Grain yield and grain N yield of faba beans were severely impaired by drought in one year (with a mean of varieties of 8.3 g N m?2, winter wheat: 6.4 g N m?2); in the other year, grain N yield of faba beans considerably surpassed that of winter wheat (with a mean of varieties of 21.5 g N m?2, winter wheat: 8.8 g N m?2). After harvest, faba beans left higher nitrate residues in the soil, especially in the subsoil, and higher amounts of N in above-ground residues compared to winter wheat. Faba beans showed high N fixation under optimum conditions (with a mean of varieties of 21.9 g N m?2) whereas drought considerably impaired N fixation (with a mean of varieties of 6.3 g N m?2; with no differences between autumn- and spring-sown faba beans). In conclusion, growing winter faba bean varieties in eastern Austria did not result in higher grain yield, grain N yield, and N fixation compared to growing a spring faba bean.  相似文献   

14.
 N2 fixation by leguminous crops is a relatively low-cost alternative to N fertilizer for small-holder farmers in developing countries. N2 fixation in faba bean (Vicia faba L.) as affected by P fertilization (0 and 20 kg P ha–1) and inoculation (uninoculated and inoculated) with Rhizobium leguminosarium biovar viciae (strain S-18) was studied using the 15N isotope dilution method in the southeastern Ethiopian highlands at three sites differing in soil conditions and length of growing period. Nodulation at the late flowering stage was significantly influenced by P and inoculation only at the location exhibiting the lowest soil P and pH levels. The percentage of N derived from the atmosphere ranged from 66 to 74%, 58 to 74% and 62 to 73% with a corresponding total amount of N2 fixed ranging from 169 to 210 kg N ha–1, 139 to 184 kg N ha–1 and 147 to 174 kg N ha–1 at Bekoji, Kulumsa and Asasa, respectively. The total N2 fixed was not significantly affected by P fertilizer or inoculation across all locations, and there was no interaction between the factors. However, at all three locations, N2 fixation was highly positively correlated with the dry matter production and total N yield of faba bean. Soil N balances after faba bean were positive (12–58 kg N ha–1) relative to the highly negative N balances (–9–44 kg N ha–1) following wheat (Triticum aestivum L.), highlighting the importance of rotation with faba bean in the cereal-based cropping systems of Ethiopia. Received: 13 January 2000  相似文献   

15.
A commercial cultivar (Alborea) of faba bean (Vicia faba L. var. minor) was inoculated with salt-tolerant Rhizobium leguminosarum biovar. viciae strain GRA19 in solution culture with different salt concentrations (0, 50, 75 and 100 mmoles l−1 NaCl) added immediately at the time of inoculation. The results indicated that Rhizobium leguminosarum strain GRA19 formed an infective and effective symbiosis with faba bean under saline and nonsaline conditions. Salinity significantly decreased shoot and root dry weight, nodule weight and mean nodule weight. Roots were more sensitive than shoots, and N2 fixation was more sensitive to salinity than was plant growth. Analyses of ammonium assimilating enzymes in the nodule showed that glutamine synthetase appeared to be more tolerant to salinity than glutamate synthase, and that it limits ammonium assimilation under saline stress.  相似文献   

16.
Faba beans (Vicia faba L) are grown in northern Tunisia where annual rainfall approaches 1200 mm and where the soil acidity is the most limiting factor for plant growth. Aluminum (Al) and manganese (Mn) toxicities provide a hostile environment to root growth. To alleviate such a problem, farmers use selected acid-tolerant species. However, crop yields remain far below their optimal levels. Liming, a practice to eliminate acidity, has never been tried in this area before. This research aimed to evaluate the impact of lime and mineral fertilizers on root nodulation, plant uptake and yield of faba beans using a pot experiment. Treatments were combinations of two rates of calcium carbonate with three rates of superphosphate and three rates of potassium sulfate. Liming produced significantly higher number and weight of nodules on roots as well as higher nitrogen, phosphorus, and potassium contents in plant tissue. Liming also increased shoot growth and bean yield.  相似文献   

17.
Intercropping can improve yield and nitrogen use efficiency in organic vegetable production by pairing crops with complementary resource use. An intercrop field experiment was conducted to determine yield, root growth and nitrogen (N) dynamics using faba bean (Vicia faba L.) grown as a vegetable and pointed cabbage (Brassica oleracea var. capitata cv. conica). Both crops were grown in monocropping (MC) and intercropping systems (IC). Minirhizotrons were used to measure root growth. Yield of pointed cabbage per metre row was 28% higher under the IC system than under MC, whereas faba bean yield as fresh seeds did not differ. The land equivalent ratio was 1.06, showing that improved yield under IC resulted from efficient land resource use. Even though MC cabbage had the highest aboveground biomass, total N accumulation was higher under IC and MC faba bean systems. Both root frequency and intensity were greater under IC faba bean rows compared with MC faba bean because of the presence of cabbage roots in faba bean rows. Monocropped cabbage had the highest root intensity and the lowest amount of soil mineral N in the 0–1.5 m depth after harvest. Monocropped cabbage was efficient in assimilating N, whereas MC faba bean was efficient in exporting N as harvestable yield. The nitrogen use efficiency using the IC system (75%) was higher than growing faba bean (44%) and cabbage (65%) alone. Thus, faba bean as an intercrop in organic cabbage production systems improves land and N use efficiency by complementary root growth.  相似文献   

18.
Abstract. The success of organic cropping systems depends on symbiotic N2 fixation by leguminous crops, and it is important to explore new management systems to improve the nitrogen input through N2 fixation. During two growing seasons the possible advantage of growing fababean ( Vicia faba L.) in ridges was studied in comparison to the traditional method on flat soil. Differences in soil physical parameters resulted in a significantly greater microbial activity and a deeper root system at the flowering stage when grown in the ridge than on the flat. Consequently, the amount of fixed N at flowering was significantly greater in ridges than in flat soil. However, during the period from flowering until harvest, when the major part of the N uptake and N2 fixation took place, the differences between the treatments disappeared. Average values for the growing season of fluorescein diacetate hydrolysis, arylamidase activity and arylsulphatase activity were significantly greater in the ridge than on the flat, and the microbial biomass-C, derived from substrate induced respiration (SIR), was on average 232 and 223 μg C g−1 soil in the ridge and on the flat, respectively. Measured total-N uptake, including root N (0–30 cm depth), ranged from 206 to 247 kg N ha−1, of which 182–201 kg N ha−1 was fixed N. From 154 to 173 kg N ha−1 was removed in grain resulting in a soil-N balance of +28 kg N ha−1 in both years. However, by including estimates of total root N and rhizodeposition-N the soil-N balance ranged from +52 to +62 kg N ha−1.  相似文献   

19.
20.
The quantification of nitrogen fixation by Vicia faba inoculated with Rhizobium leguminosarum in relation to micronutrient application was assessed in pot experiments. The balance calculations showed nitrogen gains up to 260 and 478 mg N/pot respectively for soaking and foliar spray techniques using a mixture of the micronutrients Mo, Mn, Fe and Zn. The nitrogen gains obtained in treatments deficient in one micronutrient were less than those in the treatments which received the complete mixture. The stimulative effect of micronutrients on the symbiotic N fixation by the R. leguminosarum-Vicia faba system is evident. This stimulative effect was further enhanced by incorporation of wheat straw in soil prior to the direct micronutrient application to the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号